Asignación de variables

x <- 3
y <- 2

Impresión de variables

x
## [1] 3
y
## [1] 2

Operaciones aritméticas

suma <- x+y
suma
## [1] 5
resta <- x-y
resta
## [1] 1
multiplicacion <- x*y
multiplicacion
## [1] 6
division <- x/y
division
## [1] 1.5
residuo <- x%%y
residuo
## [1] 1
division_entera <- x%/%y
division_entera
## [1] 1
potencia <- x^y
potencia
## [1] 9

Función aritmética

raiz_cuadrada<- sqrt(x)
raiz_cuadrada
## [1] 1.732051
raiz_cubica <- x^(1/3)
raiz_cubica
## [1] 1.44225
exponencial <- exp(1)
exponencial
## [1] 2.718282
absoluto <- abs(x)
absoluto
## [1] 3
signo <- sign(-3)
signo
## [1] -1
redondeo_arriba <- ceiling(division)
redondeo_arriba
## [1] 2
redondeo_abajo <- floor(division)
redondeo_abajo
## [1] 1
truncar <- trunc(division)
truncar
## [1] 1

Constantes

pi
## [1] 3.141593
radio <-5
area_circulo <- pi*radio^2
area_circulo
## [1] 78.53982

Vectores

a <- c(1,2,3,4,5)
a
## [1] 1 2 3 4 5
b <- c(1:100)
b
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100
c <- seq(1,5, by=0.5)
c
## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
d <- rep(1:2, times=3)
d
## [1] 1 2 1 2 1 2
e <- rep(1:2, each=3)
e
## [1] 1 1 1 2 2 2
nombre <- c("Juan", "Sara", "Pedro")
nombre
## [1] "Juan"  "Sara"  "Pedro"
nombre <- sort(nombre, decreasing = TRUE)
nombre
## [1] "Sara"  "Pedro" "Juan"
f <- c(1,2,3,4,5)

suma_vectores <- a+f
suma_vectores
## [1]  2  4  6  8 10

Graficar

año <- c(2020:2025)
PIB <- c(8744, 10250, 11500, 13800, 14034, 13967)
plot(año, PIB, main="PIB per cápita en México", xlab="Año", ylab="USD", type="b")

Tablas

persona <- c("Raúl", "Miguel", "Roberta", "Samanta", "Junior", "Meme")
altura <- c(1.80, 1.74, 1.64, 1.60, 1.69, 1.75)
peso <- c(80, 78, 55, 57, 62, 525)
df <- data.frame(persona,altura,peso)
df
##   persona altura peso
## 1    Raúl   1.80   80
## 2  Miguel   1.74   78
## 3 Roberta   1.64   55
## 4 Samanta   1.60   57
## 5  Junior   1.69   62
## 6    Meme   1.75  525
max(df$peso) # para llamar el peso máximo de la columna peso en la tabla df
## [1] 525
min(df$altura)
## [1] 1.6
df[1, ] # primer registro de df
##   persona altura peso
## 1    Raúl    1.8   80
df[ ,1] # la primer columna
## [1] "Raúl"    "Miguel"  "Roberta" "Samanta" "Junior"  "Meme"
df[2, 2] # del registro 2, el dato 2 
## [1] 1.74
summary(df) # datos analíticos
##    persona              altura           peso       
##  Length:6           Min.   :1.600   Min.   : 55.00  
##  Class :character   1st Qu.:1.653   1st Qu.: 58.25  
##  Mode  :character   Median :1.715   Median : 70.00  
##                     Mean   :1.703   Mean   :142.83  
##                     3rd Qu.:1.748   3rd Qu.: 79.50  
##                     Max.   :1.800   Max.   :525.00
str(df) # character, number, etc
## 'data.frame':    6 obs. of  3 variables:
##  $ persona: chr  "Raúl" "Miguel" "Roberta" "Samanta" ...
##  $ altura : num  1.8 1.74 1.64 1.6 1.69 1.75
##  $ peso   : num  80 78 55 57 62 525
# Lógico TRUE FALSE
# Factor : Niveles

# Medidas de tendencia central
# Media (Promedio), Mediana y Moda

mean(df$peso)
## [1] 142.8333
median(df$altura)
## [1] 1.715
# Medidas de dispersión
# Rango, varianza, desviación estándar, coeficiente de variación

var(df$peso)
## [1] 35163.77
sd(df$peso)
## [1] 187.52
sd(df$altura)
## [1] 0.07447595
cv_altura <- sd(df$altura)/mean(df$altura)*100
cv_altura
## [1] 4.372365
cv_peso <- sd(df$peso)/mean(df$peso)*100
cv_peso
## [1] 131.2859
# Medidas de posición
# Percentiles y cuartiles

boxplot(df$altura)

boxplot(df$peso)

df$IMC <- df$peso/(df$altura^2)
df$IMC
## [1]  24.69136  25.76298  20.44914  22.26562  21.70792 171.42857
# Regresión Lineal
# Importar la base de datos de csv
# Usar file.choose()
data <- read.csv("/Users/oscar/Desktop/rentadebicis.csv")

str(data)
## 'data.frame':    10886 obs. of  14 variables:
##  $ hora                    : int  0 1 2 3 4 5 6 7 8 9 ...
##  $ dia                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ mes                     : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ año                     : int  2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
##  $ estacion                : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ dia_de_la_semana        : int  6 6 6 6 6 6 6 6 6 6 ...
##  $ asueto                  : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ temperatura             : num  9.84 9.02 9.02 9.84 9.84 ...
##  $ sensacion_termica       : num  14.4 13.6 13.6 14.4 14.4 ...
##  $ humedad                 : int  81 80 80 75 75 75 80 86 75 76 ...
##  $ velocidad_del_viento    : num  0 0 0 0 0 ...
##  $ rentas_de_no_registrados: int  3 8 5 3 0 0 2 1 1 8 ...
##  $ rentas_de_registrados   : int  13 32 27 10 1 1 0 2 7 6 ...
##  $ rentas_totales          : int  16 40 32 13 1 1 2 3 8 14 ...
summary(data)
##       hora            dia              mes              año      
##  Min.   : 0.00   Min.   : 1.000   Min.   : 1.000   Min.   :2011  
##  1st Qu.: 6.00   1st Qu.: 5.000   1st Qu.: 4.000   1st Qu.:2011  
##  Median :12.00   Median :10.000   Median : 7.000   Median :2012  
##  Mean   :11.54   Mean   : 9.993   Mean   : 6.521   Mean   :2012  
##  3rd Qu.:18.00   3rd Qu.:15.000   3rd Qu.:10.000   3rd Qu.:2012  
##  Max.   :23.00   Max.   :19.000   Max.   :12.000   Max.   :2012  
##     estacion     dia_de_la_semana     asueto         temperatura   
##  Min.   :1.000   Min.   :1.000    Min.   :0.00000   Min.   : 0.82  
##  1st Qu.:2.000   1st Qu.:2.000    1st Qu.:0.00000   1st Qu.:13.94  
##  Median :3.000   Median :4.000    Median :0.00000   Median :20.50  
##  Mean   :2.507   Mean   :4.014    Mean   :0.02857   Mean   :20.23  
##  3rd Qu.:4.000   3rd Qu.:6.000    3rd Qu.:0.00000   3rd Qu.:26.24  
##  Max.   :4.000   Max.   :7.000    Max.   :1.00000   Max.   :41.00  
##  sensacion_termica    humedad       velocidad_del_viento
##  Min.   : 0.76     Min.   :  0.00   Min.   : 0.000      
##  1st Qu.:16.66     1st Qu.: 47.00   1st Qu.: 7.002      
##  Median :24.24     Median : 62.00   Median :12.998      
##  Mean   :23.66     Mean   : 61.89   Mean   :12.799      
##  3rd Qu.:31.06     3rd Qu.: 77.00   3rd Qu.:16.998      
##  Max.   :45.45     Max.   :100.00   Max.   :56.997      
##  rentas_de_no_registrados rentas_de_registrados rentas_totales 
##  Min.   :  0.00           Min.   :  0.0         Min.   :  1.0  
##  1st Qu.:  4.00           1st Qu.: 36.0         1st Qu.: 42.0  
##  Median : 17.00           Median :118.0         Median :145.0  
##  Mean   : 36.02           Mean   :155.6         Mean   :191.6  
##  3rd Qu.: 49.00           3rd Qu.:222.0         3rd Qu.:284.0  
##  Max.   :367.00           Max.   :886.0         Max.   :977.0
# Generar el Modelo
regresion <- lm(rentas_totales~factor(hora)+factor(dia)+factor(mes)+año+factor(dia_de_la_semana)+sensacion_termica+humedad+velocidad_del_viento, data=data)
summary(regresion)
## 
## Call:
## lm(formula = rentas_totales ~ factor(hora) + factor(dia) + factor(mes) + 
##     año + factor(dia_de_la_semana) + sensacion_termica + humedad + 
##     velocidad_del_viento, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -370.40  -61.37   -6.55   51.96  440.24 
## 
## Coefficients:
##                             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               -1.762e+05  3.972e+03 -44.364  < 2e-16 ***
## factor(hora)1             -1.764e+01  6.736e+00  -2.618 0.008845 ** 
## factor(hora)2             -2.765e+01  6.761e+00  -4.089 4.36e-05 ***
## factor(hora)3             -3.855e+01  6.826e+00  -5.648 1.66e-08 ***
## factor(hora)4             -3.908e+01  6.797e+00  -5.749 9.19e-09 ***
## factor(hora)5             -2.282e+01  6.762e+00  -3.375 0.000741 ***
## factor(hora)6              3.597e+01  6.754e+00   5.325 1.03e-07 ***
## factor(hora)7              1.697e+02  6.745e+00  25.156  < 2e-16 ***
## factor(hora)8              3.132e+02  6.735e+00  46.498  < 2e-16 ***
## factor(hora)9              1.636e+02  6.738e+00  24.284  < 2e-16 ***
## factor(hora)10             1.075e+02  6.759e+00  15.899  < 2e-16 ***
## factor(hora)11             1.333e+02  6.800e+00  19.598  < 2e-16 ***
## factor(hora)12             1.718e+02  6.844e+00  25.099  < 2e-16 ***
## factor(hora)13             1.666e+02  6.896e+00  24.165  < 2e-16 ***
## factor(hora)14             1.485e+02  6.934e+00  21.420  < 2e-16 ***
## factor(hora)15             1.586e+02  6.943e+00  22.839  < 2e-16 ***
## factor(hora)16             2.223e+02  6.933e+00  32.064  < 2e-16 ***
## factor(hora)17             3.792e+02  6.893e+00  55.017  < 2e-16 ***
## factor(hora)18             3.461e+02  6.853e+00  50.497  < 2e-16 ***
## factor(hora)19             2.377e+02  6.800e+00  34.956  < 2e-16 ***
## factor(hora)20             1.563e+02  6.768e+00  23.096  < 2e-16 ***
## factor(hora)21             1.067e+02  6.745e+00  15.822  < 2e-16 ***
## factor(hora)22             7.167e+01  6.734e+00  10.642  < 2e-16 ***
## factor(hora)23             3.169e+01  6.728e+00   4.710 2.50e-06 ***
## factor(dia)2               4.661e+00  6.010e+00   0.776 0.438043    
## factor(dia)3               1.098e+01  6.018e+00   1.824 0.068110 .  
## factor(dia)4               1.455e+01  6.007e+00   2.421 0.015479 *  
## factor(dia)5               9.545e+00  6.006e+00   1.589 0.112063    
## factor(dia)6               1.350e+01  6.009e+00   2.247 0.024649 *  
## factor(dia)7               2.588e+00  6.003e+00   0.431 0.666368    
## factor(dia)8               5.630e-02  5.999e+00   0.009 0.992512    
## factor(dia)9               1.175e+01  6.008e+00   1.956 0.050487 .  
## factor(dia)10              9.053e+00  6.022e+00   1.503 0.132788    
## factor(dia)11              1.372e+01  6.034e+00   2.273 0.023018 *  
## factor(dia)12              1.172e+01  6.016e+00   1.947 0.051503 .  
## factor(dia)13              1.252e+01  6.023e+00   2.079 0.037677 *  
## factor(dia)14              1.115e+01  6.010e+00   1.855 0.063574 .  
## factor(dia)15              1.767e+01  6.002e+00   2.944 0.003244 ** 
## factor(dia)16              1.196e+01  6.005e+00   1.991 0.046509 *  
## factor(dia)17              2.738e+01  6.007e+00   4.559 5.20e-06 ***
## factor(dia)18              8.182e+00  6.035e+00   1.356 0.175251    
## factor(dia)19              9.357e+00  6.002e+00   1.559 0.119009    
## factor(mes)2               1.029e+01  4.855e+00   2.119 0.034076 *  
## factor(mes)3               3.055e+01  5.131e+00   5.954 2.70e-09 ***
## factor(mes)4               5.394e+01  5.460e+00   9.879  < 2e-16 ***
## factor(mes)5               8.399e+01  6.095e+00  13.781  < 2e-16 ***
## factor(mes)6               7.555e+01  6.780e+00  11.143  < 2e-16 ***
## factor(mes)7               5.105e+01  7.495e+00   6.811 1.02e-11 ***
## factor(mes)8               6.345e+01  7.179e+00   8.838  < 2e-16 ***
## factor(mes)9               8.809e+01  6.600e+00  13.349  < 2e-16 ***
## factor(mes)10              1.013e+02  5.828e+00  17.385  < 2e-16 ***
## factor(mes)11              8.487e+01  5.068e+00  16.745  < 2e-16 ***
## factor(mes)12              8.084e+01  5.032e+00  16.066  < 2e-16 ***
## año                        8.760e+01  1.975e+00  44.359  < 2e-16 ***
## factor(dia_de_la_semana)2  1.931e+00  3.675e+00   0.526 0.599243    
## factor(dia_de_la_semana)3  4.029e+00  3.662e+00   1.100 0.271250    
## factor(dia_de_la_semana)4  6.044e+00  3.671e+00   1.646 0.099719 .  
## factor(dia_de_la_semana)5  1.158e+01  3.695e+00   3.135 0.001725 ** 
## factor(dia_de_la_semana)6  1.360e+01  3.647e+00   3.730 0.000193 ***
## factor(dia_de_la_semana)7 -5.067e+00  3.652e+00  -1.387 0.165368    
## sensacion_termica          4.347e+00  2.519e-01  17.261  < 2e-16 ***
## humedad                   -1.276e+00  6.312e-02 -20.217  < 2e-16 ***
## velocidad_del_viento      -7.129e-01  1.297e-01  -5.497 3.95e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 101.5 on 10823 degrees of freedom
## Multiple R-squared:  0.6877, Adjusted R-squared:  0.6859 
## F-statistic: 384.4 on 62 and 10823 DF,  p-value: < 2.2e-16
# Conclusiones
# Modelo altamente significativo con un poder explicativo del 69%
# Hay picos de rentas en horarios de 8 am y 5-6 pm
# Efecto mensual con fuerte estacionalidad
# 
LS0tCnRpdGxlOiAiY29tYW5kb3NfYmFzaWNvcyIKYXV0aG9yOiAiT3NjYXIgUmV0ZXMgLSBBMDEzODM2NTMiCmRhdGU6ICIyMDI2LTAyLTE3IgpvdXRwdXQ6IAogIGh0bWxfZG9jdW1lbnQ6CiAgICB0b2M6IFRSVUUKICAgIHRvY19mbG9hdDogVFJVRQogICAgY29kZV9kb3dubG9hZDogVFJVRQogICAgdGhlbWU6IGNvc21vCi0tLQoKIyBBc2lnbmFjacOzbiBkZSB2YXJpYWJsZXMKCmBgYHtyfQp4IDwtIDMKeSA8LSAyCmBgYAoKIyBJbXByZXNpw7NuIGRlIHZhcmlhYmxlcwoKYGBge3J9CngKeQpgYGAKCiMgT3BlcmFjaW9uZXMgYXJpdG3DqXRpY2FzCgpgYGB7cn0Kc3VtYSA8LSB4K3kKc3VtYQoKcmVzdGEgPC0geC15CnJlc3RhCgptdWx0aXBsaWNhY2lvbiA8LSB4KnkKbXVsdGlwbGljYWNpb24KCmRpdmlzaW9uIDwtIHgveQpkaXZpc2lvbgoKcmVzaWR1byA8LSB4JSV5CnJlc2lkdW8KCmRpdmlzaW9uX2VudGVyYSA8LSB4JS8leQpkaXZpc2lvbl9lbnRlcmEKCnBvdGVuY2lhIDwtIHheeQpwb3RlbmNpYQpgYGAKCiMgRnVuY2nDs24gYXJpdG3DqXRpY2EKCmBgYHtyfQpyYWl6X2N1YWRyYWRhPC0gc3FydCh4KQpyYWl6X2N1YWRyYWRhCgpyYWl6X2N1YmljYSA8LSB4XigxLzMpCnJhaXpfY3ViaWNhCgpleHBvbmVuY2lhbCA8LSBleHAoMSkKZXhwb25lbmNpYWwKCmFic29sdXRvIDwtIGFicyh4KQphYnNvbHV0bwoKc2lnbm8gPC0gc2lnbigtMykKc2lnbm8KCnJlZG9uZGVvX2FycmliYSA8LSBjZWlsaW5nKGRpdmlzaW9uKQpyZWRvbmRlb19hcnJpYmEKCnJlZG9uZGVvX2FiYWpvIDwtIGZsb29yKGRpdmlzaW9uKQpyZWRvbmRlb19hYmFqbwoKdHJ1bmNhciA8LSB0cnVuYyhkaXZpc2lvbikKdHJ1bmNhcgpgYGAKCiMgQ29uc3RhbnRlcwoKYGBge3J9CnBpCnJhZGlvIDwtNQphcmVhX2NpcmN1bG8gPC0gcGkqcmFkaW9eMgphcmVhX2NpcmN1bG8KYGBgCgojIFZlY3RvcmVzCmBgYHtyfQphIDwtIGMoMSwyLDMsNCw1KQphCgpiIDwtIGMoMToxMDApCmIKCmMgPC0gc2VxKDEsNSwgYnk9MC41KQpjCgpkIDwtIHJlcCgxOjIsIHRpbWVzPTMpCmQKCmUgPC0gcmVwKDE6MiwgZWFjaD0zKQplCgpub21icmUgPC0gYygiSnVhbiIsICJTYXJhIiwgIlBlZHJvIikKbm9tYnJlCgpub21icmUgPC0gc29ydChub21icmUsIGRlY3JlYXNpbmcgPSBUUlVFKQpub21icmUKCmYgPC0gYygxLDIsMyw0LDUpCgpzdW1hX3ZlY3RvcmVzIDwtIGErZgpzdW1hX3ZlY3RvcmVzCmBgYAoKIyBHcmFmaWNhcgoKYGBge3J9CmHDsW8gPC0gYygyMDIwOjIwMjUpClBJQiA8LSBjKDg3NDQsIDEwMjUwLCAxMTUwMCwgMTM4MDAsIDE0MDM0LCAxMzk2NykKcGxvdChhw7FvLCBQSUIsIG1haW49IlBJQiBwZXIgY8OhcGl0YSBlbiBNw6l4aWNvIiwgeGxhYj0iQcOxbyIsIHlsYWI9IlVTRCIsIHR5cGU9ImIiKQpgYGAKCiMgVGFibGFzCgpgYGB7cn0KcGVyc29uYSA8LSBjKCJSYcO6bCIsICJNaWd1ZWwiLCAiUm9iZXJ0YSIsICJTYW1hbnRhIiwgIkp1bmlvciIsICJNZW1lIikKYWx0dXJhIDwtIGMoMS44MCwgMS43NCwgMS42NCwgMS42MCwgMS42OSwgMS43NSkKcGVzbyA8LSBjKDgwLCA3OCwgNTUsIDU3LCA2MiwgNTI1KQpkZiA8LSBkYXRhLmZyYW1lKHBlcnNvbmEsYWx0dXJhLHBlc28pCmRmCgptYXgoZGYkcGVzbykgIyBwYXJhIGxsYW1hciBlbCBwZXNvIG3DoXhpbW8gZGUgbGEgY29sdW1uYSBwZXNvIGVuIGxhIHRhYmxhIGRmCm1pbihkZiRhbHR1cmEpCmRmWzEsIF0gIyBwcmltZXIgcmVnaXN0cm8gZGUgZGYKZGZbICwxXSAjIGxhIHByaW1lciBjb2x1bW5hCmRmWzIsIDJdICMgZGVsIHJlZ2lzdHJvIDIsIGVsIGRhdG8gMiAKCnN1bW1hcnkoZGYpICMgZGF0b3MgYW5hbMOtdGljb3MKc3RyKGRmKSAjIGNoYXJhY3RlciwgbnVtYmVyLCBldGMKCiMgTMOzZ2ljbyBUUlVFIEZBTFNFCiMgRmFjdG9yIDogTml2ZWxlcwoKIyBNZWRpZGFzIGRlIHRlbmRlbmNpYSBjZW50cmFsCiMgTWVkaWEgKFByb21lZGlvKSwgTWVkaWFuYSB5IE1vZGEKCm1lYW4oZGYkcGVzbykKbWVkaWFuKGRmJGFsdHVyYSkKCiMgTWVkaWRhcyBkZSBkaXNwZXJzacOzbgojIFJhbmdvLCB2YXJpYW56YSwgZGVzdmlhY2nDs24gZXN0w6FuZGFyLCBjb2VmaWNpZW50ZSBkZSB2YXJpYWNpw7NuCgp2YXIoZGYkcGVzbykKc2QoZGYkcGVzbykKc2QoZGYkYWx0dXJhKQpjdl9hbHR1cmEgPC0gc2QoZGYkYWx0dXJhKS9tZWFuKGRmJGFsdHVyYSkqMTAwCmN2X2FsdHVyYQpjdl9wZXNvIDwtIHNkKGRmJHBlc28pL21lYW4oZGYkcGVzbykqMTAwCmN2X3Blc28KCiMgTWVkaWRhcyBkZSBwb3NpY2nDs24KIyBQZXJjZW50aWxlcyB5IGN1YXJ0aWxlcwoKYm94cGxvdChkZiRhbHR1cmEpCmJveHBsb3QoZGYkcGVzbykKCmRmJElNQyA8LSBkZiRwZXNvLyhkZiRhbHR1cmFeMikKZGYkSU1DCgojIFJlZ3Jlc2nDs24gTGluZWFsCiMgSW1wb3J0YXIgbGEgYmFzZSBkZSBkYXRvcyBkZSBjc3YKIyBVc2FyIGZpbGUuY2hvb3NlKCkKZGF0YSA8LSByZWFkLmNzdigiL1VzZXJzL29zY2FyL0Rlc2t0b3AvcmVudGFkZWJpY2lzLmNzdiIpCgpzdHIoZGF0YSkKc3VtbWFyeShkYXRhKQoKIyBHZW5lcmFyIGVsIE1vZGVsbwpyZWdyZXNpb24gPC0gbG0ocmVudGFzX3RvdGFsZXN+ZmFjdG9yKGhvcmEpK2ZhY3RvcihkaWEpK2ZhY3RvcihtZXMpK2HDsW8rZmFjdG9yKGRpYV9kZV9sYV9zZW1hbmEpK3NlbnNhY2lvbl90ZXJtaWNhK2h1bWVkYWQrdmVsb2NpZGFkX2RlbF92aWVudG8sIGRhdGE9ZGF0YSkKc3VtbWFyeShyZWdyZXNpb24pCgojIENvbmNsdXNpb25lcwojIE1vZGVsbyBhbHRhbWVudGUgc2lnbmlmaWNhdGl2byBjb24gdW4gcG9kZXIgZXhwbGljYXRpdm8gZGVsIDY5JQojIEhheSBwaWNvcyBkZSByZW50YXMgZW4gaG9yYXJpb3MgZGUgOCBhbSB5IDUtNiBwbQojIEVmZWN0byBtZW5zdWFsIGNvbiBmdWVydGUgZXN0YWNpb25hbGlkYWQKIyAKYGBgCgo=