Asignación de variables
x <- 3
y <- 2
Impresión de resultados
x
## [1] 3
y
## [1] 2
Operaciones aritméticas
suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9
Función matemática
raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(0)
signo
## [1] 0
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
Constantes
pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982
Vectores
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan" "Sara" "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara" "Pedro" "Juan"
f <- c(1,2,3,4,5)
suma_vectores <- a+f
suma_vectores
## [1] 2 4 6 8 10
Graficar
año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800 , 14034, 13967)
plot(año,PIB, main="PIB per cápita en México", xlab="Año", ylab="USD",
type="b")

Tablas
persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona,altura,peso)
df
## persona altura peso
## 1 Raúl 1.80 80
## 2 Miguel 1.74 78
## 3 Roberta 1.64 55
## 4 Samanta 1.60 57
## 5 Junior 1.69 62
## 6 Meme 1.75 525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
## persona altura peso
## 1 Raúl 1.8 80
df[ ,1]
## [1] "Raúl" "Miguel" "Roberta" "Samanta" "Junior" "Meme"
df[2,2]
## [1] 1.74
summary(df)
## persona altura peso
## Length:6 Min. :1.600 Min. : 55.00
## Class :character 1st Qu.:1.653 1st Qu.: 58.25
## Mode :character Median :1.715 Median : 70.00
## Mean :1.703 Mean :142.83
## 3rd Qu.:1.748 3rd Qu.: 79.50
## Max. :1.800 Max. :525.00
str(df)
## 'data.frame': 6 obs. of 3 variables:
## $ persona: chr "Raúl" "Miguel" "Roberta" "Samanta" ...
## $ altura : num 1.8 1.74 1.64 1.6 1.69 1.75
## $ peso : num 80 78 55 57 62 525
LS0tDQp0aXRsZTogIkNvbWFuZG9zIELDoXNpY29zIg0KYXV0aG9yOiAiUnViZW4gUm9ibGVzIEEwMDg0MDY5MiINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCg0KIyBBc2lnbmFjacOzbiBkZSB2YXJpYWJsZXMNCg0KYGBge3J9DQp4IDwtIDMNCnkgPC0gMg0KYGBgDQoNCiMgSW1wcmVzacOzbiBkZSByZXN1bHRhZG9zDQoNCmBgYHtyfQ0KeA0KeQ0KDQpgYGANCg0KIyBPcGVyYWNpb25lcyBhcml0bcOpdGljYXMNCg0KYGBge3J9DQoNCnN1bWEgPC0geCt5DQpzdW1hDQpyZXN0YSA8LSB4LXkNCnJlc3RhDQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uDQpkaXZpc2lvbiA8LSB4L3kNCmRpdmlzaW9uDQpyZXNpZHVvIDwtIHglJXkNCnJlc2lkdW8NCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQ0KZGl2aXNpb25fZW50ZXJhDQpwb3RlbmNpYSA8LSB4XnkNCnBvdGVuY2lhDQoNCmBgYA0KDQojIEZ1bmNpw7NuIG1hdGVtw6F0aWNhDQoNCmBgYHtyfQ0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpDQpyYWl6X2N1YWRyYWRhDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KZXhwb25lbmNpYWwgPC0gZXhwKDEpDQpleHBvbmVuY2lhbA0KYWJzb2x1dG8gPC0gYWJzKHgpDQphYnNvbHV0bw0Kc2lnbm8gPC0gc2lnbigwKQ0Kc2lnbm8NCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQ0KcmVkb25kZW9fYXJyaWJhDQpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikNCnJlZG9uZGVvX2FiYWpvDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KDQpgYGANCg0KIyBDb25zdGFudGVzDQoNCmBgYHtyfQ0KcGkNCnJhZGlvIDwtIDUNCmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpbyoqMg0KYXJlYV9jaXJjdWxvDQoNCmBgYA0KDQojIFZlY3RvcmVzDQoNCmBgYHtyfQ0KDQphIDwtIGMoMSwyLDMsNCw1KQ0KYQ0KYiA8LSBjKDE6MTAwKQ0KYg0KYyA8LSBzZXEoMSw1LCBieT0wLjUpDQpjDQpkIDwtIHJlcCgxOjIsIHRpbWVzPTMpDQpkDQplIDwtIHJlcCgxOjIsIGVhY2g9MykNCmUNCm5vbWJyZSA8LSBjKCJKdWFuIiwgIlNhcmEiLCAiUGVkcm8iKQ0Kbm9tYnJlDQpub21icmUgPC0gc29ydChub21icmUsIGRlY3JlYXNpbmcgPSBUUlVFKQ0Kbm9tYnJlDQpmIDwtIGMoMSwyLDMsNCw1KQ0Kc3VtYV92ZWN0b3JlcyA8LSBhK2YNCnN1bWFfdmVjdG9yZXMNCg0KYGBgDQoNCiMgR3JhZmljYXINCg0KYGBge3J9DQoNCmHDsW8gPC0gYygyMDIwOjIwMjUpDQpQSUIgPC0gYyg4NzQ0LCAxMDI1MCwgMTE1MDAsIDEzODAwICwgMTQwMzQsIDEzOTY3KQ0KcGxvdChhw7FvLFBJQiwgbWFpbj0iUElCIHBlciBjw6FwaXRhIGVuIE3DqXhpY28iLCB4bGFiPSJBw7FvIiwgeWxhYj0iVVNEIiwNCnR5cGU9ImIiKQ0KDQpgYGANCg0KDQojIFRhYmxhcw0KDQpgYGB7cn0NCg0KcGVyc29uYSA8LSBjKCJSYcO6bCIsICJNaWd1ZWwiLCAiUm9iZXJ0YSIsICJTYW1hbnRhIiwgIkp1bmlvciIsICJNZW1lIikNCmFsdHVyYSA8LSBjKDEuODAsIDEuNzQsIDEuNjQsIDEuNjAsIDEuNjksIDEuNzUpDQpwZXNvIDwtIGMoODAsIDc4LCA1NSwgNTcsIDYyLCA1MjUpDQpkZiA8LSBkYXRhLmZyYW1lKHBlcnNvbmEsYWx0dXJhLHBlc28pDQpkZg0KbWF4KGRmJHBlc28pDQptaW4oZGYkYWx0dXJhKQ0KZGZbMSwgXQ0KZGZbICwxXQ0KZGZbMiwyXQ0Kc3VtbWFyeShkZikNCnN0cihkZikNCg0KYGBgDQoNCiMgDQo=