Import data
# excel file
data <- read_excel("data/Data.xlsx") %>%
# Convert weekly_attendance to numeric
mutate(weekly_attendance = as.numeric(weekly_attendance))
## New names:
## • `` -> `...11`
## • `` -> `...12`
## • `` -> `...13`
## • `` -> `...14`
## Warning: There was 1 warning in `mutate()`.
## ℹ In argument: `weekly_attendance = as.numeric(weekly_attendance)`.
## Caused by warning:
## ! NAs introduced by coercion
data
## # A tibble: 10,846 × 14
## team `Team City` Population team_name year total home away week
## <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 1
## 2 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 2
## 3 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 3
## 4 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 4
## 5 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 5
## 6 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 6
## 7 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 7
## 8 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 8
## 9 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 9
## 10 Arizona Phoenix 1608139 Cardinals 2000 893926 387475 506451 10
## # ℹ 10,836 more rows
## # ℹ 5 more variables: weekly_attendance <dbl>, ...11 <lgl>, ...12 <chr>,
## # ...13 <lgl>, ...14 <dbl>
Plot data
data %>%
ggplot(aes(team_name)) +
geom_bar() +
coord_flip()
