Asignacion de Variables

x <- 3
y <- 2

Impresion de Resultados

x
## [1] 3
y
## [1] 2

Operaciones Artimeticas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9

Funcion matematica

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(x)
signo
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre)
nombre
## [1] "Juan"  "Pedro" "Sara"
nombre <- sort(nombre, decreasing= TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8741, 10199, 11292, 13693, 13828, 13967)
plot(año, PIB, main="PIB per cápita en México", xlab="Año", ylab="USD", type="b")

Tablas

persona <- c("Raul", "Miguel", "Roberta", "Samantha", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona, altura, peso)
df
##    persona altura peso
## 1     Raul   1.80   80
## 2   Miguel   1.74   78
## 3  Roberta   1.64   55
## 4 Samantha   1.60   57
## 5   Junior   1.69   62
## 6     Meme   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raul    1.8   80
df[ ,1]
## [1] "Raul"     "Miguel"   "Roberta"  "Samantha" "Junior"   "Meme"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raul" "Miguel" "Roberta" "Samantha" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525

Logico: TRUE FALSE

Factor: Niveles

Medidas de Tendencia Central

Media (Promedio), Mediana y Moda

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715

Medidas de Dispersion

Rango, Varianza, Desviacion Estandar, Coeficiente de Variacion

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura)/mean(df$altura)*100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso)/mean(df$peso)*100
cv_peso
## [1] 131.2859

Medidas de Posicion

Percentiles y Cuartiles

boxplot(df$altura)

boxplot(df$peso)

df$IMC <- peso/(altura^2)
LS0tDQp0aXRsZTogIkNvbWFuZG9zIEJhc2ljb3MiDQphdXRob3I6ICJFbWlsaW8gQ2l1ZmZhcmRpIEEwMTYxMjU2OSINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCg0KIyBBc2lnbmFjaW9uIGRlIFZhcmlhYmxlcw0KDQpgYGB7cn0NCnggPC0gMw0KeSA8LSAyDQpgYGANCg0KIyBJbXByZXNpb24gZGUgUmVzdWx0YWRvcw0KDQpgYGB7cn0NCngNCnkNCmBgYA0KDQojIE9wZXJhY2lvbmVzIEFydGltZXRpY2FzIA0KDQpgYGB7cn0NCg0Kc3VtYSA8LSB4K3kNCnN1bWENCg0KcmVzdGEgPC0geC15DQpyZXN0YQ0KDQptdWx0aXBsaWNhY2lvbiA8LSB4KnkNCm11bHRpcGxpY2FjaW9uDQoNCmRpdmlzaW9uIDwtIHgveQ0KZGl2aXNpb24NCg0KcmVzaWR1byA8LSB4JSV5DQpyZXNpZHVvDQoNCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQ0KZGl2aXNpb25fZW50ZXJhDQoNCnBvdGVuY2lhIDwtIHheeQ0KcG90ZW5jaWENCmBgYA0KDQojIEZ1bmNpb24gbWF0ZW1hdGljYQ0KDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyh4KQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbih4KQ0Kc2lnbm8NCg0KcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcoZGl2aXNpb24pDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpb24pDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCiMgQ29uc3RhbnRlcw0KDQpgYGB7cn0NCnBpDQpyYWRpbyA8LSA1DQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMg0KYXJlYV9jaXJjdWxvDQpgYGANCg0KIyBWZWN0b3Jlcw0KDQpgYGB7cn0NCmEgPC0gYygxLDIsMyw0LDUpDQphDQoNCmIgPC0gYygxOjEwMCkNCmINCg0KYyA8LSBzZXEoMSw1LCBieT0wLjUpDQpjDQoNCmQgPC0gcmVwKDE6MiwgdGltZXM9MykNCmQNCg0KZSA8LSByZXAoMToyLCBlYWNoPTMpDQplDQoNCm5vbWJyZSA8LSBjKCJKdWFuIiwgIlNhcmEiLCAiUGVkcm8iKQ0Kbm9tYnJlDQoNCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSkNCm5vbWJyZQ0KDQpub21icmUgPC0gc29ydChub21icmUsIGRlY3JlYXNpbmc9IFRSVUUpDQpub21icmUNCg0KZiA8LSBjKDEsMiwzLDQsNSkNCg0Kc3VtYV92ZWN0b3JlcyA8LSBhK2YNCnN1bWFfdmVjdG9yZXMNCmBgYA0KDQojIEdyYWZpY2FyDQoNCmBgYHtyfQ0KYcOxbyA8LSBjKDIwMjA6MjAyNSkNClBJQiA8LSBjKDg3NDEsIDEwMTk5LCAxMTI5MiwgMTM2OTMsIDEzODI4LCAxMzk2NykNCnBsb3QoYcOxbywgUElCLCBtYWluPSJQSUIgcGVyIGPDoXBpdGEgZW4gTcOpeGljbyIsIHhsYWI9IkHDsW8iLCB5bGFiPSJVU0QiLCB0eXBlPSJiIikNCmBgYA0KDQojIFRhYmxhcw0KDQpgYGB7cn0NCnBlcnNvbmEgPC0gYygiUmF1bCIsICJNaWd1ZWwiLCAiUm9iZXJ0YSIsICJTYW1hbnRoYSIsICJKdW5pb3IiLCAiTWVtZSIpDQphbHR1cmEgPC0gYygxLjgwLCAxLjc0LCAxLjY0LCAxLjYwLCAxLjY5LCAxLjc1KQ0KcGVzbyA8LSBjKDgwLCA3OCwgNTUsIDU3LCA2MiwgNTI1KQ0KZGYgPC0gZGF0YS5mcmFtZShwZXJzb25hLCBhbHR1cmEsIHBlc28pDQpkZg0KDQptYXgoZGYkcGVzbykNCm1pbihkZiRhbHR1cmEpDQpkZlsxLCBdDQpkZlsgLDFdDQpkZlsyLDJdDQoNCnN1bW1hcnkoZGYpDQpzdHIoZGYpDQpgYGANCkxvZ2ljbzogVFJVRSBGQUxTRQ0KDQpGYWN0b3I6IE5pdmVsZXMNCg0KDQojIE1lZGlkYXMgZGUgVGVuZGVuY2lhIENlbnRyYWwNCk1lZGlhIChQcm9tZWRpbyksIE1lZGlhbmEgeSBNb2RhDQoNCmBgYHtyfQ0KbWVhbihkZiRwZXNvKQ0KbWVkaWFuKGRmJGFsdHVyYSkNCmBgYA0KDQojIE1lZGlkYXMgZGUgRGlzcGVyc2lvbg0KUmFuZ28sIFZhcmlhbnphLCBEZXN2aWFjaW9uIEVzdGFuZGFyLCBDb2VmaWNpZW50ZSBkZSBWYXJpYWNpb24NCg0KYGBge3J9DQp2YXIoZGYkcGVzbykNCnNkKGRmJHBlc28pDQpzZChkZiRhbHR1cmEpDQpjdl9hbHR1cmEgPC0gc2QoZGYkYWx0dXJhKS9tZWFuKGRmJGFsdHVyYSkqMTAwDQpjdl9hbHR1cmENCmN2X3Blc28gPC0gc2QoZGYkcGVzbykvbWVhbihkZiRwZXNvKSoxMDANCmN2X3Blc28NCmBgYA0KDQojIE1lZGlkYXMgZGUgUG9zaWNpb24NClBlcmNlbnRpbGVzIHkgQ3VhcnRpbGVzDQoNCmBgYHtyfQ0KYm94cGxvdChkZiRhbHR1cmEpDQpib3hwbG90KGRmJHBlc28pDQoNCmRmJElNQyA8LSBwZXNvLyhhbHR1cmFeMikNCmBgYA0KDQo=