Asignación de variables

X <- 3
Y <- 2

Impresión de resultados

X
## [1] 3
Y
## [1] 2

Operaciones aritméticas

suma <- X+Y
suma
## [1] 5
resta <- X-Y
resta
## [1] 1
division <- X/Y
division
## [1] 1.5
residuo <- X%%Y
residuo
## [1] 1
division_entera <- X%/%Y
division_entera
## [1] 1
potencia <- X^Y
potencia
## [1] 9

Función Matemática

raiz_cuadrada <- sqrt(X)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- X^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(X)
absoluto
## [1] 3
signo <- sign(X)
signo
## [1] 1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio <- 5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 13967)
plot(año,PIB, main= "PIB per capita 2020 - 2025 en México", xlab="AÑO", ylab="M usd")

# tablas

persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona, altura, peso)
df
##   persona altura peso
## 1    Raúl   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.75  525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ]
##   persona altura peso
## 1    Raúl    1.8   80
df[,1]
## [1] "Raúl"    "Miguel"  "Roberta" "Samanta" "Junior"  "Meme"
df[2, 2]
## [1] 1.74
summary(df)
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df)
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raúl" "Miguel" "Roberta" "Samanta" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525

Lógico: TRUE FALSE

Factor: Niveles

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
boxplot(df$altura)

boxplot(df$peso)

df$IMC <- peso/(altura**2)
LS0tDQp0aXRsZTogIkNvbWFuZG9zIGJhc2ljb3MiDQphdXRob3I6ICJBbnRvbmlvIEdhcmPDrWEgQWNvc3RhIEEwMTYyMTEzOSINCmRhdGU6ICIyMjAyNi8wMi8xNyINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KICAgIHRoZW1lOiBjb3Ntbw0KLS0tDQojIEFzaWduYWNpw7NuIGRlIHZhcmlhYmxlcw0KYGBge3J9DQpYIDwtIDMNClkgPC0gMg0KYGBgDQojIEltcHJlc2nDs24gZGUgcmVzdWx0YWRvcw0KYGBge3J9DQpYDQpZDQpgYGANCiMgT3BlcmFjaW9uZXMgYXJpdG3DqXRpY2FzDQpgYGB7cn0NCnN1bWEgPC0gWCtZDQpzdW1hDQoNCnJlc3RhIDwtIFgtWQ0KcmVzdGENCg0KZGl2aXNpb24gPC0gWC9ZDQpkaXZpc2lvbg0KDQpyZXNpZHVvIDwtIFglJVkNCnJlc2lkdW8NCg0KZGl2aXNpb25fZW50ZXJhIDwtIFglLyVZDQpkaXZpc2lvbl9lbnRlcmENCg0KcG90ZW5jaWEgPC0gWF5ZDQpwb3RlbmNpYQ0KYGBgDQojIEZ1bmNpw7NuIE1hdGVtw6F0aWNhDQpgYGB7cn0NCnJhaXpfY3VhZHJhZGEgPC0gc3FydChYKQ0KcmFpel9jdWFkcmFkYQ0KDQpyYWl6X2N1YmljYSA8LSBYXigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyhYKQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbihYKQ0Kc2lnbm8NCg0KcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcoZGl2aXNpb24pDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpb24pDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQojIENvbnN0YW50ZXMNCmBgYHtyfQ0KcGkNCnJhZGlvIDwtIDUNCmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpbyoqMg0KYXJlYV9jaXJjdWxvDQpgYGANCiMgVmVjdG9yZXMNCmBgYHtyfQ0KYSA8LSBjKDEsMiwzLDQsNSkNCmENCg0KYiA8LSBjKDE6MTAwKQ0KYg0KDQpjIDwtIHNlcSgxLDUsIGJ5PTAuNSkNCmMNCg0KZCA8LSByZXAoMToyLCB0aW1lcz0zKQ0KZA0KDQplIDwtIHJlcCgxOjIsIGVhY2g9MykNCmUNCg0Kbm9tYnJlIDwtIGMoIkp1YW4iLCAiU2FyYSIsICJQZWRybyIpDQpub21icmUNCg0Kbm9tYnJlIDwtIHNvcnQobm9tYnJlLCBkZWNyZWFzaW5nID0gVFJVRSkNCm5vbWJyZQ0KDQpmIDwtIGMoMSwyLDMsNCw1KQ0KDQpzdW1hX3ZlY3RvcmVzIDwtIGErZg0Kc3VtYV92ZWN0b3Jlcw0KYGBgDQojIEdyYWZpY2FyDQpgYGB7cn0NCmHDsW8gPC0gYygyMDIwOjIwMjUpDQpQSUIgPC0gYyg4NzQ0LCAxMDI1MCwgMTE1MDAsIDEzODAwLCAxNDAzNCwgMTM5NjcpDQpwbG90KGHDsW8sUElCLCBtYWluPSAiUElCIHBlciBjYXBpdGEgMjAyMCAtIDIwMjUgZW4gTcOpeGljbyIsIHhsYWI9IkHDkU8iLCB5bGFiPSJNIHVzZCIpDQoNCmBgYA0KIyB0YWJsYXMNCmBgYHtyfQ0KcGVyc29uYSA8LSBjKCJSYcO6bCIsICJNaWd1ZWwiLCAiUm9iZXJ0YSIsICJTYW1hbnRhIiwgIkp1bmlvciIsICJNZW1lIikNCmFsdHVyYSA8LSBjKDEuODAsIDEuNzQsIDEuNjQsIDEuNjAsIDEuNjksIDEuNzUpDQpwZXNvIDwtIGMoODAsIDc4LCA1NSwgNTcsIDYyLCA1MjUpDQpkZiA8LSBkYXRhLmZyYW1lKHBlcnNvbmEsIGFsdHVyYSwgcGVzbykNCmRmDQoNCm1heChkZiRwZXNvKQ0KbWluKGRmJGFsdHVyYSkNCmRmWzEsIF0NCmRmWywxXQ0KZGZbMiwgMl0NCg0Kc3VtbWFyeShkZikNCnN0cihkZikNCmBgYA0KIyBMw7NnaWNvOiBUUlVFIEZBTFNFDQojIEZhY3RvcjogTml2ZWxlcw0KYGBge3J9DQp2YXIoZGYkcGVzbykNCnNkKGRmJHBlc28pDQpzZChkZiRhbHR1cmEpDQoNCmJveHBsb3QoZGYkYWx0dXJhKQ0KYm94cGxvdChkZiRwZXNvKQ0KDQpkZiRJTUMgPC0gcGVzby8oYWx0dXJhKioyKQ0KYGBgDQoNCg0K