REGRESION LINEAL

Importar la base de datos de csv

data <- read.csv("C:\\Users\\marco\\Downloads\\rentadebicis.csv")
#file.choose()

Entender los datos

str(data)
## 'data.frame':    10886 obs. of  14 variables:
##  $ hora                    : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ dia                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mes                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ año                     : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ estacion                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ dia_de_la_semana        : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ asueto                  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ temperatura             : num  9.84 9.02 9.02 9.84 9.84 ...
##  $ sensacion_termica       : num  14.4 13.6 13.6 14.4 14.4 ...
##  $ humedad                 : int  81 80 80 75 75 75 80 86 75 76 ...
##  $ velocidad_del_viento    : num  0 0 0 0 0 ...
##  $ rentas_de_no_registrados: int  3 8 5 3 0 0 2 1 1 8 ...
##  $ rentas_de_registrados   : int  13 32 27 10 1 1 0 2 7 6 ...
##  $ rentas_totales          : int  16 40 32 13 1 1 2 3 8 14 ...
summary(data)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0

Generar el modelo (FACTOR = HORA, DIA, MES, ESTACION, DIA DE LA SEMANA, ASUETO)

regresion <- lm(rentas_totales~factor(hora)+factor(dia)+factor(mes)+año+factor(dia_de_la_semana)+humedad+velocidad_del_viento, data=data)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ factor(hora) + factor(dia) + factor(mes) + 
##     año + factor(dia_de_la_semana) + humedad + velocidad_del_viento, 
##     data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -380.68  -64.10   -6.11   52.63  437.58 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -1.852e+05  3.991e+03 -46.410  < 2e-16 ***
## factor(hora)1             -1.955e+01  6.827e+00  -2.864 0.004198 ** 
## factor(hora)2             -3.079e+01  6.851e+00  -4.495 7.04e-06 ***
## factor(hora)3             -4.312e+01  6.914e+00  -6.237 4.62e-10 ***
## factor(hora)4             -4.484e+01  6.881e+00  -6.517 7.51e-11 ***
## factor(hora)5             -2.992e+01  6.842e+00  -4.373 1.24e-05 ***
## factor(hora)6              2.851e+01  6.832e+00   4.173 3.04e-05 ***
## factor(hora)7              1.636e+02  6.828e+00  23.962  < 2e-16 ***
## factor(hora)8              3.105e+02  6.825e+00  45.491  < 2e-16 ***
## factor(hora)9              1.651e+02  6.829e+00  24.180  < 2e-16 ***
## factor(hora)10             1.131e+02  6.844e+00  16.521  < 2e-16 ***
## factor(hora)11             1.432e+02  6.867e+00  20.853  < 2e-16 ***
## factor(hora)12             1.853e+02  6.892e+00  26.881  < 2e-16 ***
## factor(hora)13             1.834e+02  6.921e+00  26.499  < 2e-16 ***
## factor(hora)14             1.673e+02  6.942e+00  24.107  < 2e-16 ***
## factor(hora)15             1.779e+02  6.946e+00  25.615  < 2e-16 ***
## factor(hora)16             2.408e+02  6.943e+00  34.674  < 2e-16 ***
## factor(hora)17             3.954e+02  6.922e+00  57.118  < 2e-16 ***
## factor(hora)18             3.599e+02  6.898e+00  52.171  < 2e-16 ***
## factor(hora)19             2.483e+02  6.865e+00  36.177  < 2e-16 ***
## factor(hora)20             1.644e+02  6.844e+00  24.023  < 2e-16 ***
## factor(hora)21             1.123e+02  6.829e+00  16.451  < 2e-16 ***
## factor(hora)22             7.519e+01  6.823e+00  11.020  < 2e-16 ***
## factor(hora)23             3.317e+01  6.819e+00   4.865 1.16e-06 ***
## factor(dia)2               1.970e+00  6.090e+00   0.324 0.746314    
## factor(dia)3               5.920e+00  6.093e+00   0.972 0.331228    
## factor(dia)4               1.290e+01  6.089e+00   2.119 0.034146 *  
## factor(dia)5               7.117e+00  6.086e+00   1.169 0.242307    
## factor(dia)6               8.837e+00  6.085e+00   1.452 0.146455    
## factor(dia)7               8.653e-01  6.084e+00   0.142 0.886909    
## factor(dia)8              -2.300e+00  6.079e+00  -0.378 0.705156    
## factor(dia)9               7.021e+00  6.084e+00   1.154 0.248484    
## factor(dia)10              5.009e+00  6.099e+00   0.821 0.411503    
## factor(dia)11              7.814e+00  6.106e+00   1.280 0.200689    
## factor(dia)12              6.451e+00  6.090e+00   1.059 0.289472    
## factor(dia)13              8.305e+00  6.100e+00   1.362 0.173357    
## factor(dia)14              1.000e+01  6.091e+00   1.642 0.100642    
## factor(dia)15              1.702e+01  6.084e+00   2.798 0.005151 ** 
## factor(dia)16              1.027e+01  6.086e+00   1.688 0.091527 .  
## factor(dia)17              2.338e+01  6.084e+00   3.842 0.000123 ***
## factor(dia)18              8.713e+00  6.118e+00   1.424 0.154422    
## factor(dia)19              9.242e+00  6.083e+00   1.519 0.128747    
## factor(mes)2               2.133e+01  4.878e+00   4.372 1.24e-05 ***
## factor(mes)3               6.127e+01  4.878e+00  12.560  < 2e-16 ***
## factor(mes)4               9.888e+01  4.865e+00  20.326  < 2e-16 ***
## factor(mes)5               1.476e+02  4.920e+00  30.007  < 2e-16 ***
## factor(mes)6               1.581e+02  4.870e+00  32.467  < 2e-16 ***
## factor(mes)7               1.502e+02  4.880e+00  30.780  < 2e-16 ***
## factor(mes)8               1.553e+02  4.887e+00  31.767  < 2e-16 ***
## factor(mes)9               1.646e+02  4.956e+00  33.216  < 2e-16 ***
## factor(mes)10              1.566e+02  4.937e+00  31.709  < 2e-16 ***
## factor(mes)11              1.125e+02  4.874e+00  23.084  < 2e-16 ***
## factor(mes)12              1.030e+02  4.932e+00  20.880  < 2e-16 ***
## año                        9.211e+01  1.984e+00  46.424  < 2e-16 ***
## factor(dia_de_la_semana)2  2.161e+00  3.725e+00   0.580 0.561889    
## factor(dia_de_la_semana)3  2.933e+00  3.711e+00   0.790 0.429355    
## factor(dia_de_la_semana)4  4.577e+00  3.720e+00   1.230 0.218594    
## factor(dia_de_la_semana)5  6.463e+00  3.734e+00   1.731 0.083479 .  
## factor(dia_de_la_semana)6  1.035e+01  3.691e+00   2.803 0.005068 ** 
## factor(dia_de_la_semana)7 -7.645e+00  3.699e+00  -2.067 0.038760 *  
## humedad                   -1.301e+00  6.396e-02 -20.335  < 2e-16 ***
## velocidad_del_viento      -8.519e-01  1.312e-01  -6.493 8.78e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 102.9 on 10824 degrees of freedom
## Multiple R-squared:  0.6791, Adjusted R-squared:  0.6773 
## F-statistic: 375.5 on 61 and 10824 DF,  p-value: < 2.2e-16

Generar pronosticos

datos_nuevos <- data.frame(hora=12, dia=1, mes=1:12, año=2013,
dia_de_la_semana=1, sensacion_termica=24, humedad=62,
velocidad_del_viento=13)
predict(regresion, datos_nuevos)
##        1        2        3        4        5        6        7        8 
## 262.8833 284.2087 324.1540 361.7610 410.5029 421.0070 413.0892 418.1406 
##        9       10       11       12 
## 427.4932 419.4437 375.3979 365.8574

CONCLUSIONES

Modelo altamente significativo con un poder explicativo del 69%.
Poder explicativo del modelo = 69%.
Efectos del horario: picos de renta en horarios de 8 am y 5-6 pm.
Efectos mensual con fuerte estacionalidad.
Clima afecta de forma positiva y la humedad y velocidad del viento de forma negativa.

LS0tDQp0aXRsZTogIkNvbWFuZG9zX0Jhc2ljb3MiDQphdXRob3I6ICJNYXJjbyBFc2NvYmFyIEEwMDgzOTQ2NyINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCiMgUkVHUkVTSU9OIExJTkVBTA0KIyBJbXBvcnRhciBsYSBiYXNlIGRlIGRhdG9zIGRlIGNzdg0KYGBge3J9DQpkYXRhIDwtIHJlYWQuY3N2KCJDOlxcVXNlcnNcXG1hcmNvXFxEb3dubG9hZHNcXHJlbnRhZGViaWNpcy5jc3YiKQ0KI2ZpbGUuY2hvb3NlKCkNCmBgYA0KDQojIEVudGVuZGVyIGxvcyBkYXRvcyANCmBgYHtyfQ0Kc3RyKGRhdGEpDQpzdW1tYXJ5KGRhdGEpDQpgYGANCg0KIyBHZW5lcmFyIGVsIG1vZGVsbyAoRkFDVE9SID0gSE9SQSwgRElBLCBNRVMsIEVTVEFDSU9OLCBESUEgREUgTEEgU0VNQU5BLCBBU1VFVE8pDQpgYGB7cn0NCnJlZ3Jlc2lvbiA8LSBsbShyZW50YXNfdG90YWxlc35mYWN0b3IoaG9yYSkrZmFjdG9yKGRpYSkrZmFjdG9yKG1lcykrYcOxbytmYWN0b3IoZGlhX2RlX2xhX3NlbWFuYSkraHVtZWRhZCt2ZWxvY2lkYWRfZGVsX3ZpZW50bywgZGF0YT1kYXRhKQ0Kc3VtbWFyeShyZWdyZXNpb24pDQpgYGANCg0KIyBHZW5lcmFyIHByb25vc3RpY29zDQpgYGB7cn0NCmRhdG9zX251ZXZvcyA8LSBkYXRhLmZyYW1lKGhvcmE9MTIsIGRpYT0xLCBtZXM9MToxMiwgYcOxbz0yMDEzLA0KZGlhX2RlX2xhX3NlbWFuYT0xLCBzZW5zYWNpb25fdGVybWljYT0yNCwgaHVtZWRhZD02MiwNCnZlbG9jaWRhZF9kZWxfdmllbnRvPTEzKQ0KcHJlZGljdChyZWdyZXNpb24sIGRhdG9zX251ZXZvcykNCmBgYA0KDQoNCiMgQ09OQ0xVU0lPTkVTDQpNb2RlbG8gYWx0YW1lbnRlIHNpZ25pZmljYXRpdm8gY29uIHVuIHBvZGVyIGV4cGxpY2F0aXZvIGRlbCA2OSUuICANClBvZGVyIGV4cGxpY2F0aXZvIGRlbCBtb2RlbG8gPSA2OSUuICANCkVmZWN0b3MgZGVsIGhvcmFyaW86IHBpY29zIGRlIHJlbnRhIGVuIGhvcmFyaW9zIGRlIDggYW0geSA1LTYgcG0uICANCkVmZWN0b3MgbWVuc3VhbCBjb24gZnVlcnRlIGVzdGFjaW9uYWxpZGFkLiAgDQpDbGltYSBhZmVjdGEgZGUgZm9ybWEgcG9zaXRpdmEgeSBsYSBodW1lZGFkIHkgdmVsb2NpZGFkIGRlbCB2aWVudG8gZGUgZm9ybWEgbmVnYXRpdmEuICANCg0KDQo=