Asignacion de variables

x <- 3
y <- 2

IMPRIMIR VARIABLES

x
## [1] 3
y
## [1] 2

OPERACIONES ARITMETICAS

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
division <- 3/2
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/% y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9

FUNCION MATEMATICA

raiz_cuadrada <- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(x)
signo
## [1] 1
redonde_arriba <- ceiling(division)
redonde_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

CONSTANTES

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

VECTORES

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("juan", "sara", "pedro")
nombre
## [1] "juan"  "sara"  "pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "sara"  "pedro" "juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

GRAFICAR

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 13967)

plot(año,
     PIB,
     main="PIB per capita en México",
     xlab = "Año",
     ylab = "USD",
     type = "b",
     )

TABLAS

persona <- c("Raul", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona,altura,peso)
df
##   persona altura peso
## 1    Raul   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raul    1.8   80
df[ ,1]
## [1] "Raul"    "Miguel"  "Roberta" "Samanta" "Junior"  "Meme"
df[2,2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raul" "Miguel" "Roberta" "Samanta" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525
#LOGICO: TRUE FALSE
#FACTOR: NIVELES

#MEDIDAS DE TENDENCIA CENTRAL
#Moda(Promedio), mediana y 

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715
#MEDIDAS DE DISPERSION 
#Rango, Varianza, Desviacion Estandar, COeficiente de Variacion

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura)/mean(df$altura)*100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso)/mean(df$peso)*100
cv_peso
## [1] 131.2859
#MEDIDAS DE POSICION
#Percentiles y Cuartiles

boxplot(df$altura)

df$IMC <- peso/(altura^2)

df
##   persona altura peso       IMC
## 1    Raul   1.80   80  24.69136
## 2  Miguel   1.74   78  25.76298
## 3 Roberta   1.64   55  20.44914
## 4 Samanta   1.60   57  22.26562
## 5  Junior   1.69   62  21.70792
## 6    Meme   1.75  525 171.42857
LS0tDQp0aXRsZTogIkNvbWFuZG9zX0Jhc2ljb3MiDQphdXRob3I6ICJNYXJjbyBFc2NvYmFyIEEwMDgzOTQ2NyINCmRhdGU6ICIyMDI2LTAyLTE3Ig0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCg0KIyBBc2lnbmFjaW9uIGRlIHZhcmlhYmxlcw0KDQpgYGB7cn0NCnggPC0gMw0KeSA8LSAyDQpgYGANCg0KIyBJTVBSSU1JUiBWQVJJQUJMRVMgDQpgYGB7cn0NCngNCnkNCmBgYA0KDQojIE9QRVJBQ0lPTkVTIEFSSVRNRVRJQ0FTIA0KYGBge3J9DQpzdW1hIDwtIHgreQ0Kc3VtYQ0KDQpyZXN0YSA8LSB4LXkNCnJlc3RhDQoNCmRpdmlzaW9uIDwtIDMvMg0KZGl2aXNpb24NCg0KcmVzaWR1byA8LSB4JSV5DQpyZXNpZHVvDQoNCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8lIHkNCmRpdmlzaW9uX2VudGVyYQ0KDQpwb3RlbmNpYSA8LSB4XnkNCnBvdGVuY2lhDQpgYGANCg0KIyBGVU5DSU9OIE1BVEVNQVRJQ0EgDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydCh4KQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSB4XigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyh4KQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbih4KQ0Kc2lnbm8NCg0KcmVkb25kZV9hcnJpYmEgPC0gY2VpbGluZyhkaXZpc2lvbikNCnJlZG9uZGVfYXJyaWJhDQoNCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQ0KcmVkb25kZW9fYWJham8NCg0KdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikNCnRydW5jYXINCmBgYA0KDQojIENPTlNUQU5URVMNCmBgYHtyfQ0KcGkNCnJhZGlvIDwtIDUNCmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpb14yDQphcmVhX2NpcmN1bG8NCmBgYA0KDQojIFZFQ1RPUkVTDQpgYGB7cn0NCmEgPC0gYygxLDIsMyw0LDUpDQphDQoNCmIgPC0gYygxOjEwMCkNCmINCg0KYyA8LSBzZXEoMSw1LCBieT0wLjUpDQpjDQoNCmQgPC0gcmVwKDE6MiwgdGltZXM9MykNCmQNCg0KZSA8LSByZXAoMToyLCBlYWNoPTMpDQplDQoNCm5vbWJyZSA8LSBjKCJqdWFuIiwgInNhcmEiLCAicGVkcm8iKQ0Kbm9tYnJlDQoNCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSwgZGVjcmVhc2luZyA9IFRSVUUpDQpub21icmUNCg0KZiA8LSBjKDEsMiwzLDQsNSkNCg0Kc3VtYV92ZWN0b3JlcyA8LSBhK2YNCnN1bWFfdmVjdG9yZXMNCmBgYA0KDQojIEdSQUZJQ0FSDQpgYGB7cn0NCmHDsW8gPC0gYygyMDIwOjIwMjUpDQpQSUIgPC0gYyg4NzQ0LCAxMDI1MCwgMTE1MDAsIDEzODAwLCAxNDAzNCwgMTM5NjcpDQoNCnBsb3QoYcOxbywNCiAgICAgUElCLA0KICAgICBtYWluPSJQSUIgcGVyIGNhcGl0YSBlbiBNw6l4aWNvIiwNCiAgICAgeGxhYiA9ICJBw7FvIiwNCiAgICAgeWxhYiA9ICJVU0QiLA0KICAgICB0eXBlID0gImIiLA0KICAgICApDQpgYGANCg0KIyBUQUJMQVMNCmBgYHtyfQ0KcGVyc29uYSA8LSBjKCJSYXVsIiwgIk1pZ3VlbCIsICJSb2JlcnRhIiwgIlNhbWFudGEiLCAiSnVuaW9yIiwgIk1lbWUiKQ0KYWx0dXJhIDwtIGMoMS44MCwgMS43NCwgMS42NCwgMS42MCwgMS42OSwgMS43NSkNCnBlc28gPC0gYyg4MCwgNzgsIDU1LCA1NywgNjIsIDUyNSkNCmRmIDwtIGRhdGEuZnJhbWUocGVyc29uYSxhbHR1cmEscGVzbykNCmRmDQoNCm1heChkZiRwZXNvKQ0KbWluKGRmJGFsdHVyYSkNCmRmWzEsIF0NCmRmWyAsMV0NCmRmWzIsMl0NCg0Kc3VtbWFyeShkZikNCnN0cihkZikNCg0KI0xPR0lDTzogVFJVRSBGQUxTRQ0KI0ZBQ1RPUjogTklWRUxFUw0KDQojTUVESURBUyBERSBURU5ERU5DSUEgQ0VOVFJBTA0KI01vZGEoUHJvbWVkaW8pLCBtZWRpYW5hIHkgDQoNCm1lYW4oZGYkcGVzbykNCm1lZGlhbihkZiRhbHR1cmEpDQoNCiNNRURJREFTIERFIERJU1BFUlNJT04gDQojUmFuZ28sIFZhcmlhbnphLCBEZXN2aWFjaW9uIEVzdGFuZGFyLCBDT2VmaWNpZW50ZSBkZSBWYXJpYWNpb24NCg0KdmFyKGRmJHBlc28pDQpzZChkZiRwZXNvKQ0Kc2QoZGYkYWx0dXJhKQ0KY3ZfYWx0dXJhIDwtIHNkKGRmJGFsdHVyYSkvbWVhbihkZiRhbHR1cmEpKjEwMA0KY3ZfYWx0dXJhDQoNCmN2X3Blc28gPC0gc2QoZGYkcGVzbykvbWVhbihkZiRwZXNvKSoxMDANCmN2X3Blc28NCg0KDQojTUVESURBUyBERSBQT1NJQ0lPTg0KI1BlcmNlbnRpbGVzIHkgQ3VhcnRpbGVzDQoNCmJveHBsb3QoZGYkYWx0dXJhKQ0KDQpkZiRJTUMgPC0gcGVzby8oYWx0dXJhXjIpDQoNCmRmDQpgYGANCg0KDQoNCg0KDQo=