Asignación de Variables

x <- 3
y <- 2

Impresión de Resultados

x
## [1] 3
y
## [1] 2

Operaciones Aritmeticas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x/y
residuo
## [1] 1.5
division_entera <- x/y
division_entera
## [1] 1.5
potencia <- x^y
potencia
## [1] 9

Función matemática

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica 
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(0)
signo
## [1] 0
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

radio <- 5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982
# Vectores
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800 , 14034, 13967)
plot(año,PIB, main="PIB per cápita en México", xlab="Año", ylab="USD", type="b")

Tablas

persona <- c("Raúl", "Miguel", "Roberta", "Samantha", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona,altura,peso)
df
##    persona altura peso
## 1     Raúl   1.80   80
## 2   Miguel   1.74   78
## 3  Roberta   1.64   55
## 4 Samantha   1.60   57
## 5   Junior   1.69   62
## 6     Meme   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raúl    1.8   80
df[ ,1]
## [1] "Raúl"     "Miguel"   "Roberta"  "Samantha" "Junior"   "Meme"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raúl" "Miguel" "Roberta" "Samantha" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525
# Logico: TRUE FALSE
# Factor: Niveles
LS0tCnRpdGxlOiAiQ29tYW5kb3MgQsOhc2ljb3MiCmF1dGhvcjogIlNhbWFudGhhIEdhcmPDrWEgWmFtYnJhbm8gQTAwODQwNDA4IgpkYXRlOiAiMjAyNi0wMi0xNyIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGNvc21vCi0tLQoKIyBBc2lnbmFjacOzbiBkZSBWYXJpYWJsZXMKYGBge3J9CnggPC0gMwp5IDwtIDIKYGBgCgojIEltcHJlc2nDs24gZGUgUmVzdWx0YWRvcwpgYGB7cn0KeAp5CmBgYAoKIyBPcGVyYWNpb25lcyBBcml0bWV0aWNhcwpgYGB7cn0Kc3VtYSA8LSB4K3kKc3VtYQpyZXN0YSA8LSB4LXkKcmVzdGEKbXVsdGlwbGljYWNpb24gPC0geCp5Cm11bHRpcGxpY2FjaW9uCmRpdmlzaW9uIDwtIHgveQpkaXZpc2lvbgpyZXNpZHVvIDwtIHgveQpyZXNpZHVvCmRpdmlzaW9uX2VudGVyYSA8LSB4L3kKZGl2aXNpb25fZW50ZXJhCnBvdGVuY2lhIDwtIHheeQpwb3RlbmNpYQpgYGAKCiMgRnVuY2nDs24gbWF0ZW3DoXRpY2EKYGBge3J9CnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhIAoKZXhwb25lbmNpYWwgPC0gZXhwKDEpCmV4cG9uZW5jaWFsCgphYnNvbHV0byA8LSBhYnMoeCkKYWJzb2x1dG8KCnNpZ25vIDwtIHNpZ24oMCkKc2lnbm8KCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQpyZWRvbmRlb19hcnJpYmEKCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQpyZWRvbmRlb19hYmFqbwoKdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikKdHJ1bmNhcgpgYGAKCiMgQ29uc3RhbnRlcwpgYGB7cn0KcmFkaW8gPC0gNQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW8qKjIKYXJlYV9jaXJjdWxvCgojIFZlY3RvcmVzCmEgPC0gYygxLDIsMyw0LDUpCmEKCmIgPC0gYygxOjEwMCkKYgoKYyA8LSBzZXEoMSw1LCBieT0wLjUpCmMKCmQgPC0gcmVwKDE6MiwgdGltZXM9MykKZAoKZSA8LSByZXAoMToyLCBlYWNoPTMpCmUKCm5vbWJyZSA8LSBjKCJKdWFuIiwgIlNhcmEiLCAiUGVkcm8iKQpub21icmUKCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSwgZGVjcmVhc2luZyA9IFRSVUUpCm5vbWJyZQoKZiA8LSBjKDEsMiwzLDQsNSkKCnN1bWFfdmVjdG9yZXMgPC0gYStmCnN1bWFfdmVjdG9yZXMKYGBgCgoKIyBHcmFmaWNhcgpgYGB7cn0KYcOxbyA8LSBjKDIwMjA6MjAyNSkKUElCIDwtIGMoODc0NCwgMTAyNTAsIDExNTAwLCAxMzgwMCAsIDE0MDM0LCAxMzk2NykKcGxvdChhw7FvLFBJQiwgbWFpbj0iUElCIHBlciBjw6FwaXRhIGVuIE3DqXhpY28iLCB4bGFiPSJBw7FvIiwgeWxhYj0iVVNEIiwgdHlwZT0iYiIpCmBgYAoKIyBUYWJsYXMKYGBge3J9CnBlcnNvbmEgPC0gYygiUmHDumwiLCAiTWlndWVsIiwgIlJvYmVydGEiLCAiU2FtYW50aGEiLCAiSnVuaW9yIiwgIk1lbWUiKQphbHR1cmEgPC0gYygxLjgwLCAxLjc0LCAxLjY0LCAxLjYwLCAxLjY5LCAxLjc1KQpwZXNvIDwtIGMoODAsIDc4LCA1NSwgNTcsIDYyLCA1MjUpCmRmIDwtIGRhdGEuZnJhbWUocGVyc29uYSxhbHR1cmEscGVzbykKZGYKCm1heChkZiRwZXNvKQptaW4oZGYkYWx0dXJhKQpkZlsxLCBdCmRmWyAsMV0KZGZbMiwyXQoKc3VtbWFyeShkZikKc3RyKGRmKQojIExvZ2ljbzogVFJVRSBGQUxTRQojIEZhY3RvcjogTml2ZWxlcwpgYGAKCgoKCgo=