Asignacion de variacion

x <- 3
y <- 2

#Impresion de resultados

x
## [1] 3
y
## [1] 2

#Operaciones Aritmeticas

suma <- x+y
suma 
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion 
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo 
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia 
## [1] 9
raiz_cuadrada <- sqrt(x)
raiz_cuadrada 
## [1] 1.732051
raiz_cubica <- x**(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(x)
signo 
## [1] 1
redondeo_arriba <- ceiling (division)
redondeo_arriba 
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

#Constantes

pi 
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio**2
area_circulo 
## [1] 78.53982

#Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre)
nombre
## [1] "Juan"  "Pedro" "Sara"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

#Graficar

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 13967)
plot(año, PIB, main= "PIB per cápita en México", xlab="Año", ylab="USD", type="b") #main es para poner nombre

#Tablas

persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.79)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona, altura, peso)
df 
##   persona altura peso
## 1    Raúl   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.79  525
max(df$peso) 
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raúl    1.8   80
df[ ,1]
## [1] "Raúl"    "Miguel"  "Roberta" "Samanta" "Junior"  "Meme"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.710   Mean   :142.83  
##                     3rd Qu.:1.778   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raúl" "Miguel" "Roberta" "Samanta" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.79
##  $ peso   : num  80 78 55 57 62 525
# Medidas de Tendencia Central 
# Media (Promedio), Mediana y Moda 

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715

Medidas de Dispersión

Rango, Varianza, Desviación Estándar, Coeficiente de Variación

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.08099383
cv_altura <- sd(df$altura)/mean(df$altura)*100
cv_altura
## [1] 4.736481
cv_peso <- sd(df$peso)/mean(df$peso)*100
cv_peso
## [1] 131.2859

Percentiles y Cuartiles

boxplot(df$peso)

boxplot(df$altura)

df$IMC <- peso/(altura**2)
LS0tCnRpdGxlOiAiQ29tYW5kb3NfYmFzaWNvcyIKYXV0aG9yOiAiR2l1bGlhbmEgTWFuY2VyYSBGbG9yZXMiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OiAKICBodG1sX2RvY3VtZW50OgogICAgdG9jOiBUUlVFCiAgICB0b2NfZmxvYXQ6IFRSVUUKICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUKICAgIHRoZW1lOiBjb3NtbwotLS0KCiMgQXNpZ25hY2lvbiBkZSB2YXJpYWNpb24gCmBgYHtyfQp4IDwtIDMKeSA8LSAyCmBgYAojSW1wcmVzaW9uIGRlIHJlc3VsdGFkb3MgCmBgYHtyfQp4CnkKYGBgCiNPcGVyYWNpb25lcyBBcml0bWV0aWNhcwpgYGB7cn0Kc3VtYSA8LSB4K3kKc3VtYSAKCnJlc3RhIDwtIHgteQpyZXN0YQoKbXVsdGlwbGljYWNpb24gPC0geCp5Cm11bHRpcGxpY2FjaW9uIAoKZGl2aXNpb24gPC0geC95CmRpdmlzaW9uCgpyZXNpZHVvIDwtIHglJXkKcmVzaWR1byAKCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQpkaXZpc2lvbl9lbnRlcmEKCnBvdGVuY2lhIDwtIHheeQpwb3RlbmNpYSAKCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhIAoKcmFpel9jdWJpY2EgPC0geCoqKDEvMykKcmFpel9jdWJpY2EKCmV4cG9uZW5jaWFsIDwtIGV4cCgxKQpleHBvbmVuY2lhbAoKYWJzb2x1dG8gPC0gYWJzKHgpCmFic29sdXRvCgpzaWdubyA8LSBzaWduKHgpCnNpZ25vIAoKcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcgKGRpdmlzaW9uKQpyZWRvbmRlb19hcnJpYmEgCgpyZWRvbmRlb19hYmFqbyA8LSBmbG9vcihkaXZpc2lvbikKcmVkb25kZW9fYWJham8KCnRydW5jYXIgPC0gdHJ1bmMoZGl2aXNpb24pCnRydW5jYXIKYGBgCiNDb25zdGFudGVzCmBgYHtyfQpwaSAKcmFkaW8gPC0gNQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW8qKjIKYXJlYV9jaXJjdWxvIApgYGAKI1ZlY3RvcmVzCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQphCgpiIDwtIGMoMToxMDApCmIKCmMgPC0gc2VxKDEsNSwgYnk9MC41KQpjCgpkIDwtIHJlcCgxOjIsIHRpbWVzPTMpCmQKCmUgPC0gcmVwKDE6MiwgZWFjaD0zKQplCgpub21icmUgPC0gYygiSnVhbiIsICJTYXJhIiwgIlBlZHJvIikKbm9tYnJlCgpub21icmUgPC0gc29ydChub21icmUpCm5vbWJyZQoKbm9tYnJlIDwtIHNvcnQobm9tYnJlLCBkZWNyZWFzaW5nID0gVFJVRSkKbm9tYnJlCgpmIDwtIGMoMSwyLDMsNCw1KQoKc3VtYV92ZWN0b3JlcyA8LSBhK2YKc3VtYV92ZWN0b3JlcwoKYGBgCiNHcmFmaWNhcgpgYGB7cn0KYcOxbyA8LSBjKDIwMjA6MjAyNSkKUElCIDwtIGMoODc0NCwgMTAyNTAsIDExNTAwLCAxMzgwMCwgMTQwMzQsIDEzOTY3KQpwbG90KGHDsW8sIFBJQiwgbWFpbj0gIlBJQiBwZXIgY8OhcGl0YSBlbiBNw6l4aWNvIiwgeGxhYj0iQcOxbyIsIHlsYWI9IlVTRCIsIHR5cGU9ImIiKSAjbWFpbiBlcyBwYXJhIHBvbmVyIG5vbWJyZQpgYGAKI1RhYmxhcwpgYGB7cn0KcGVyc29uYSA8LSBjKCJSYcO6bCIsICJNaWd1ZWwiLCAiUm9iZXJ0YSIsICJTYW1hbnRhIiwgIkp1bmlvciIsICJNZW1lIikKYWx0dXJhIDwtIGMoMS44MCwgMS43NCwgMS42NCwgMS42MCwgMS42OSwgMS43OSkKcGVzbyA8LSBjKDgwLCA3OCwgNTUsIDU3LCA2MiwgNTI1KQpkZiA8LSBkYXRhLmZyYW1lKHBlcnNvbmEsIGFsdHVyYSwgcGVzbykKZGYgCgptYXgoZGYkcGVzbykgCm1pbihkZiRhbHR1cmEpCmRmWzEsIF0KZGZbICwxXQpkZlsyLDJdCgpzdW1tYXJ5KGRmKQpzdHIoZGYpCgojIE1lZGlkYXMgZGUgVGVuZGVuY2lhIENlbnRyYWwgCiMgTWVkaWEgKFByb21lZGlvKSwgTWVkaWFuYSB5IE1vZGEgCgptZWFuKGRmJHBlc28pCm1lZGlhbihkZiRhbHR1cmEpCmBgYAojIE1lZGlkYXMgZGUgRGlzcGVyc2nDs24gCiMgUmFuZ28sIFZhcmlhbnphLCBEZXN2aWFjacOzbiBFc3TDoW5kYXIsIENvZWZpY2llbnRlIGRlIFZhcmlhY2nDs24gCmBgYHtyfQp2YXIoZGYkcGVzbykKc2QoZGYkcGVzbykKc2QoZGYkYWx0dXJhKQpjdl9hbHR1cmEgPC0gc2QoZGYkYWx0dXJhKS9tZWFuKGRmJGFsdHVyYSkqMTAwCmN2X2FsdHVyYQpjdl9wZXNvIDwtIHNkKGRmJHBlc28pL21lYW4oZGYkcGVzbykqMTAwCmN2X3Blc28KYGBgCiMgUGVyY2VudGlsZXMgeSBDdWFydGlsZXMgCmBgYHtyfQpib3hwbG90KGRmJHBlc28pCmJveHBsb3QoZGYkYWx0dXJhKQoKZGYkSU1DIDwtIHBlc28vKGFsdHVyYSoqMikKYGBgCgo=