Asignacion de variables
x <- 3
y <- 2
impresion de resultados
x
## [1] 3
y
## [1] 2
operaciones aritmeticas
resta <- x-y
resta
## [1] 1
suma <- x+y
suma
## [1] 5
multi <- x*y
multi
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x**y
potencia
## [1] 9
funcion matematica
raiz_cubica <- x**(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(0)
signo
## [1] 0
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1
constantes
pi
## [1] 3.141593
radio <-5
area_circulo <- pi*radio**2
area_circulo
## [1] 78.53982
Vectores
a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b<- c(1:100)
b
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## [19] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
## [37] 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
## [55] 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
## [73] 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
## [91] 91 92 93 94 95 96 97 98 99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan","Sara","Pedro")
nombre
## [1] "Juan" "Sara" "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara" "Pedro" "Juan"
f <- c(1,2,3,4,5)
suma_vectores <- a+f
suma_vectores
## [1] 2 4 6 8 10
Graficar
año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 1396)
plot(año,PIB, main="PIB per capita en Mexico", xlab="Año", ylab="USD", type="b")

Tablas
persona <- c("Raul", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c (80, 78, 55, 57, 62, 525)
df <- data.frame (persona,altura,peso)
df
## persona altura peso
## 1 Raul 1.80 80
## 2 Miguel 1.74 78
## 3 Roberta 1.64 55
## 4 Samanta 1.60 57
## 5 Junior 1.69 62
## 6 Meme 1.75 525
max(df$peso)
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ] #primer registro de df
## persona altura peso
## 1 Raul 1.8 80
df[ ,1] #la primer columna
## [1] "Raul" "Miguel" "Roberta" "Samanta" "Junior" "Meme"
df[2,2] #del registro 2, el dato 2
## [1] 1.74
summary(df)
## persona altura peso
## Length:6 Min. :1.600 Min. : 55.00
## Class :character 1st Qu.:1.653 1st Qu.: 58.25
## Mode :character Median :1.715 Median : 70.00
## Mean :1.703 Mean :142.83
## 3rd Qu.:1.748 3rd Qu.: 79.50
## Max. :1.800 Max. :525.00
str(df)
## 'data.frame': 6 obs. of 3 variables:
## $ persona: chr "Raul" "Miguel" "Roberta" "Samanta" ...
## $ altura : num 1.8 1.74 1.64 1.6 1.69 1.75
## $ peso : num 80 78 55 57 62 525
mean(df$peso)
## [1] 142.8333
mean(df$altura)
## [1] 1.703333
var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura)/mean(df$altura)*100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso)/mean(df$peso)*100
cv_peso
## [1] 131.2859
boxplot(df$altura)

boxplot(df$peso)

df$IMC <- peso/(altura**2)
LS0tDQp0aXRsZTogIkNvbWFuZG9zIEJhc2ljb3MiDQphdXRob3I6ICJEYWhpciBUb3JyZXMgQTAxNTcxNjAxIg0KZGF0ZTogImByIFN5cy5EYXRlKClgIg0Kb3V0cHV0OiANCiAgaHRtbF9kb2N1bWVudDoNCiAgICB0b2M6IFRSVUUNCiAgICB0b2NfZmxvYXQ6IFRSVUUNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQotLS0NCg0KIyBBc2lnbmFjaW9uIGRlIHZhcmlhYmxlcw0KDQpgYGB7cn0NCnggPC0gMw0KeSA8LSAyDQpgYGANCg0KIyBpbXByZXNpb24gZGUgcmVzdWx0YWRvcw0KDQpgYGB7cn0NCngNCnkNCmBgYA0KDQojIG9wZXJhY2lvbmVzIGFyaXRtZXRpY2FzDQoNCmBgYHtyfQ0KcmVzdGEgPC0geC15DQpyZXN0YQ0KDQpzdW1hIDwtIHgreQ0Kc3VtYQ0KDQptdWx0aSA8LSB4KnkNCm11bHRpDQoNCmRpdmlzaW9uIDwtIHgveQ0KZGl2aXNpb24NCg0KcmVzaWR1byA8LSB4JSV5DQpyZXNpZHVvDQoNCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQ0KZGl2aXNpb25fZW50ZXJhDQoNCnBvdGVuY2lhIDwtIHgqKnkNCnBvdGVuY2lhDQpgYGANCg0KIyBmdW5jaW9uIG1hdGVtYXRpY2ENCg0KYGBge3J9DQoNCnJhaXpfY3ViaWNhIDwtIHgqKigxLzMpDQpyYWl6X2N1YmljYQ0KDQpleHBvbmVuY2lhbCA8LSBleHAoMSkNCmV4cG9uZW5jaWFsDQoNCmFic29sdXRvIDwtIGFicyh4KQ0KYWJzb2x1dG8NCg0Kc2lnbm8gPC0gc2lnbigwKQ0Kc2lnbm8NCg0KcmVkb25kZW9fYXJyaWJhIDwtIGNlaWxpbmcoZGl2aXNpb24pDQpyZWRvbmRlb19hcnJpYmENCg0KcmVkb25kZW9fYWJham8gPC0gZmxvb3IoZGl2aXNpb24pDQpyZWRvbmRlb19hYmFqbw0KDQp0cnVuY2FyIDwtIHRydW5jKGRpdmlzaW9uKQ0KdHJ1bmNhcg0KYGBgDQoNCiMgY29uc3RhbnRlcw0KDQpgYGB7cn0NCnBpDQpyYWRpbyA8LTUNCmFyZWFfY2lyY3VsbyA8LSBwaSpyYWRpbyoqMg0KYXJlYV9jaXJjdWxvDQpgYGANCg0KIyBWZWN0b3Jlcw0KDQpgYGB7cn0NCmEgPC0gYygxLDIsMyw0LDUpDQphDQoNCmI8LSBjKDE6MTAwKQ0KYg0KDQpjIDwtIHNlcSgxLDUsIGJ5PTAuNSkNCmMNCg0KZCA8LSByZXAoMToyLCB0aW1lcz0zKQ0KZA0KDQplIDwtIHJlcCgxOjIsIGVhY2g9MykNCmUNCg0Kbm9tYnJlIDwtIGMoIkp1YW4iLCJTYXJhIiwiUGVkcm8iKQ0Kbm9tYnJlDQoNCm5vbWJyZSA8LSBzb3J0KG5vbWJyZSwgZGVjcmVhc2luZyA9IFRSVUUpDQpub21icmUNCg0KZiA8LSBjKDEsMiwzLDQsNSkNCg0Kc3VtYV92ZWN0b3JlcyA8LSBhK2YNCnN1bWFfdmVjdG9yZXMNCmBgYA0KDQojIEdyYWZpY2FyDQoNCmBgYHtyfQ0KYcOxbyA8LSBjKDIwMjA6MjAyNSkNClBJQiA8LSBjKDg3NDQsIDEwMjUwLCAxMTUwMCwgMTM4MDAsIDE0MDM0LCAxMzk2KQ0KcGxvdChhw7FvLFBJQiwgbWFpbj0iUElCIHBlciBjYXBpdGEgZW4gTWV4aWNvIiwgeGxhYj0iQcOxbyIsIHlsYWI9IlVTRCIsIHR5cGU9ImIiKQ0KYGBgDQoNCiMgVGFibGFzDQoNCmBgYHtyfQ0KcGVyc29uYSA8LSBjKCJSYXVsIiwgIk1pZ3VlbCIsICJSb2JlcnRhIiwgIlNhbWFudGEiLCAiSnVuaW9yIiwgIk1lbWUiKQ0KYWx0dXJhIDwtIGMoMS44MCwgMS43NCwgMS42NCwgMS42MCwgMS42OSwgMS43NSkNCnBlc28gPC0gYyAoODAsIDc4LCA1NSwgNTcsIDYyLCA1MjUpDQpkZiA8LSBkYXRhLmZyYW1lIChwZXJzb25hLGFsdHVyYSxwZXNvKQ0KZGYNCg0KbWF4KGRmJHBlc28pDQptaW4oZGYkYWx0dXJhKQ0KZGZbMSwgXSAjcHJpbWVyIHJlZ2lzdHJvIGRlIGRmDQpkZlsgLDFdICNsYSBwcmltZXIgY29sdW1uYQ0KZGZbMiwyXSAjZGVsIHJlZ2lzdHJvIDIsIGVsIGRhdG8gMg0KDQpzdW1tYXJ5KGRmKQ0Kc3RyKGRmKQ0KDQptZWFuKGRmJHBlc28pDQptZWFuKGRmJGFsdHVyYSkNCg0KdmFyKGRmJHBlc28pDQpzZChkZiRwZXNvKQ0Kc2QoZGYkYWx0dXJhKQ0KY3ZfYWx0dXJhIDwtIHNkKGRmJGFsdHVyYSkvbWVhbihkZiRhbHR1cmEpKjEwMA0KY3ZfYWx0dXJhDQpjdl9wZXNvIDwtIHNkKGRmJHBlc28pL21lYW4oZGYkcGVzbykqMTAwDQpjdl9wZXNvDQoNCmJveHBsb3QoZGYkYWx0dXJhKQ0KYm94cGxvdChkZiRwZXNvKQ0KDQpkZiRJTUMgPC0gcGVzby8oYWx0dXJhKioyKQ0KYGBgDQoNCg==