1 ASIGNACIÓN DE VARIABLES

x <- 3
y <- 2

# Impresión de resultados
x
## [1] 3
y
## [1] 2

2 OPERACIONES ARITMÉTICAS

suma <- x + y
suma
## [1] 5
resta <- x - y
resta
## [1] 1
multiplicacion <- x * y
multiplicacion
## [1] 6
division <- x / y
division
## [1] 1.5
residuo <- x %% y
residuo
## [1] 1
division_entera <- x %/% y
division_entera
## [1] 1
potencia <- x ^ y
potencia
## [1] 9

3 FUNCIONES MATEMÁTICAS

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(0)
signo
## [1] 0
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

4 CONSTANTES

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi * radio^2
area_circulo
## [1] 78.53982

5 VECTORES

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)
suma_vectores <- a + f
suma_vectores
## [1]  2  4  6  8 10

6 GRÁFICA

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 13967)

plot(
  año, PIB,
  main = "PIB per cápita en México",
  xlab = "Año",
  ylab = "USD",
  type = "b"
)

7 TABLAS (DATA FRAMES)

persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)

df <- data.frame(persona, altura, peso)
df
##   persona altura peso
## 1    Raúl   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raúl    1.8   80
df[,1]
## [1] "Raúl"    "Miguel"  "Roberta" "Samanta" "Junior"  "Meme"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raúl" "Miguel" "Roberta" "Samanta" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525

8 MEDIDAS DE TENDENCIA CENTRAL

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715

9 MEDIDAS DE DISPERSIÓN

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura) / mean(df$altura) * 100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso) / mean(df$peso) * 100
cv_peso
## [1] 131.2859

10 MEDIDAS DE POSICIÓN

boxplot(df$altura)

boxplot(df$peso)

df$IMC <- peso / (altura^2)
LS0tCnRpdGxlOiAiQ29tYW5kb3MgQsOhc2ljb3MgTWFya2Rvd24iCmRhdGU6ICIyMDI2LTAyLTE3IgphdXRob3I6IE5hdGFsaWEgU29maWEgTWFydGluZXogRG9taW5ndWV6Cm91dHB1dDoKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6IHRydWUKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgdGhlbWU6IGNvc21vCi0tLQojIEFTSUdOQUNJw5NOIERFIFZBUklBQkxFUwpgYGB7cn0KeCA8LSAzCnkgPC0gMgoKIyBJbXByZXNpw7NuIGRlIHJlc3VsdGFkb3MKeAp5CgpgYGAKIyBPUEVSQUNJT05FUyBBUklUTcOJVElDQVMKYGBge3J9CnN1bWEgPC0geCArIHkKc3VtYQoKcmVzdGEgPC0geCAtIHkKcmVzdGEKCm11bHRpcGxpY2FjaW9uIDwtIHggKiB5Cm11bHRpcGxpY2FjaW9uCgpkaXZpc2lvbiA8LSB4IC8geQpkaXZpc2lvbgoKcmVzaWR1byA8LSB4ICUlIHkKcmVzaWR1bwoKZGl2aXNpb25fZW50ZXJhIDwtIHggJS8lIHkKZGl2aXNpb25fZW50ZXJhCgpwb3RlbmNpYSA8LSB4IF4geQpwb3RlbmNpYQoKYGBgCiMgRlVOQ0lPTkVTIE1BVEVNw4FUSUNBUwpgYGB7cn0KcmFpel9jdWFkcmFkYSA8LSBzcXJ0KHgpCnJhaXpfY3VhZHJhZGEKCnJhaXpfY3ViaWNhIDwtIHheKDEvMykKcmFpel9jdWJpY2EKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQpleHBvbmVuY2lhbAoKYWJzb2x1dG8gPC0gYWJzKHgpCmFic29sdXRvCgpzaWdubyA8LSBzaWduKDApCnNpZ25vCgpyZWRvbmRlb19hcnJpYmEgPC0gY2VpbGluZyhkaXZpc2lvbikKcmVkb25kZW9fYXJyaWJhCgpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKcmVkb25kZW9fYWJham8KCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCnRydW5jYXIKCmBgYAojIENPTlNUQU5URVMKYGBge3J9CnBpCgpyYWRpbyA8LSA1CmFyZWFfY2lyY3VsbyA8LSBwaSAqIHJhZGlvXjIKYXJlYV9jaXJjdWxvCgpgYGAKCiMgVkVDVE9SRVMKYGBge3J9CmEgPC0gYygxLDIsMyw0LDUpCmEKCmIgPC0gYygxOjEwMCkKYgoKYyA8LSBzZXEoMSw1LCBieT0wLjUpCmMKCmQgPC0gcmVwKDE6MiwgdGltZXM9MykKZAoKZSA8LSByZXAoMToyLCBlYWNoPTMpCmUKCm5vbWJyZSA8LSBjKCJKdWFuIiwgIlNhcmEiLCAiUGVkcm8iKQpub21icmUKCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSwgZGVjcmVhc2luZyA9IFRSVUUpCm5vbWJyZQoKZiA8LSBjKDEsMiwzLDQsNSkKc3VtYV92ZWN0b3JlcyA8LSBhICsgZgpzdW1hX3ZlY3RvcmVzCgpgYGAKCiMgR1LDgUZJQ0EKYGBge3J9CmHDsW8gPC0gYygyMDIwOjIwMjUpClBJQiA8LSBjKDg3NDQsIDEwMjUwLCAxMTUwMCwgMTM4MDAsIDE0MDM0LCAxMzk2NykKCnBsb3QoCiAgYcOxbywgUElCLAogIG1haW4gPSAiUElCIHBlciBjw6FwaXRhIGVuIE3DqXhpY28iLAogIHhsYWIgPSAiQcOxbyIsCiAgeWxhYiA9ICJVU0QiLAogIHR5cGUgPSAiYiIKKQoKYGBgCgojIFRBQkxBUyAoREFUQSBGUkFNRVMpCmBgYHtyfQpwZXJzb25hIDwtIGMoIlJhw7psIiwgIk1pZ3VlbCIsICJSb2JlcnRhIiwgIlNhbWFudGEiLCAiSnVuaW9yIiwgIk1lbWUiKQphbHR1cmEgPC0gYygxLjgwLCAxLjc0LCAxLjY0LCAxLjYwLCAxLjY5LCAxLjc1KQpwZXNvIDwtIGMoODAsIDc4LCA1NSwgNTcsIDYyLCA1MjUpCgpkZiA8LSBkYXRhLmZyYW1lKHBlcnNvbmEsIGFsdHVyYSwgcGVzbykKZGYKCm1heChkZiRwZXNvKQptaW4oZGYkYWx0dXJhKQoKZGZbMSwgXQpkZlssMV0KZGZbMiwyXQoKc3VtbWFyeShkZikKc3RyKGRmKQoKYGBgCgojIE1FRElEQVMgREUgVEVOREVOQ0lBIENFTlRSQUwKYGBge3J9Cm1lYW4oZGYkcGVzbykKbWVkaWFuKGRmJGFsdHVyYSkKCmBgYAoKIyBNRURJREFTIERFIERJU1BFUlNJw5NOCmBgYHtyfQp2YXIoZGYkcGVzbykKCnNkKGRmJHBlc28pCnNkKGRmJGFsdHVyYSkKCmN2X2FsdHVyYSA8LSBzZChkZiRhbHR1cmEpIC8gbWVhbihkZiRhbHR1cmEpICogMTAwCmN2X2FsdHVyYQoKY3ZfcGVzbyA8LSBzZChkZiRwZXNvKSAvIG1lYW4oZGYkcGVzbykgKiAxMDAKY3ZfcGVzbwoKYGBgCgojIE1FRElEQVMgREUgUE9TSUNJw5NOCmBgYHtyfQpib3hwbG90KGRmJGFsdHVyYSkKYm94cGxvdChkZiRwZXNvKQoKZGYkSU1DIDwtIHBlc28gLyAoYWx0dXJhXjIpCgpgYGAK