Asignacion de Variables

x <- 3
y <- 2

Impresion de Resultado

x
## [1] 3
y
## [1] 2

Operaciones Artimetricas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo 
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9

Funcion matematica

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(-3)
absoluto
## [1] 3
signo <- sign(-3)
signo
## [1] -1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

#constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan","Sara","Fedelobo")
nombre
## [1] "Juan"     "Sara"     "Fedelobo"
nombre <- sort(nombre, decreasing =TRUE)
nombre
## [1] "Sara"     "Juan"     "Fedelobo"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8744,10250,11500,13800,14034,13967)
plot(año, PIB, main="PIB per capita en Mexico",xlab= "año",ylab="USD", type="b")

# Tablas

persona <- c("Raul","Saul","Baul","Taul","Maul","Paul")
altura <- c(1.80,1.74,1.64,1.60,1.69,1.75)
peso <- c(80,78,55,57,62,525)
df <- data.frame(persona,altura,peso)
df
##   persona altura peso
## 1    Raul   1.80   80
## 2    Saul   1.74   78
## 3    Baul   1.64   55
## 4    Taul   1.60   57
## 5    Maul   1.69   62
## 6    Paul   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ] #Fila
##   persona altura peso
## 1    Raul    1.8   80
df[ ,1] #Columna
## [1] "Raul" "Saul" "Baul" "Taul" "Maul" "Paul"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df) # Tipo de dato
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raul" "Saul" "Baul" "Taul" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525
# Logico: TRUE FALSE
# Factor : Niveles

Medidas de Tendencia Central

Media, Mediana y Moda

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715

Medidas de Dispersion

Rango, Varianza Desviacion Estandar, Coeficiente de Variacion

Media

mean(df$altura)
## [1] 1.703333

Medidas de dispersión

Rango, varianza, desviación estándar, coeficiente de variación

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura) / mean(df$altura) * 100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso) / mean(df$peso) * 100
cv_peso
## [1] 131.2859

Medidas de posición

Percentiles y cuartiles

boxplot(df$altura)

boxplot(df$peso)

df$IMC <- df$peso / (df$altura^2)
df$IMC
## [1]  24.69136  25.76298  20.44914  22.26562  21.70792 171.42857
LS0tCnRpdGxlOiAiY29tYW5kb3NfYmFzaWNvcyIKYXV0aG9yOiAiTWFyY2VsbyBSZXllcyIKZGF0ZTogIjIwMjYtMDItMTciCm91dHB1dDogCiAgICBodG1sX2RvY3VtZW50OgogICAgICAgIHRvYzogVFJVRQogICAgICAgIHRvY19mbG9hdDogVFJVRQogICAgICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgICAgICB0aGVtZTogY29zbW8KLS0tCiMgQXNpZ25hY2lvbiBkZSBWYXJpYWJsZXMKYGBge3J9Cgp4IDwtIDMKeSA8LSAyCmBgYAojIEltcHJlc2lvbiBkZSBSZXN1bHRhZG8KYGBge3J9CngKeQpgYGAKIyBPcGVyYWNpb25lcyBBcnRpbWV0cmljYXMKYGBge3J9CnN1bWEgPC0geCt5CnN1bWEKCnJlc3RhIDwtIHgteQpyZXN0YQoKbXVsdGlwbGljYWNpb24gPC0geCp5Cm11bHRpcGxpY2FjaW9uCgpkaXZpc2lvbiA8LSB4L3kKZGl2aXNpb24KCnJlc2lkdW8gPC0geCUleQpyZXNpZHVvIAoKZGl2aXNpb25fZW50ZXJhIDwtIHglLyV5CmRpdmlzaW9uX2VudGVyYQoKcG90ZW5jaWEgPC0geF55CnBvdGVuY2lhCmBgYAojIEZ1bmNpb24gbWF0ZW1hdGljYQpgYGB7cn0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpCnJhaXpfY3VhZHJhZGEKCnJhaXpfY3ViaWNhIDwtIHheKDEvMykKcmFpel9jdWJpY2EKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQpleHBvbmVuY2lhbAoKYWJzb2x1dG8gPC0gYWJzKC0zKQphYnNvbHV0bwoKc2lnbm8gPC0gc2lnbigtMykKc2lnbm8KCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQpyZWRvbmRlb19hcnJpYmEKCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQpyZWRvbmRlb19hYmFqbwoKdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikKdHJ1bmNhcgpgYGAKI2NvbnN0YW50ZXMKYGBge3J9CnBpCnJhZGlvIDwtIDUKYXJlYV9jaXJjdWxvIDwtIHBpKnJhZGlvKioyCmFyZWFfY2lyY3VsbwpgYGAKIyBWZWN0b3JlcwpgYGB7cn0KYSA8LSBjKDEsMiwzLDQsNSkKYQoKYiA8LSBjKDE6MTAwKQpiCgpjIDwtIHNlcSgxLDUsIGJ5PTAuNSkKYwoKZCA8LSByZXAoMToyLCB0aW1lcz0zKQpkCgplIDwtIHJlcCgxOjIsIGVhY2g9MykKZQoKbm9tYnJlIDwtIGMoIkp1YW4iLCJTYXJhIiwiRmVkZWxvYm8iKQpub21icmUKCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSwgZGVjcmVhc2luZyA9VFJVRSkKbm9tYnJlCgpmIDwtIGMoMSwyLDMsNCw1KQoKc3VtYV92ZWN0b3JlcyA8LSBhK2YKc3VtYV92ZWN0b3JlcwpgYGAKIyBHcmFmaWNhcgpgYGB7cn0KYcOxbyA8LSBjKDIwMjA6MjAyNSkKUElCIDwtIGMoODc0NCwxMDI1MCwxMTUwMCwxMzgwMCwxNDAzNCwxMzk2NykKcGxvdChhw7FvLCBQSUIsIG1haW49IlBJQiBwZXIgY2FwaXRhIGVuIE1leGljbyIseGxhYj0gImHDsW8iLHlsYWI9IlVTRCIsIHR5cGU9ImIiKQpgYGAKIyBUYWJsYXMKYGBge3J9CnBlcnNvbmEgPC0gYygiUmF1bCIsIlNhdWwiLCJCYXVsIiwiVGF1bCIsIk1hdWwiLCJQYXVsIikKYWx0dXJhIDwtIGMoMS44MCwxLjc0LDEuNjQsMS42MCwxLjY5LDEuNzUpCnBlc28gPC0gYyg4MCw3OCw1NSw1Nyw2Miw1MjUpCmRmIDwtIGRhdGEuZnJhbWUocGVyc29uYSxhbHR1cmEscGVzbykKZGYKbWF4KGRmJHBlc28pCm1pbihkZiRhbHR1cmEpCmRmWzEsIF0gI0ZpbGEKZGZbICwxXSAjQ29sdW1uYQpkZlsyLDJdCgpzdW1tYXJ5KGRmKQpzdHIoZGYpICMgVGlwbyBkZSBkYXRvCiMgTG9naWNvOiBUUlVFIEZBTFNFCiMgRmFjdG9yIDogTml2ZWxlcwpgYGAKIyBNZWRpZGFzIGRlIFRlbmRlbmNpYSBDZW50cmFsCiMgTWVkaWEsIE1lZGlhbmEgeSBNb2RhCmBgYHtyfQptZWFuKGRmJHBlc28pCm1lZGlhbihkZiRhbHR1cmEpCmBgYAojIE1lZGlkYXMgZGUgRGlzcGVyc2lvbgojIFJhbmdvLCBWYXJpYW56YSBEZXN2aWFjaW9uIEVzdGFuZGFyLCBDb2VmaWNpZW50ZSBkZSBWYXJpYWNpb24KCiMgTWVkaWEKYGBge3J9Cm1lYW4oZGYkYWx0dXJhKQpgYGAKIyBNZWRpZGFzIGRlIGRpc3BlcnNpw7NuCiMgUmFuZ28sIHZhcmlhbnphLCBkZXN2aWFjacOzbiBlc3TDoW5kYXIsIGNvZWZpY2llbnRlIGRlIHZhcmlhY2nDs24KYGBge3J9CnZhcihkZiRwZXNvKQpzZChkZiRwZXNvKQpzZChkZiRhbHR1cmEpCmBgYApgYGB7cn0KY3ZfYWx0dXJhIDwtIHNkKGRmJGFsdHVyYSkgLyBtZWFuKGRmJGFsdHVyYSkgKiAxMDAKY3ZfYWx0dXJhCgpjdl9wZXNvIDwtIHNkKGRmJHBlc28pIC8gbWVhbihkZiRwZXNvKSAqIDEwMApjdl9wZXNvCmBgYAojIE1lZGlkYXMgZGUgcG9zaWNpw7NuCiMgUGVyY2VudGlsZXMgeSBjdWFydGlsZXMKYGBge3J9CmJveHBsb3QoZGYkYWx0dXJhKQpib3hwbG90KGRmJHBlc28pCmBgYApgYGB7cn0KZGYkSU1DIDwtIGRmJHBlc28gLyAoZGYkYWx0dXJhXjIpCmRmJElNQwpgYGAK