Asignación de variables

x <- 3
y <- 2

Impresión de Resultados

x
## [1] 3
y
## [1] 2

Operaciones Aritméticas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9

Función matemática

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(0)
signo
## [1] 0
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)
suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800 , 14034, 13967)
plot(año,PIB, main="PIB per cápita en México", xlab="Año", ylab="USD",
type="b")

Tablas

persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona,altura,peso)
df
##   persona altura peso
## 1    Raúl   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.75  525
LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiUm9iZXJ0YSBHw7NtZXogRmFsY8OzbiINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogVFJVRQ0KICAgIHRvY19mbG9hdDogVFJVRQ0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCiAgICB0aGVtZTogY29zbW8NCi0tLQ0KDQojIEFzaWduYWNpw7NuIGRlIHZhcmlhYmxlcw0KDQpgYGB7cn0NCnggPC0gMw0KeSA8LSAyDQpgYGANCg0KIyBJbXByZXNpw7NuIGRlIFJlc3VsdGFkb3MNCg0KYGBge3J9DQp4DQp5DQpgYGANCg0KIyBPcGVyYWNpb25lcyBBcml0bcOpdGljYXMNCg0KYGBge3J9DQpzdW1hIDwtIHgreQ0Kc3VtYQ0KcmVzdGEgPC0geC15DQpyZXN0YQ0KbXVsdGlwbGljYWNpb24gPC0geCp5DQptdWx0aXBsaWNhY2lvbg0KZGl2aXNpb24gPC0geC95DQpkaXZpc2lvbg0KcmVzaWR1byA8LSB4JSV5DQpyZXNpZHVvDQpkaXZpc2lvbl9lbnRlcmEgPC0geCUvJXkNCmRpdmlzaW9uX2VudGVyYQ0KcG90ZW5jaWEgPC0geF55DQpwb3RlbmNpYQ0KDQpgYGANCg0KIyBGdW5jacOzbiBtYXRlbcOhdGljYQ0KDQpgYGB7cn0NCg0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpDQpyYWl6X2N1YWRyYWRhDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KZXhwb25lbmNpYWwgPC0gZXhwKDEpDQpleHBvbmVuY2lhbA0KYWJzb2x1dG8gPC0gYWJzKHgpDQphYnNvbHV0bw0Kc2lnbm8gPC0gc2lnbigwKQ0Kc2lnbm8NCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQ0KcmVkb25kZW9fYXJyaWJhDQpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikNCnJlZG9uZGVvX2FiYWpvDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCiMgQ29uc3RhbnRlcw0KDQpgYGB7cn0NCnBpDQpyYWRpbyA8LSA1DQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW8qKjINCmFyZWFfY2lyY3Vsbw0KYGBgDQoNCiMgVmVjdG9yZXMNCg0KYGBge3J9DQphIDwtIGMoMSwyLDMsNCw1KQ0KYQ0KYiA8LSBjKDE6MTAwKQ0KYg0KYyA8LSBzZXEoMSw1LCBieT0wLjUpDQpjDQpkIDwtIHJlcCgxOjIsIHRpbWVzPTMpDQpkDQplIDwtIHJlcCgxOjIsIGVhY2g9MykNCmUNCm5vbWJyZSA8LSBjKCJKdWFuIiwgIlNhcmEiLCAiUGVkcm8iKQ0Kbm9tYnJlDQpub21icmUgPC0gc29ydChub21icmUsIGRlY3JlYXNpbmcgPSBUUlVFKQ0Kbm9tYnJlDQpmIDwtIGMoMSwyLDMsNCw1KQ0Kc3VtYV92ZWN0b3JlcyA8LSBhK2YNCnN1bWFfdmVjdG9yZXMNCmBgYA0KDQojIEdyYWZpY2FyDQoNCmBgYHtyfQ0KYcOxbyA8LSBjKDIwMjA6MjAyNSkNClBJQiA8LSBjKDg3NDQsIDEwMjUwLCAxMTUwMCwgMTM4MDAgLCAxNDAzNCwgMTM5NjcpDQpwbG90KGHDsW8sUElCLCBtYWluPSJQSUIgcGVyIGPDoXBpdGEgZW4gTcOpeGljbyIsIHhsYWI9IkHDsW8iLCB5bGFiPSJVU0QiLA0KdHlwZT0iYiIpDQpgYGANCg0KIyBUYWJsYXMNCg0KYGBge3J9DQoNCnBlcnNvbmEgPC0gYygiUmHDumwiLCAiTWlndWVsIiwgIlJvYmVydGEiLCAiU2FtYW50YSIsICJKdW5pb3IiLCAiTWVtZSIpDQphbHR1cmEgPC0gYygxLjgwLCAxLjc0LCAxLjY0LCAxLjYwLCAxLjY5LCAxLjc1KQ0KcGVzbyA8LSBjKDgwLCA3OCwgNTUsIDU3LCA2MiwgNTI1KQ0KZGYgPC0gZGF0YS5mcmFtZShwZXJzb25hLGFsdHVyYSxwZXNvKQ0KZGYNCmBgYA0K