The following graph shows how countries are being added every year with the progression in the dataset since the end of WWII
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast. Therefore a dynastic country i at point t will be a country whose leader is a dynast.
The first graph shows the proportion of dynastic countries at a given time over the years.
The second graph shows the proportion of dynastic countries at a given time over a period of 25-25-25 years.
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast. Therefore, dynastic rule will be years under a dynast.
These classifications are extended and replicated based on the regime types given in WhoGov Dataset (Nuffield Research Center which is based in turn on Cheibub et. al (2010))
| system_category | year_bin | Prop_Dyn_Years |
|---|---|---|
| Mixed Democratic | 1945-1970 | 5.902778 |
| Mixed Democratic | 1970-1995 | 14.804159 |
| Mixed Democratic | 1995-2020 | 10.337995 |
| Parliamentary Democracy | 1945-1970 | 27.408962 |
| Parliamentary Democracy | 1970-1995 | 22.937322 |
| Parliamentary Democracy | 1995-2020 | 16.101495 |
| Presidential Democracy | 1945-1970 | 29.876087 |
| Presidential Democracy | 1970-1995 | 18.575780 |
| Presidential Democracy | 1995-2020 | 26.152900 |
## # A tibble: 2 × 4
## dictatorship Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_percentage
## <dbl> <dbl> <dbl> <dbl>
## 1 0 21.5 1078 18.8
## 2 1 30.8 1641 24.1
## # A tibble: 8 × 4
## system_category Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_perc…¹
## <chr> <dbl> <dbl> <dbl>
## 1 "" 23.6 13 6.35
## 2 "Civilian Dictato… 21.5 590 18.7
## 3 "Military Dictato… 14.5 257 20.2
## 4 "Mixed Democratic" 11.9 146 10.4
## 5 "Parliamentary De… 21.3 468 19.5
## 6 "Presidential Dem… 29.3 451 25.2
## 7 "Royal Dictatorsh… 98.9 794 72.7
## 8 "military Dictato… 0 0 0
## # ℹ abbreviated name: ¹Dynastic_Rulers_percentage
##Proportion of Years Under Dynastic Rule, Year-by-year Dynastic Rule, Proportion of dynastic leaders by Regime Change Binary
## # A tibble: 2 × 4
## Regime_Change Prop_Dyn_Years Cummulative_Dyn_Years Dynastic_Rulers_percentage
## <dbl> <dbl> <dbl> <dbl>
## 1 0 28.5 1472 21.0
## 2 1 24.1 1247 20.4
##Country Count and dynastic information for Countries by Regime Change
Status
| Regime_Change | Number_Of_Countries |
|---|---|
| 0 | 91 |
| 1 | 78 |
| dictatorship | Number_Of_Countries_With_No_RegChange |
|---|---|
| 0 | 47 |
| 1 | 44 |
| system_category | Prop_Dyn_Years |
|---|---|
| Mixed Democratic | 12.46291 |
| Parliamentary Democracy | 17.41505 |
| Presidential Democracy | 35.66667 |
| system_category | Prop_Dyn_Years |
|---|---|
| Civilian Dictatorship | 10.33275 |
| Military Dictatorship | 16.86747 |
| Royal Dictatorship | 99.44341 |
| Num_Transitions | Number_Countries |
|---|---|
| 0 | 91 |
| 1 | 34 |
| 2 | 17 |
| 3 | 12 |
| 4 | 6 |
| 5 | 4 |
| 6 | 2 |
| 7 | 1 |
| 8 | 2 |
| Num_Transitions | Percentage_Dynastic_Years |
|---|---|
| 1 | 23.28345 |
| 2 | 28.46088 |
| 3 | 28.34437 |
| 4 | 14.04959 |
| 5 | 12.95547 |
| 6 | 30.87248 |
| 7 | 10.66667 |
| 8 | 24.00000 |
| Number_of_Transitions | Percentage_Dynastic_Years |
|---|---|
| One Transition | 23.28345 |
| Two or More Transitions | 24.74156 |
| Number_of_Transitions | Dynastic_Rulers_percentage |
|---|---|
| One Transition | 16.71470 |
| Two or More Transitions | 22.64808 |
## # A tibble: 18 × 6
## year_bin.x postww2_ind Prop_Dyn_Years Cummulative_Dyn_Years year_bin.y
## <ord> <dbl> <dbl> <dbl> <ord>
## 1 1945-1970 0 29.6 462 1945-1970
## 2 1945-1970 0 29.6 462 1970-1995
## 3 1945-1970 0 29.6 462 1995-2020
## 4 1945-1970 1 27.9 205 1945-1970
## 5 1945-1970 1 27.9 205 1970-1995
## 6 1945-1970 1 27.9 205 1995-2020
## 7 1970-1995 0 26.9 438 1945-1970
## 8 1970-1995 0 26.9 438 1970-1995
## 9 1970-1995 0 26.9 438 1995-2020
## 10 1970-1995 1 24.0 481 1945-1970
## 11 1970-1995 1 24.0 481 1970-1995
## 12 1970-1995 1 24.0 481 1995-2020
## 13 1995-2020 0 25.2 426 1945-1970
## 14 1995-2020 0 25.2 426 1970-1995
## 15 1995-2020 0 25.2 426 1995-2020
## 16 1995-2020 1 25.9 707 1945-1970
## 17 1995-2020 1 25.9 707 1970-1995
## 18 1995-2020 1 25.9 707 1995-2020
## # ℹ 1 more variable: Dynastic_Rulers_percentage <dbl>
| former_british_colony | year_bin | Prop_Dyn_Years |
|---|---|---|
| 0 | 1945-1970 | 25.06917 |
| 0 | 1970-1995 | 18.15867 |
| 0 | 1995-2020 | 21.99519 |
| 1 | 1945-1970 | 38.09904 |
| 1 | 1970-1995 | 36.20000 |
| 1 | 1995-2020 | 35.83490 |
The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast.
This graph shows what kind of dynastic relationships are most relevant across regime types (Civilian Dictatorship, Military Dictatorship, Mixed Democratic, Parliamentary Democracy, Presidential Democracy, Royal Dictatorship)
gdd_relation_all <- gdd %>%
distinct(nominal_leader, .keep_all = TRUE) %>%
filter(pred_bin == 1, relation_code_pred != 0)
gdd_relation_all <-gdd_relation_all %>%
group_by(fln_gender) %>%
count(relation_code_pred) %>%
mutate(Relation_Type = case_when(
fln_gender == 0 & relation_code_pred == 2 ~ "Father-Son",
fln_gender == 0 & relation_code_pred == 3 ~ "Mother-Son",
fln_gender == 0 & relation_code_pred == 8 ~ "Brother-Brother",
fln_gender == 0 & relation_code_pred == 10 ~ "Grandfather-Grandson",
fln_gender == 0 & relation_code_pred == 11 ~ "Grandmother-Grandson",
fln_gender == 0 & relation_code_pred == 14 ~ "Uncle-Nephew",
relation_code_pred == 18 ~ "Cousin-Cousin",
relation_code_pred == 19 ~ "Other",
fln_gender == 1 & relation_code_pred == 2 ~ "Father-Daughter",
fln_gender == 1 & relation_code_pred == 6 ~ "Husband-Wife",
fln_gender == 1 & relation_code_pred == 8 ~ "Brother-Sister",
fln_gender == 1 & relation_code_pred == 10 ~ "Grandfather-Granddaughter",
TRUE ~ NA_character_)
) %>%
rename(Total = n) %>%
mutate(percentage_tot_dyn = Total/sum(Total)*100)
relation <- ggplot(gdd_relation_all, aes(x = Relation_Type, y = Total, fill = Relation_Type)) +
geom_bar(stat = "identity") +
labs(title = "Dynastic Relationship Across All Regime Types",
x = "Dynastic Relationship Type",
y = "Total") +
theme_stata()+
theme(axis.text.x = element_text(angle = 45, hjust = 1),
legend.position = "none")
ggplotly(relation)The necessary pre-condition for the dynast in our dataset is that a leader will only be classified as a dynast if and only if a that leader in our dataset has a parent, in-law, or any kind of direct relative who has contested and won an election at any level of politics in their respective polities, then that politician is a dynast.
This graph shows what kind of dynastic relationships are most relevant in democratic regime types (Mixed Democratic, Parliamentary Democracy, Presidential Democracy)
While our definition of a dynast is clear as stated in the previous section. This section expands on that definition at talks about three different kinds of dynast.
The First definition of Dynast is the one mentioned before. This shows the proportion of leaders that necessarily have an ancestor in politics and may or may not have a successor. The necessary precondition is a family member preceding him/her in politics before his time. ((pred_bin == 1 & suc_bin doesn’t matter))
The Second definition of Dynast is the one of dynasty sustainers. This means that the following graph shows the proportion of leaders that necessarily come from apolitical family and also leaves a successor in politics. Therefore, a dynasty sustainer The necessary preconditions are a family member preceding him/her in politics before his/her time and a family member suceeding him/her in politics after his/her time. (pred_bin == 1 & suc_bin == 1)
The THIRD definition of Dynast is the one of dynasty-enderss. This means that the following graph shows the proportion of leaders that necessarily come from a political family BUT DO NOT LEAVE a successor in politics. Therefore, for a dynasty ENDER The necessary preconditions are a family member preceding him/her in politics before his/her time and a family member NOT suceeding him/her in politics after his/her time. (pred_bin == 1 & suc_bin == 0)
The fourth definition of Dynast is the one of dynasty-formers. This means that the following graph shows the proportion of leaders that DO NOT come from a political family HAVE a successor in politics. Therefore, for a dynasty former the necessary preconditions are the ABSENCE OF A family member preceding him/her in politics before his/her time and a family member SUCCEEDING him/her in politics after his/her time. (pred_bin == 0 & suc_bin == 1)
The last category is a category of leaders that have no family before or after them in politics. These are not-dynasts and are included to show declining prevalence of family ties in politics.
##
## Call:
## glm(formula = dynastic ~ dictatorship, family = binomial(link = "logit"),
## data = gdd)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.32321 0.03464 -38.19 <2e-16 ***
## dictatorship 0.50542 0.04565 11.07 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11848 on 10342 degrees of freedom
## Residual deviance: 11723 on 10341 degrees of freedom
## AIC: 11727
##
## Number of Fisher Scoring iterations: 4
##
## Call:
## glm(formula = dynastic ~ dictatorship + factor(Country) + factor(Year),
## family = binomial(link = "logit"), data = gdd)
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) 1.316e+00 4.208e-01 3.127
## dictatorship -2.050e-01 1.005e-01 -2.039
## factor(Country)Albania -2.342e+00 3.907e-01 -5.994
## factor(Country)Algeria -2.039e+01 1.391e+03 -0.015
## factor(Country)Angola -2.039e+01 1.575e+03 -0.013
## factor(Country)Argentina -1.681e+00 3.606e-01 -4.662
## factor(Country)Armenia -2.063e+01 1.951e+03 -0.011
## factor(Country)Australia -9.541e-01 3.581e-01 -2.664
## factor(Country)Austria -2.063e+01 1.233e+03 -0.017
## factor(Country)Azerbaijan -4.144e-01 4.547e-01 -0.911
## factor(Country)Bahamas -2.056e+01 1.543e+03 -0.013
## factor(Country)Bahrain 1.882e+01 1.513e+03 0.012
## factor(Country)Bangladesh -4.403e-01 3.873e-01 -1.137
## factor(Country)Barbados -2.267e+00 4.263e-01 -5.317
## factor(Country)Belarus -2.042e+01 1.951e+03 -0.010
## factor(Country)Belgium -3.342e+00 4.822e-01 -6.932
## factor(Country)Belize -2.056e+01 1.689e+03 -0.012
## factor(Country)Benin 1.091e-01 3.859e-01 0.283
## factor(Country)Bhutan 6.368e-01 3.912e-01 1.628
## factor(Country)Bosnia and Herzegovina -1.858e+00 4.882e-01 -3.806
## factor(Country)Botswana -2.162e+00 4.194e-01 -5.155
## factor(Country)Brazil -3.462e+00 5.022e-01 -6.893
## factor(Country)Bulgaria -2.820e+00 4.270e-01 -6.604
## factor(Country)Burkina Faso -3.202e+00 5.319e-01 -6.020
## factor(Country)Burundi -1.570e+00 3.790e-01 -4.143
## factor(Country)Cambodia 9.093e-02 3.684e-01 0.247
## factor(Country)Cameroon -2.035e+01 1.370e+03 -0.015
## factor(Country)Canada -1.682e+00 3.657e-01 -4.598
## factor(Country)Cape Verde -2.050e+01 1.573e+03 -0.013
## factor(Country)Central African Republic -2.152e+00 4.048e-01 -5.315
## factor(Country)Chad -2.035e+01 1.370e+03 -0.015
## factor(Country)Chile -2.326e+00 3.890e-01 -5.978
## factor(Country)China -2.241e+00 3.850e-01 -5.821
## factor(Country)Colombia -1.282e+00 3.591e-01 -3.569
## factor(Country)Costa Rica -3.901e-01 3.657e-01 -1.067
## factor(Country)Croatia -2.063e+01 1.951e+03 -0.011
## factor(Country)Cuba -2.516e+00 4.051e-01 -6.211
## factor(Country)Cyprus -2.043e+00 3.984e-01 -5.127
## factor(Country)Czech Republic -2.065e+01 2.020e+03 -0.010
## factor(Country)Democratic Republic of the Congo -1.741e+00 3.829e-01 -4.548
## factor(Country)Denmark -2.063e+01 1.233e+03 -0.017
## factor(Country)Djibouti -7.605e-01 3.961e-01 -1.920
## factor(Country)Dominican Republic -2.772e+00 4.206e-01 -6.591
## factor(Country)Ecuador -2.307e+00 3.871e-01 -5.959
## factor(Country)Egypt -3.137e+00 4.717e-01 -6.651
## factor(Country)El Salvador -2.052e+01 1.233e+03 -0.017
## factor(Country)Equatorial Guinea 5.960e-01 4.242e-01 1.405
## factor(Country)Eritrea -2.044e+01 2.020e+03 -0.010
## factor(Country)Estonia -2.669e+00 5.617e-01 -4.751
## factor(Country)Eswatini 1.883e+01 1.470e+03 0.013
## factor(Country)Ethiopia -1.367e+00 3.491e-01 -3.917
## factor(Country)Fiji -1.074e+00 3.813e-01 -2.818
## factor(Country)Finland -4.967e+00 6.438e-01 -7.714
## factor(Country)France -3.342e+00 4.822e-01 -6.932
## factor(Country)Gabon -2.294e+00 4.195e-01 -5.469
## factor(Country)Georgia -2.056e+01 1.942e+03 -0.011
## factor(Country)Germany -2.062e+01 1.919e+03 -0.011
## factor(Country)Ghana -1.990e+00 3.892e-01 -5.114
## factor(Country)Greece -9.865e-01 3.554e-01 -2.776
## factor(Country)Guatemala -3.018e+00 4.448e-01 -6.785
## factor(Country)Guinea -2.039e+01 1.345e+03 -0.015
## factor(Country)Guinea-Bissau -2.043e+01 1.556e+03 -0.013
## factor(Country)Guyana -4.136e+00 7.653e-01 -5.405
## factor(Country)Haiti -1.188e+00 3.461e-01 -3.432
## factor(Country)Honduras -3.135e+00 4.585e-01 -6.837
## factor(Country)Hungary -2.052e+01 1.232e+03 -0.017
## factor(Country)Iceland -1.804e+00 3.690e-01 -4.889
## factor(Country)India -2.044e+00 3.787e-01 -5.396
## factor(Country)Indonesia -3.522e+00 5.307e-01 -6.637
## factor(Country)Iran -6.399e-01 3.443e-01 -1.858
## factor(Country)Iraq -1.662e+00 3.572e-01 -4.653
## factor(Country)Ireland -1.804e+00 3.690e-01 -4.889
## factor(Country)Israel -4.214e+00 4.982e-01 -8.459
## factor(Country)Italy -3.710e+00 5.378e-01 -6.899
## factor(Country)Ivory Coast -2.035e+01 1.370e+03 -0.015
## factor(Country)Jamaica -1.649e+00 3.881e-01 -4.249
## factor(Country)Japan -6.415e-01 3.618e-01 -1.773
## factor(Country)Jordan 1.876e+01 1.233e+03 0.015
## factor(Country)Kazakhstan -2.042e+01 1.951e+03 -0.010
## factor(Country)Kenya -2.719e+00 4.616e-01 -5.891
## factor(Country)Kosovo -2.085e+01 3.577e+03 -0.006
## factor(Country)Kuwait 2.208e+00 6.448e-01 3.424
## factor(Country)Kyrgyzstan -2.054e+01 1.942e+03 -0.011
## factor(Country)Laos 3.982e-01 3.829e-01 1.040
## factor(Country)Latvia -2.063e+01 1.951e+03 -0.011
## factor(Country)Lebanon -9.516e-03 3.614e-01 -0.026
## factor(Country)Lesotho -2.040e+01 1.439e+03 -0.014
## factor(Country)Liberia -8.280e-01 3.442e-01 -2.406
## factor(Country)Libya -1.544e+00 3.603e-01 -4.285
## factor(Country)Lithuania -2.063e+01 1.951e+03 -0.011
## factor(Country)Luxembourg -2.063e+01 1.233e+03 -0.017
## factor(Country)Madagascar -2.039e+01 1.369e+03 -0.015
## factor(Country)Malawi -3.248e+00 5.366e-01 -6.052
## factor(Country)Malaysia -1.128e+00 3.602e-01 -3.130
## factor(Country)Maldives -1.186e-01 3.812e-01 -0.311
## factor(Country)Mali -2.184e+00 4.069e-01 -5.368
## factor(Country)Malta -2.810e+00 4.695e-01 -5.985
## factor(Country)Mauritius -1.634e+00 3.990e-01 -4.096
## factor(Country)Mexico -2.955e-01 3.515e-01 -0.841
## factor(Country)Moldova -2.063e+01 1.951e+03 -0.011
## factor(Country)Mongolia -2.051e+01 1.232e+03 -0.017
## factor(Country)Montenegro -2.064e+01 2.772e+03 -0.007
## factor(Country)Morocco 1.881e+01 1.327e+03 0.014
## factor(Country)Mozambique -2.036e+01 1.576e+03 -0.013
## factor(Country)Myanmar -3.513e+00 5.299e-01 -6.628
## factor(Country)Namibia -2.041e+01 1.919e+03 -0.011
## factor(Country)Nepal 4.283e-01 3.813e-01 1.123
## factor(Country)Netherlands -2.063e+01 1.233e+03 -0.017
## factor(Country)New Zealand -2.624e+00 4.098e-01 -6.404
## factor(Country)Nicaragua -1.330e+00 3.496e-01 -3.803
## factor(Country)Niger -2.044e+01 1.366e+03 -0.015
## factor(Country)Nigeria -2.533e+00 4.346e-01 -5.828
## factor(Country)North Korea -2.285e+00 3.916e-01 -5.836
## factor(Country)North Macedonia -1.739e+00 4.749e-01 -3.662
## factor(Country)Norway -1.742e+00 3.672e-01 -4.744
## factor(Country)Oman 1.883e+01 1.498e+03 0.013
## factor(Country)Pakistan -1.883e+00 3.673e-01 -5.127
## factor(Country)Panama -6.189e-01 3.538e-01 -1.750
## factor(Country)Papua New Guinea -2.056e+01 1.576e+03 -0.013
## factor(Country)Paraguay -3.834e+00 5.755e-01 -6.662
## factor(Country)Peru -1.661e+00 3.588e-01 -4.628
## factor(Country)Philippines 1.987e-01 3.780e-01 0.526
## factor(Country)Poland -3.593e+00 5.304e-01 -6.775
## factor(Country)Portugal -3.625e+00 5.317e-01 -6.818
## factor(Country)Qatar 1.882e+01 1.381e+03 0.014
## factor(Country)Republic of the Congo -2.036e+01 1.370e+03 -0.015
## factor(Country)Republic of the Gambia -7.113e-01 3.700e-01 -1.922
## factor(Country)Romania -2.942e+00 4.396e-01 -6.693
## factor(Country)Russia -2.042e+01 1.233e+03 -0.017
## factor(Country)Rwanda -2.035e+01 1.393e+03 -0.015
## factor(Country)Saudi Arabia 1.876e+01 1.233e+03 0.015
## factor(Country)Senegal -2.043e+01 1.365e+03 -0.015
## factor(Country)Serbia -2.058e+01 1.943e+03 -0.011
## factor(Country)Sierra Leone -2.085e+00 4.025e-01 -5.179
## factor(Country)Singapore -1.613e+00 3.870e-01 -4.168
## factor(Country)Slovakia -2.065e+01 2.020e+03 -0.010
## factor(Country)Slovenia -3.262e+00 6.678e-01 -4.885
## factor(Country)Solomon Islands -2.056e+01 1.630e+03 -0.013
## factor(Country)Somalia -2.038e+01 1.369e+03 -0.015
## factor(Country)South Africa -2.595e+00 3.400e-01 -7.634
## factor(Country)South Korea -4.151e+00 6.465e-01 -6.420
## factor(Country)South Sudan -2.065e+01 3.394e+03 -0.006
## factor(Country)Spain -2.972e+00 4.410e-01 -6.738
## factor(Country)Sri Lanka -5.697e-01 3.597e-01 -1.584
## factor(Country)Sudan -7.293e-01 3.566e-01 -2.045
## factor(Country)Suriname -2.053e+01 1.574e+03 -0.013
## factor(Country)Sweden -2.533e+00 4.034e-01 -6.279
## factor(Country)Switzerland -4.251e+00 6.497e-01 -6.543
## factor(Country)Syria -2.186e+00 3.806e-01 -5.743
## factor(Country)Taiwan -2.630e+00 4.170e-01 -6.308
## factor(Country)Tajikistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Tanzania -2.036e+01 1.417e+03 -0.014
## factor(Country)Thailand -2.703e+00 4.159e-01 -6.500
## factor(Country)Timor-Leste -2.078e+01 2.460e+03 -0.008
## factor(Country)Togo -1.488e+00 3.733e-01 -3.986
## factor(Country)Trinidad and Tobago -1.727e+00 3.907e-01 -4.421
## factor(Country)Tunisia -2.040e+01 1.324e+03 -0.015
## factor(Country)Turkey -3.319e+00 4.801e-01 -6.912
## factor(Country)Turkmenistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Uganda -2.653e+00 4.587e-01 -5.784
## factor(Country)Ukraine -2.063e+01 1.951e+03 -0.011
## factor(Country)United Arab Emirates 1.882e+01 1.513e+03 0.012
## factor(Country)United Kingdom -2.066e+00 3.782e-01 -5.462
## factor(Country)United States of America -1.931e+00 3.731e-01 -5.177
## factor(Country)Uruguay -2.040e+00 3.754e-01 -5.436
## factor(Country)Uzbekistan -2.042e+01 1.951e+03 -0.010
## factor(Country)Venezuela -1.963e+00 3.715e-01 -5.282
## factor(Country)Vietnam -2.035e+01 1.594e+03 -0.013
## factor(Country)Yemen -2.172e+00 3.795e-01 -5.722
## factor(Country)Zambia -2.041e+01 1.415e+03 -0.014
## factor(Year)1947 6.261e-02 4.467e-01 0.140
## factor(Year)1948 -1.405e-01 4.454e-01 -0.315
## factor(Year)1949 -7.194e-02 4.414e-01 -0.163
## factor(Year)1950 -1.639e-01 4.439e-01 -0.369
## factor(Year)1951 1.553e-01 4.342e-01 0.358
## factor(Year)1952 3.216e-01 4.312e-01 0.746
## factor(Year)1953 3.469e-01 4.289e-01 0.809
## factor(Year)1954 1.911e-01 4.315e-01 0.443
## factor(Year)1955 2.790e-01 4.303e-01 0.649
## factor(Year)1956 -2.808e-02 4.339e-01 -0.065
## factor(Year)1957 -1.180e-02 4.299e-01 -0.027
## factor(Year)1958 -1.752e-01 4.336e-01 -0.404
## factor(Year)1959 -3.466e-01 4.379e-01 -0.791
## factor(Year)1960 -5.407e-01 4.318e-01 -1.252
## factor(Year)1961 -5.527e-01 4.305e-01 -1.284
## factor(Year)1962 -4.585e-01 4.236e-01 -1.082
## factor(Year)1963 -4.020e-01 4.208e-01 -0.955
## factor(Year)1964 -3.445e-01 4.183e-01 -0.824
## factor(Year)1965 -1.748e-01 4.106e-01 -0.426
## factor(Year)1966 4.015e-02 4.050e-01 0.099
## factor(Year)1967 -7.473e-02 4.070e-01 -0.184
## factor(Year)1968 -4.692e-01 4.139e-01 -1.133
## factor(Year)1969 -4.596e-01 4.139e-01 -1.110
## factor(Year)1970 -6.205e-01 4.168e-01 -1.489
## factor(Year)1971 -3.314e-01 4.082e-01 -0.812
## factor(Year)1972 -4.576e-01 4.111e-01 -1.113
## factor(Year)1973 -5.215e-01 4.128e-01 -1.263
## factor(Year)1974 -3.312e-01 4.082e-01 -0.811
## factor(Year)1975 -9.131e-02 4.036e-01 -0.226
## factor(Year)1976 -2.073e-01 4.057e-01 -0.511
## factor(Year)1977 -3.571e-01 4.078e-01 -0.876
## factor(Year)1978 -2.955e-01 4.064e-01 -0.727
## factor(Year)1979 -4.198e-01 4.090e-01 -1.027
## factor(Year)1980 -1.846e-01 4.038e-01 -0.457
## factor(Year)1981 -5.558e-01 4.118e-01 -1.350
## factor(Year)1982 -5.517e-01 4.119e-01 -1.339
## factor(Year)1983 -3.627e-01 4.074e-01 -0.890
## factor(Year)1984 -3.646e-01 4.074e-01 -0.895
## factor(Year)1985 -5.564e-01 4.118e-01 -1.351
## factor(Year)1986 -6.313e-01 4.138e-01 -1.526
## factor(Year)1987 -6.313e-01 4.138e-01 -1.526
## factor(Year)1988 -6.990e-01 4.157e-01 -1.681
## factor(Year)1989 -7.018e-01 4.157e-01 -1.688
## factor(Year)1990 -5.902e-01 4.115e-01 -1.434
## factor(Year)1991 -5.323e-01 4.073e-01 -1.307
## factor(Year)1992 -7.280e-01 4.123e-01 -1.766
## factor(Year)1993 -6.697e-01 4.104e-01 -1.632
## factor(Year)1994 -6.749e-01 4.103e-01 -1.645
## factor(Year)1995 -7.391e-01 4.121e-01 -1.793
## factor(Year)1996 -6.140e-01 4.087e-01 -1.503
## factor(Year)1997 -4.898e-01 4.057e-01 -1.207
## factor(Year)1998 -6.751e-01 4.103e-01 -1.646
## factor(Year)1999 -4.900e-01 4.056e-01 -1.208
## factor(Year)2000 -5.484e-01 4.071e-01 -1.347
## factor(Year)2001 -2.597e-01 4.009e-01 -0.648
## factor(Year)2002 -4.292e-01 4.042e-01 -1.062
## factor(Year)2003 -3.710e-01 4.030e-01 -0.921
## factor(Year)2004 -3.139e-01 4.018e-01 -0.781
## factor(Year)2005 -3.710e-01 4.030e-01 -0.921
## factor(Year)2006 -1.546e-01 3.992e-01 -0.387
## factor(Year)2007 9.721e-03 3.967e-01 0.025
## factor(Year)2008 6.078e-02 3.961e-01 0.153
## factor(Year)2009 -1.609e-01 3.994e-01 -0.403
## factor(Year)2010 5.209e-02 3.964e-01 0.131
## factor(Year)2011 -2.863e-04 3.971e-01 -0.001
## factor(Year)2012 -1.068e-01 3.985e-01 -0.268
## factor(Year)2013 1.057e-01 3.956e-01 0.267
## factor(Year)2014 1.583e-01 3.950e-01 0.401
## factor(Year)2015 2.130e-01 3.944e-01 0.540
## factor(Year)2016 -1.557e-01 3.992e-01 -0.390
## factor(Year)2017 2.026e-03 3.969e-01 0.005
## factor(Year)2018 -2.768e-01 4.016e-01 -0.689
## factor(Year)2019 -1.661e-01 3.996e-01 -0.416
## factor(Year)2020 -1.661e-01 3.996e-01 -0.416
## Pr(>|z|)
## (Intercept) 0.001768 **
## dictatorship 0.041478 *
## factor(Country)Albania 2.04e-09 ***
## factor(Country)Algeria 0.988308
## factor(Country)Angola 0.989670
## factor(Country)Argentina 3.13e-06 ***
## factor(Country)Armenia 0.991565
## factor(Country)Australia 0.007722 **
## factor(Country)Austria 0.986651
## factor(Country)Azerbaijan 0.362057
## factor(Country)Bahamas 0.989371
## factor(Country)Bahrain 0.990073
## factor(Country)Bangladesh 0.255680
## factor(Country)Barbados 1.06e-07 ***
## factor(Country)Belarus 0.991648
## factor(Country)Belgium 4.15e-12 ***
## factor(Country)Belize 0.990291
## factor(Country)Benin 0.777315
## factor(Country)Bhutan 0.103522
## factor(Country)Bosnia and Herzegovina 0.000141 ***
## factor(Country)Botswana 2.54e-07 ***
## factor(Country)Brazil 5.45e-12 ***
## factor(Country)Bulgaria 4.00e-11 ***
## factor(Country)Burkina Faso 1.75e-09 ***
## factor(Country)Burundi 3.44e-05 ***
## factor(Country)Cambodia 0.805021
## factor(Country)Cameroon 0.988148
## factor(Country)Canada 4.26e-06 ***
## factor(Country)Cape Verde 0.989600
## factor(Country)Central African Republic 1.07e-07 ***
## factor(Country)Chad 0.988148
## factor(Country)Chile 2.25e-09 ***
## factor(Country)China 5.85e-09 ***
## factor(Country)Colombia 0.000359 ***
## factor(Country)Costa Rica 0.286104
## factor(Country)Croatia 0.991565
## factor(Country)Cuba 5.25e-10 ***
## factor(Country)Cyprus 2.94e-07 ***
## factor(Country)Czech Republic 0.991845
## factor(Country)Democratic Republic of the Congo 5.42e-06 ***
## factor(Country)Denmark 0.986651
## factor(Country)Djibouti 0.054888 .
## factor(Country)Dominican Republic 4.38e-11 ***
## factor(Country)Ecuador 2.54e-09 ***
## factor(Country)Egypt 2.91e-11 ***
## factor(Country)El Salvador 0.986721
## factor(Country)Equatorial Guinea 0.160091
## factor(Country)Eritrea 0.991925
## factor(Country)Estonia 2.02e-06 ***
## factor(Country)Eswatini 0.989777
## factor(Country)Ethiopia 8.97e-05 ***
## factor(Country)Fiji 0.004832 **
## factor(Country)Finland 1.21e-14 ***
## factor(Country)France 4.15e-12 ***
## factor(Country)Gabon 4.54e-08 ***
## factor(Country)Georgia 0.991554
## factor(Country)Germany 0.991428
## factor(Country)Ghana 3.16e-07 ***
## factor(Country)Greece 0.005501 **
## factor(Country)Guatemala 1.16e-11 ***
## factor(Country)Guinea 0.987901
## factor(Country)Guinea-Bissau 0.989523
## factor(Country)Guyana 6.48e-08 ***
## factor(Country)Haiti 0.000600 ***
## factor(Country)Honduras 8.10e-12 ***
## factor(Country)Hungary 0.986704
## factor(Country)Iceland 1.01e-06 ***
## factor(Country)India 6.81e-08 ***
## factor(Country)Indonesia 3.21e-11 ***
## factor(Country)Iran 0.063145 .
## factor(Country)Iraq 3.27e-06 ***
## factor(Country)Ireland 1.01e-06 ***
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 5.25e-12 ***
## factor(Country)Ivory Coast 0.988146
## factor(Country)Jamaica 2.14e-05 ***
## factor(Country)Japan 0.076248 .
## factor(Country)Jordan 0.987864
## factor(Country)Kazakhstan 0.991648
## factor(Country)Kenya 3.84e-09 ***
## factor(Country)Kosovo 0.995350
## factor(Country)Kuwait 0.000617 ***
## factor(Country)Kyrgyzstan 0.991561
## factor(Country)Laos 0.298266
## factor(Country)Latvia 0.991565
## factor(Country)Lebanon 0.978993
## factor(Country)Lesotho 0.988686
## factor(Country)Liberia 0.016138 *
## factor(Country)Libya 1.83e-05 ***
## factor(Country)Lithuania 0.991565
## factor(Country)Luxembourg 0.986651
## factor(Country)Madagascar 0.988120
## factor(Country)Malawi 1.43e-09 ***
## factor(Country)Malaysia 0.001745 **
## factor(Country)Maldives 0.755643
## factor(Country)Mali 7.98e-08 ***
## factor(Country)Malta 2.16e-09 ***
## factor(Country)Mauritius 4.21e-05 ***
## factor(Country)Mexico 0.400582
## factor(Country)Moldova 0.991565
## factor(Country)Mongolia 0.986719
## factor(Country)Montenegro 0.994059
## factor(Country)Morocco 0.988691
## factor(Country)Mozambique 0.989695
## factor(Country)Myanmar 3.39e-11 ***
## factor(Country)Namibia 0.991514
## factor(Country)Nepal 0.261253
## factor(Country)Netherlands 0.986651
## factor(Country)New Zealand 1.52e-10 ***
## factor(Country)Nicaragua 0.000143 ***
## factor(Country)Niger 0.988064
## factor(Country)Nigeria 5.61e-09 ***
## factor(Country)North Korea 5.34e-09 ***
## factor(Country)North Macedonia 0.000250 ***
## factor(Country)Norway 2.10e-06 ***
## factor(Country)Oman 0.989971
## factor(Country)Pakistan 2.94e-07 ***
## factor(Country)Panama 0.080187 .
## factor(Country)Papua New Guinea 0.989591
## factor(Country)Paraguay 2.70e-11 ***
## factor(Country)Peru 3.69e-06 ***
## factor(Country)Philippines 0.599054
## factor(Country)Poland 1.24e-11 ***
## factor(Country)Portugal 9.24e-12 ***
## factor(Country)Qatar 0.989129
## factor(Country)Republic of the Congo 0.988146
## factor(Country)Republic of the Gambia 0.054557 .
## factor(Country)Romania 2.19e-11 ***
## factor(Country)Russia 0.986784
## factor(Country)Rwanda 0.988340
## factor(Country)Saudi Arabia 0.987864
## factor(Country)Senegal 0.988057
## factor(Country)Serbia 0.991551
## factor(Country)Sierra Leone 2.23e-07 ***
## factor(Country)Singapore 3.07e-05 ***
## factor(Country)Slovakia 0.991845
## factor(Country)Slovenia 1.04e-06 ***
## factor(Country)Solomon Islands 0.989937
## factor(Country)Somalia 0.988121
## factor(Country)South Africa 2.28e-14 ***
## factor(Country)South Korea 1.36e-10 ***
## factor(Country)South Sudan 0.995147
## factor(Country)Spain 1.61e-11 ***
## factor(Country)Sri Lanka 0.113184
## factor(Country)Sudan 0.040832 *
## factor(Country)Suriname 0.989592
## factor(Country)Sweden 3.41e-10 ***
## factor(Country)Switzerland 6.02e-11 ***
## factor(Country)Syria 9.28e-09 ***
## factor(Country)Taiwan 2.82e-10 ***
## factor(Country)Tajikistan 0.991648
## factor(Country)Tanzania 0.988535
## factor(Country)Thailand 8.06e-11 ***
## factor(Country)Timor-Leste 0.993260
## factor(Country)Togo 6.71e-05 ***
## factor(Country)Trinidad and Tobago 9.85e-06 ***
## factor(Country)Tunisia 0.987711
## factor(Country)Turkey 4.78e-12 ***
## factor(Country)Turkmenistan 0.991648
## factor(Country)Uganda 7.31e-09 ***
## factor(Country)Ukraine 0.991565
## factor(Country)United Arab Emirates 0.990073
## factor(Country)United Kingdom 4.70e-08 ***
## factor(Country)United States of America 2.25e-07 ***
## factor(Country)Uruguay 5.45e-08 ***
## factor(Country)Uzbekistan 0.991648
## factor(Country)Venezuela 1.28e-07 ***
## factor(Country)Vietnam 0.989810
## factor(Country)Yemen 1.05e-08 ***
## factor(Country)Zambia 0.988486
## factor(Year)1947 0.888532
## factor(Year)1948 0.752478
## factor(Year)1949 0.870530
## factor(Year)1950 0.711977
## factor(Year)1951 0.720612
## factor(Year)1952 0.455849
## factor(Year)1953 0.418535
## factor(Year)1954 0.657790
## factor(Year)1955 0.516653
## factor(Year)1956 0.948404
## factor(Year)1957 0.978098
## factor(Year)1958 0.686084
## factor(Year)1959 0.428707
## factor(Year)1960 0.210462
## factor(Year)1961 0.199222
## factor(Year)1962 0.279118
## factor(Year)1963 0.339407
## factor(Year)1964 0.410166
## factor(Year)1965 0.670410
## factor(Year)1966 0.921025
## factor(Year)1967 0.854328
## factor(Year)1968 0.257013
## factor(Year)1969 0.266810
## factor(Year)1970 0.136567
## factor(Year)1971 0.416834
## factor(Year)1972 0.265675
## factor(Year)1973 0.206470
## factor(Year)1974 0.417231
## factor(Year)1975 0.821003
## factor(Year)1976 0.609352
## factor(Year)1977 0.381142
## factor(Year)1978 0.467153
## factor(Year)1979 0.304620
## factor(Year)1980 0.647603
## factor(Year)1981 0.177152
## factor(Year)1982 0.180488
## factor(Year)1983 0.373368
## factor(Year)1984 0.370827
## factor(Year)1985 0.176622
## factor(Year)1986 0.127125
## factor(Year)1987 0.127125
## factor(Year)1988 0.092680 .
## factor(Year)1989 0.091354 .
## factor(Year)1990 0.151478
## factor(Year)1991 0.191225
## factor(Year)1992 0.077420 .
## factor(Year)1993 0.102728
## factor(Year)1994 0.100008
## factor(Year)1995 0.072910 .
## factor(Year)1996 0.132941
## factor(Year)1997 0.227314
## factor(Year)1998 0.099866 .
## factor(Year)1999 0.227043
## factor(Year)2000 0.177936
## factor(Year)2001 0.517231
## factor(Year)2002 0.288305
## factor(Year)2003 0.357258
## factor(Year)2004 0.434746
## factor(Year)2005 0.357258
## factor(Year)2006 0.698530
## factor(Year)2007 0.980450
## factor(Year)2008 0.878050
## factor(Year)2009 0.687010
## factor(Year)2010 0.895446
## factor(Year)2011 0.999425
## factor(Year)2012 0.788592
## factor(Year)2013 0.789341
## factor(Year)2014 0.688495
## factor(Year)2015 0.589253
## factor(Year)2016 0.696483
## factor(Year)2017 0.995927
## factor(Year)2018 0.490590
## factor(Year)2019 0.677597
## factor(Year)2020 0.677597
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11848 on 10342 degrees of freedom
## Residual deviance: 7110 on 10099 degrees of freedom
## AIC: 7598
##
## Number of Fisher Scoring iterations: 18
##
## Call:
## glm(formula = dynastic ~ dictatorship + v2x_polyarchy + former_british_colony +
## factor(Year) + factor(Country), family = binomial(link = "logit"),
## data = gdd_clean, na.action = na.exclude)
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value
## (Intercept) -1.284e+00 4.462e-01 -2.878
## dictatorship 2.258e-01 1.271e-01 1.776
## v2x_polyarchy 1.645e+00 2.958e-01 5.561
## former_british_colony 2.154e+00 3.810e-01 5.654
## factor(Year)1947 1.046e-01 4.464e-01 0.234
## factor(Year)1948 -1.615e-01 4.447e-01 -0.363
## factor(Year)1949 -8.455e-02 4.409e-01 -0.192
## factor(Year)1950 -1.935e-01 4.436e-01 -0.436
## factor(Year)1951 1.166e-01 4.338e-01 0.269
## factor(Year)1952 2.705e-01 4.313e-01 0.627
## factor(Year)1953 2.840e-01 4.298e-01 0.661
## factor(Year)1954 1.115e-01 4.325e-01 0.258
## factor(Year)1955 1.839e-01 4.315e-01 0.426
## factor(Year)1956 -1.290e-01 4.353e-01 -0.296
## factor(Year)1957 -1.251e-01 4.314e-01 -0.290
## factor(Year)1958 -3.001e-01 4.350e-01 -0.690
## factor(Year)1959 -4.783e-01 4.393e-01 -1.089
## factor(Year)1960 -6.723e-01 4.337e-01 -1.550
## factor(Year)1961 -6.921e-01 4.322e-01 -1.601
## factor(Year)1962 -6.072e-01 4.251e-01 -1.428
## factor(Year)1963 -5.520e-01 4.220e-01 -1.308
## factor(Year)1964 -5.024e-01 4.196e-01 -1.197
## factor(Year)1965 -3.388e-01 4.125e-01 -0.821
## factor(Year)1966 -1.116e-01 4.065e-01 -0.275
## factor(Year)1967 -2.330e-01 4.086e-01 -0.570
## factor(Year)1968 -6.228e-01 4.155e-01 -1.499
## factor(Year)1969 -6.227e-01 4.158e-01 -1.498
## factor(Year)1970 -7.923e-01 4.191e-01 -1.890
## factor(Year)1971 -4.996e-01 4.100e-01 -1.218
## factor(Year)1972 -6.200e-01 4.128e-01 -1.502
## factor(Year)1973 -6.844e-01 4.148e-01 -1.650
## factor(Year)1974 -4.960e-01 4.101e-01 -1.209
## factor(Year)1975 -2.601e-01 4.056e-01 -0.641
## factor(Year)1976 -3.755e-01 4.077e-01 -0.921
## factor(Year)1977 -5.389e-01 4.097e-01 -1.315
## factor(Year)1978 -4.899e-01 4.087e-01 -1.199
## factor(Year)1979 -6.255e-01 4.113e-01 -1.521
## factor(Year)1980 -3.968e-01 4.062e-01 -0.977
## factor(Year)1981 -7.699e-01 4.143e-01 -1.858
## factor(Year)1982 -7.716e-01 4.143e-01 -1.862
## factor(Year)1983 -5.833e-01 4.098e-01 -1.423
## factor(Year)1984 -6.009e-01 4.099e-01 -1.466
## factor(Year)1985 -8.020e-01 4.143e-01 -1.936
## factor(Year)1986 -8.719e-01 4.154e-01 -2.099
## factor(Year)1987 -8.810e-01 4.158e-01 -2.119
## factor(Year)1988 -9.555e-01 4.178e-01 -2.287
## factor(Year)1989 -9.529e-01 4.175e-01 -2.282
## factor(Year)1990 -8.619e-01 4.137e-01 -2.084
## factor(Year)1991 -8.857e-01 4.122e-01 -2.149
## factor(Year)1992 -1.035e+00 4.158e-01 -2.488
## factor(Year)1993 -9.886e-01 4.142e-01 -2.387
## factor(Year)1994 -9.831e-01 4.140e-01 -2.375
## factor(Year)1995 -1.061e+00 4.159e-01 -2.551
## factor(Year)1996 -9.412e-01 4.125e-01 -2.282
## factor(Year)1997 -8.410e-01 4.099e-01 -2.052
## factor(Year)1998 -1.031e+00 4.147e-01 -2.486
## factor(Year)1999 -8.496e-01 4.101e-01 -2.072
## factor(Year)2000 -9.117e-01 4.115e-01 -2.216
## factor(Year)2001 -6.247e-01 4.053e-01 -1.541
## factor(Year)2002 -8.091e-01 4.091e-01 -1.978
## factor(Year)2003 -7.653e-01 4.082e-01 -1.875
## factor(Year)2004 -7.036e-01 4.069e-01 -1.729
## factor(Year)2005 -7.683e-01 4.084e-01 -1.881
## factor(Year)2006 -5.517e-01 4.045e-01 -1.364
## factor(Year)2007 -3.881e-01 4.021e-01 -0.965
## factor(Year)2008 -3.467e-01 4.022e-01 -0.862
## factor(Year)2009 -5.590e-01 4.053e-01 -1.379
## factor(Year)2010 -3.470e-01 4.024e-01 -0.862
## factor(Year)2011 -4.009e-01 4.030e-01 -0.995
## factor(Year)2012 -5.035e-01 4.044e-01 -1.245
## factor(Year)2013 -2.865e-01 4.014e-01 -0.714
## factor(Year)2014 -2.306e-01 4.009e-01 -0.575
## factor(Year)2015 -1.822e-01 4.007e-01 -0.455
## factor(Year)2016 -5.489e-01 4.056e-01 -1.353
## factor(Year)2017 -3.845e-01 4.032e-01 -0.954
## factor(Year)2018 -6.509e-01 4.071e-01 -1.599
## factor(Year)2019 -5.294e-01 4.049e-01 -1.307
## factor(Year)2020 -5.209e-01 4.046e-01 -1.288
## factor(Country)Albania -4.309e-02 4.121e-01 -0.105
## factor(Country)Algeria -1.825e+01 1.391e+03 -0.013
## factor(Country)Angola -1.814e+01 1.572e+03 -0.012
## factor(Country)Argentina 1.291e-01 3.900e-01 0.331
## factor(Country)Armenia -1.838e+01 1.950e+03 -0.009
## factor(Country)Australia 4.693e-01 4.043e-01 1.161
## factor(Country)Austria -1.917e+01 1.232e+03 -0.016
## factor(Country)Azerbaijan 1.752e+00 4.715e-01 3.715
## factor(Country)Bahrain 1.898e+01 1.509e+03 0.013
## factor(Country)Bangladesh 1.638e+00 4.096e-01 4.000
## factor(Country)Barbados -2.759e+00 4.370e-01 -6.314
## factor(Country)Belarus -1.837e+01 1.958e+03 -0.009
## factor(Country)Belgium -1.871e+00 5.151e-01 -3.633
## factor(Country)Benin 2.139e+00 4.088e-01 5.233
## factor(Country)Bhutan 2.903e+00 4.134e-01 7.023
## factor(Country)Bosnia and Herzegovina -3.617e-01 5.332e-01 -0.678
## factor(Country)Botswana -2.520e+00 4.257e-01 -5.920
## factor(Country)Brazil -1.644e+00 5.240e-01 -3.138
## factor(Country)Bulgaria -8.784e-01 4.487e-01 -1.958
## factor(Country)Burkina Faso -1.405e+00 5.535e-01 -2.538
## factor(Country)Burundi 6.845e-01 4.003e-01 1.710
## factor(Country)Cambodia 2.152e+00 3.913e-01 5.499
## factor(Country)Cameroon -1.829e+01 1.381e+03 -0.013
## factor(Country)Canada -1.759e-01 4.064e-01 -0.433
## factor(Country)Cape Verde -1.873e+01 1.565e+03 -0.012
## factor(Country)Central African Republic 5.063e-02 4.252e-01 0.119
## factor(Country)Chad -1.823e+01 1.367e+03 -0.013
## factor(Country)Chile -5.379e-01 4.187e-01 -1.285
## factor(Country)China 1.392e-02 4.068e-01 0.034
## factor(Country)Colombia 8.356e-01 3.821e-01 2.187
## factor(Country)Costa Rica 1.137e+00 4.049e-01 2.808
## factor(Country)Croatia -1.880e+01 1.919e+03 -0.010
## factor(Country)Cuba -3.868e-01 4.281e-01 -0.904
## factor(Country)Cyprus -2.571e+00 4.112e-01 -6.253
## factor(Country)Czech Republic -1.912e+01 2.022e+03 -0.009
## factor(Country)Democratic Republic of the Congo 3.914e-01 4.051e-01 0.966
## factor(Country)Denmark -1.930e+01 1.229e+03 -0.016
## factor(Country)Djibouti 1.364e+00 4.166e-01 3.274
## factor(Country)Dominican Republic -7.149e-01 4.407e-01 -1.622
## factor(Country)Ecuador -3.942e-01 4.105e-01 -0.960
## factor(Country)Egypt -3.194e+00 4.731e-01 -6.751
## factor(Country)El Salvador -1.846e+01 1.224e+03 -0.015
## factor(Country)Equatorial Guinea 2.829e+00 4.435e-01 6.379
## factor(Country)Eritrea -1.803e+01 2.024e+03 -0.009
## factor(Country)Estonia -1.114e+00 5.878e-01 -1.896
## factor(Country)Eswatini 1.893e+01 1.470e+03 0.013
## factor(Country)Ethiopia 8.260e-01 3.721e-01 2.220
## factor(Country)Fiji -1.388e+00 3.886e-01 -3.570
## factor(Country)Finland -3.519e+00 6.699e-01 -5.253
## factor(Country)France -1.872e+00 5.153e-01 -3.633
## factor(Country)Gabon -2.907e-01 4.402e-01 -0.660
## factor(Country)Georgia -1.857e+01 1.944e+03 -0.010
## factor(Country)Germany -1.912e+01 1.921e+03 -0.010
## factor(Country)Ghana -2.211e+00 3.954e-01 -5.591
## factor(Country)Greece 7.551e-01 3.876e-01 1.948
## factor(Country)Guatemala -8.655e-01 4.641e-01 -1.865
## factor(Country)Guinea -1.821e+01 1.348e+03 -0.014
## factor(Country)Guinea-Bissau -1.830e+01 1.552e+03 -0.012
## factor(Country)Guyana -4.457e+00 7.686e-01 -5.799
## factor(Country)Haiti 8.088e-01 3.715e-01 2.177
## factor(Country)Honduras -9.629e-01 4.759e-01 -2.023
## factor(Country)Hungary -1.860e+01 1.224e+03 -0.015
## factor(Country)Iceland -3.606e-01 4.130e-01 -0.873
## factor(Country)India -2.384e+00 3.858e-01 -6.178
## factor(Country)Indonesia -1.617e+00 5.496e-01 -2.942
## factor(Country)Iran 1.520e+00 3.681e-01 4.129
## factor(Country)Iraq -1.702e+00 3.608e-01 -4.717
## factor(Country)Ireland -3.531e-01 4.124e-01 -0.856
## factor(Country)Israel -4.685e+00 5.069e-01 -9.242
## factor(Country)Italy -2.163e+00 5.646e-01 -3.831
## factor(Country)Ivory Coast -1.841e+01 1.363e+03 -0.014
## factor(Country)Jamaica -1.964e+00 3.950e-01 -4.972
## factor(Country)Japan 9.122e-01 4.038e-01 2.259
## factor(Country)Jordan 1.873e+01 1.231e+03 0.015
## factor(Country)Kazakhstan -1.830e+01 1.955e+03 -0.009
## factor(Country)Kenya -2.755e+00 4.620e-01 -5.962
## factor(Country)Kuwait 2.104e+00 6.464e-01 3.256
## factor(Country)Kyrgyzstan -1.835e+01 1.951e+03 -0.009
## factor(Country)Laos 2.617e+00 4.052e-01 6.460
## factor(Country)Latvia -1.897e+01 1.950e+03 -0.010
## factor(Country)Lebanon 1.944e+00 3.861e-01 5.035
## factor(Country)Lesotho -2.060e+01 1.427e+03 -0.014
## factor(Country)Liberia 1.147e+00 3.708e-01 3.094
## factor(Country)Libya -1.470e+00 3.631e-01 -4.049
## factor(Country)Lithuania -1.901e+01 1.952e+03 -0.010
## factor(Country)Luxembourg -1.922e+01 1.231e+03 -0.016
## factor(Country)Madagascar -1.840e+01 1.367e+03 -0.013
## factor(Country)Malawi -3.300e+00 5.375e-01 -6.139
## factor(Country)Malaysia 9.266e-01 3.828e-01 2.421
## factor(Country)Maldives -1.455e-01 3.836e-01 -0.379
## factor(Country)Mali -1.193e-01 4.278e-01 -0.279
## factor(Country)Malta -3.302e+00 4.793e-01 -6.890
## factor(Country)Mauritius -2.083e+00 4.086e-01 -5.098
## factor(Country)Mexico 1.565e+00 3.783e-01 4.138
## factor(Country)Moldova -1.858e+01 1.948e+03 -0.010
## factor(Country)Mongolia -1.855e+01 1.229e+03 -0.015
## factor(Country)Montenegro -1.888e+01 2.773e+03 -0.007
## factor(Country)Morocco 2.095e+01 1.326e+03 0.016
## factor(Country)Mozambique -1.839e+01 1.564e+03 -0.012
## factor(Country)Myanmar -3.527e+00 5.323e-01 -6.626
## factor(Country)Namibia -1.895e+01 1.918e+03 -0.010
## factor(Country)Nepal 2.608e+00 4.032e-01 6.469
## factor(Country)Netherlands -1.917e+01 1.232e+03 -0.016
## factor(Country)New Zealand -1.198e+00 4.507e-01 -2.659
## factor(Country)Nicaragua 7.355e-01 3.727e-01 1.974
## factor(Country)Niger -1.837e+01 1.364e+03 -0.013
## factor(Country)Nigeria -2.529e+00 4.355e-01 -5.806
## factor(Country)North Korea -2.677e-02 4.130e-01 -0.065
## factor(Country)North Macedonia 4.160e-01 4.934e-01 0.843
## factor(Country)Norway -3.179e-01 4.124e-01 -0.771
## factor(Country)Oman 1.904e+01 1.494e+03 0.013
## factor(Country)Pakistan -1.819e+00 3.682e-01 -4.939
## factor(Country)Panama 1.394e+00 3.790e-01 3.678
## factor(Country)Papua New Guinea -1.847e+01 1.579e+03 -0.012
## factor(Country)Paraguay -1.788e+00 5.906e-01 -3.028
## factor(Country)Peru 2.329e-01 3.862e-01 0.603
## factor(Country)Philippines 2.261e+00 4.003e-01 5.648
## factor(Country)Poland -1.808e+00 5.525e-01 -3.272
## factor(Country)Portugal -1.934e+00 5.569e-01 -3.474
## factor(Country)Qatar 1.908e+01 1.381e+03 0.014
## factor(Country)Republic of the Congo -1.821e+01 1.369e+03 -0.013
## factor(Country)Republic of the Gambia -9.860e-01 3.752e-01 -2.628
## factor(Country)Romania -9.694e-01 4.603e-01 -2.106
## factor(Country)Russia -1.836e+01 1.233e+03 -0.015
## factor(Country)Rwanda -1.822e+01 1.391e+03 -0.013
## factor(Country)Saudi Arabia 2.115e+01 1.230e+03 0.017
## factor(Country)Senegal -1.870e+01 1.370e+03 -0.014
## factor(Country)Serbia -1.848e+01 1.942e+03 -0.010
## factor(Country)Sierra Leone -2.096e+00 4.042e-01 -5.185
## factor(Country)Singapore 2.326e-01 4.121e-01 0.564
## factor(Country)Slovakia -1.903e+01 2.017e+03 -0.009
## factor(Country)Slovenia -1.673e+00 6.882e-01 -2.431
## factor(Country)Solomon Islands -2.065e+01 1.629e+03 -0.013
## factor(Country)Somalia -1.817e+01 1.369e+03 -0.013
## factor(Country)South Africa -6.908e-01 3.680e-01 -1.877
## factor(Country)South Korea -2.278e+00 6.621e-01 -3.441
## factor(Country)South Sudan -2.053e+01 3.394e+03 -0.006
## factor(Country)Spain -1.245e+00 4.704e-01 -2.646
## factor(Country)Sri Lanka -8.495e-01 3.657e-01 -2.323
## factor(Country)Sudan -6.352e-01 3.588e-01 -1.770
## factor(Country)Suriname -1.878e+01 1.567e+03 -0.012
## factor(Country)Sweden -1.121e+00 4.455e-01 -2.518
## factor(Country)Switzerland -2.719e+00 6.726e-01 -4.042
## factor(Country)Syria 6.507e-03 4.021e-01 0.016
## factor(Country)Taiwan -7.094e-01 4.417e-01 -1.606
## factor(Country)Tajikistan -1.823e+01 1.953e+03 -0.009
## factor(Country)Tanzania -1.850e+01 1.415e+03 -0.013
## factor(Country)Thailand -5.486e-01 4.356e-01 -1.259
## factor(Country)Timor-Leste -1.883e+01 2.458e+03 -0.008
## factor(Country)Togo 5.326e-01 3.975e-01 1.340
## factor(Country)Trinidad and Tobago -2.145e+00 3.994e-01 -5.370
## factor(Country)Tunisia -1.835e+01 1.315e+03 -0.014
## factor(Country)Turkey -1.278e+00 4.983e-01 -2.564
## factor(Country)Turkmenistan -1.808e+01 1.952e+03 -0.009
## factor(Country)Uganda -2.703e+00 4.604e-01 -5.872
## factor(Country)Ukraine -1.844e+01 1.951e+03 -0.009
## factor(Country)United Arab Emirates 1.908e+01 1.512e+03 0.013
## factor(Country)United Kingdom -6.018e-01 4.204e-01 -1.432
## factor(Country)United States of America -2.533e+00 3.902e-01 -6.492
## factor(Country)Uruguay -4.529e-01 4.147e-01 -1.092
## factor(Country)Uzbekistan -1.816e+01 1.953e+03 -0.009
## factor(Country)Venezuela -5.726e-02 3.967e-01 -0.144
## factor(Country)Vietnam -1.811e+01 1.595e+03 -0.011
## factor(Country)Yemen NA NA NA
## factor(Country)Zambia -2.058e+01 1.412e+03 -0.015
## Pr(>|z|)
## (Intercept) 0.004007 **
## dictatorship 0.075706 .
## v2x_polyarchy 2.69e-08 ***
## former_british_colony 1.56e-08 ***
## factor(Year)1947 0.814725
## factor(Year)1948 0.716477
## factor(Year)1949 0.847929
## factor(Year)1950 0.662611
## factor(Year)1951 0.788003
## factor(Year)1952 0.530524
## factor(Year)1953 0.508741
## factor(Year)1954 0.796596
## factor(Year)1955 0.670052
## factor(Year)1956 0.766923
## factor(Year)1957 0.771763
## factor(Year)1958 0.490328
## factor(Year)1959 0.276267
## factor(Year)1960 0.121119
## factor(Year)1961 0.109276
## factor(Year)1962 0.153206
## factor(Year)1963 0.190867
## factor(Year)1964 0.231188
## factor(Year)1965 0.411427
## factor(Year)1966 0.783658
## factor(Year)1967 0.568571
## factor(Year)1968 0.133934
## factor(Year)1969 0.134217
## factor(Year)1970 0.058696 .
## factor(Year)1971 0.223112
## factor(Year)1972 0.133108
## factor(Year)1973 0.098896 .
## factor(Year)1974 0.226484
## factor(Year)1975 0.521326
## factor(Year)1976 0.357036
## factor(Year)1977 0.188433
## factor(Year)1978 0.230646
## factor(Year)1979 0.128341
## factor(Year)1980 0.328601
## factor(Year)1981 0.063148 .
## factor(Year)1982 0.062546 .
## factor(Year)1983 0.154603
## factor(Year)1984 0.142678
## factor(Year)1985 0.052893 .
## factor(Year)1986 0.035819 *
## factor(Year)1987 0.034108 *
## factor(Year)1988 0.022206 *
## factor(Year)1989 0.022471 *
## factor(Year)1990 0.037193 *
## factor(Year)1991 0.031668 *
## factor(Year)1992 0.012840 *
## factor(Year)1993 0.017002 *
## factor(Year)1994 0.017563 *
## factor(Year)1995 0.010753 *
## factor(Year)1996 0.022504 *
## factor(Year)1997 0.040184 *
## factor(Year)1998 0.012932 *
## factor(Year)1999 0.038282 *
## factor(Year)2000 0.026710 *
## factor(Year)2001 0.123247
## factor(Year)2002 0.047979 *
## factor(Year)2003 0.060819 .
## factor(Year)2004 0.083760 .
## factor(Year)2005 0.059914 .
## factor(Year)2006 0.172580
## factor(Year)2007 0.334433
## factor(Year)2008 0.388624
## factor(Year)2009 0.167873
## factor(Year)2010 0.388448
## factor(Year)2011 0.319830
## factor(Year)2012 0.213150
## factor(Year)2013 0.475297
## factor(Year)2014 0.565120
## factor(Year)2015 0.649339
## factor(Year)2016 0.175955
## factor(Year)2017 0.340263
## factor(Year)2018 0.109870
## factor(Year)2019 0.191062
## factor(Year)2020 0.197905
## factor(Country)Albania 0.916722
## factor(Country)Algeria 0.989534
## factor(Country)Angola 0.990794
## factor(Country)Argentina 0.740635
## factor(Country)Armenia 0.992482
## factor(Country)Australia 0.245765
## factor(Country)Austria 0.987584
## factor(Country)Azerbaijan 0.000203 ***
## factor(Country)Bahrain 0.989965
## factor(Country)Bangladesh 6.33e-05 ***
## factor(Country)Barbados 2.72e-10 ***
## factor(Country)Belarus 0.992515
## factor(Country)Belgium 0.000280 ***
## factor(Country)Benin 1.67e-07 ***
## factor(Country)Bhutan 2.17e-12 ***
## factor(Country)Bosnia and Herzegovina 0.497510
## factor(Country)Botswana 3.23e-09 ***
## factor(Country)Brazil 0.001702 **
## factor(Country)Bulgaria 0.050262 .
## factor(Country)Burkina Faso 0.011147 *
## factor(Country)Burundi 0.087270 .
## factor(Country)Cambodia 3.81e-08 ***
## factor(Country)Cameroon 0.989429
## factor(Country)Canada 0.665098
## factor(Country)Cape Verde 0.990450
## factor(Country)Central African Republic 0.905212
## factor(Country)Chad 0.989360
## factor(Country)Chile 0.198883
## factor(Country)China 0.972702
## factor(Country)Colombia 0.028765 *
## factor(Country)Costa Rica 0.004987 **
## factor(Country)Croatia 0.992182
## factor(Country)Cuba 0.366237
## factor(Country)Cyprus 4.04e-10 ***
## factor(Country)Czech Republic 0.992457
## factor(Country)Democratic Republic of the Congo 0.333979
## factor(Country)Denmark 0.987477
## factor(Country)Djibouti 0.001060 **
## factor(Country)Dominican Republic 0.104782
## factor(Country)Ecuador 0.337002
## factor(Country)Egypt 1.47e-11 ***
## factor(Country)El Salvador 0.987967
## factor(Country)Equatorial Guinea 1.78e-10 ***
## factor(Country)Eritrea 0.992892
## factor(Country)Estonia 0.058019 .
## factor(Country)Eswatini 0.989730
## factor(Country)Ethiopia 0.026427 *
## factor(Country)Fiji 0.000356 ***
## factor(Country)Finland 1.50e-07 ***
## factor(Country)France 0.000280 ***
## factor(Country)Gabon 0.509043
## factor(Country)Georgia 0.992377
## factor(Country)Germany 0.992062
## factor(Country)Ghana 2.26e-08 ***
## factor(Country)Greece 0.051380 .
## factor(Country)Guatemala 0.062196 .
## factor(Country)Guinea 0.989223
## factor(Country)Guinea-Bissau 0.990589
## factor(Country)Guyana 6.67e-09 ***
## factor(Country)Haiti 0.029456 *
## factor(Country)Honduras 0.043022 *
## factor(Country)Hungary 0.987874
## factor(Country)Iceland 0.382575
## factor(Country)India 6.48e-10 ***
## factor(Country)Indonesia 0.003256 **
## factor(Country)Iran 3.64e-05 ***
## factor(Country)Iraq 2.40e-06 ***
## factor(Country)Ireland 0.391836
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 0.000128 ***
## factor(Country)Ivory Coast 0.989220
## factor(Country)Jamaica 6.62e-07 ***
## factor(Country)Japan 0.023862 *
## factor(Country)Jordan 0.987858
## factor(Country)Kazakhstan 0.992534
## factor(Country)Kenya 2.48e-09 ***
## factor(Country)Kuwait 0.001132 **
## factor(Country)Kyrgyzstan 0.992497
## factor(Country)Laos 1.04e-10 ***
## factor(Country)Latvia 0.992239
## factor(Country)Lebanon 4.77e-07 ***
## factor(Country)Lesotho 0.988484
## factor(Country)Liberia 0.001978 **
## factor(Country)Libya 5.13e-05 ***
## factor(Country)Lithuania 0.992228
## factor(Country)Luxembourg 0.987537
## factor(Country)Madagascar 0.989262
## factor(Country)Malawi 8.28e-10 ***
## factor(Country)Malaysia 0.015493 *
## factor(Country)Maldives 0.704402
## factor(Country)Mali 0.780364
## factor(Country)Malta 5.59e-12 ***
## factor(Country)Mauritius 3.43e-07 ***
## factor(Country)Mexico 3.50e-05 ***
## factor(Country)Moldova 0.992391
## factor(Country)Mongolia 0.987952
## factor(Country)Montenegro 0.994567
## factor(Country)Morocco 0.987398
## factor(Country)Mozambique 0.990621
## factor(Country)Myanmar 3.45e-11 ***
## factor(Country)Namibia 0.992115
## factor(Country)Nepal 9.85e-11 ***
## factor(Country)Netherlands 0.987590
## factor(Country)New Zealand 0.007844 **
## factor(Country)Nicaragua 0.048436 *
## factor(Country)Niger 0.989255
## factor(Country)Nigeria 6.39e-09 ***
## factor(Country)North Korea 0.948319
## factor(Country)North Macedonia 0.399195
## factor(Country)Norway 0.440799
## factor(Country)Oman 0.989832
## factor(Country)Pakistan 7.85e-07 ***
## factor(Country)Panama 0.000235 ***
## factor(Country)Papua New Guinea 0.990667
## factor(Country)Paraguay 0.002462 **
## factor(Country)Peru 0.546451
## factor(Country)Philippines 1.62e-08 ***
## factor(Country)Poland 0.001067 **
## factor(Country)Portugal 0.000513 ***
## factor(Country)Qatar 0.988981
## factor(Country)Republic of the Congo 0.989391
## factor(Country)Republic of the Gambia 0.008590 **
## factor(Country)Romania 0.035177 *
## factor(Country)Russia 0.988120
## factor(Country)Rwanda 0.989551
## factor(Country)Saudi Arabia 0.986285
## factor(Country)Senegal 0.989112
## factor(Country)Serbia 0.992406
## factor(Country)Sierra Leone 2.16e-07 ***
## factor(Country)Singapore 0.572445
## factor(Country)Slovakia 0.992472
## factor(Country)Slovenia 0.015048 *
## factor(Country)Solomon Islands 0.989888
## factor(Country)Somalia 0.989416
## factor(Country)South Africa 0.060489 .
## factor(Country)South Korea 0.000581 ***
## factor(Country)South Sudan 0.995174
## factor(Country)Spain 0.008146 **
## factor(Country)Sri Lanka 0.020164 *
## factor(Country)Sudan 0.076715 .
## factor(Country)Suriname 0.990438
## factor(Country)Sweden 0.011817 *
## factor(Country)Switzerland 5.30e-05 ***
## factor(Country)Syria 0.987090
## factor(Country)Taiwan 0.108225
## factor(Country)Tajikistan 0.992554
## factor(Country)Tanzania 0.989566
## factor(Country)Thailand 0.207900
## factor(Country)Timor-Leste 0.993888
## factor(Country)Togo 0.180296
## factor(Country)Trinidad and Tobago 7.88e-08 ***
## factor(Country)Tunisia 0.988867
## factor(Country)Turkey 0.010346 *
## factor(Country)Turkmenistan 0.992609
## factor(Country)Uganda 4.31e-09 ***
## factor(Country)Ukraine 0.992457
## factor(Country)United Arab Emirates 0.989932
## factor(Country)United Kingdom 0.152232
## factor(Country)United States of America 8.45e-11 ***
## factor(Country)Uruguay 0.274824
## factor(Country)Uzbekistan 0.992581
## factor(Country)Venezuela 0.885228
## factor(Country)Vietnam 0.990943
## factor(Country)Yemen NA
## factor(Country)Zambia 0.988371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11785 on 10242 degrees of freedom
## Residual deviance: 7073 on 10001 degrees of freedom
## AIC: 7557
##
## Number of Fisher Scoring iterations: 18
# Model 4: Using Dem_Type as the independent variable, with mixed (1) as the reference category
gdd_clean$Dem_Type <- factor(gdd_clean$Dem_Type, levels = c(1, 0, 2, 3))
model4 <- glm(dynastic ~ Dem_Type + v2x_polyarchy + former_british_colony + factor(Year) + factor(Country), data = gdd_clean, family = binomial(link = "logit"))
summary(model4)##
## Call:
## glm(formula = dynastic ~ Dem_Type + v2x_polyarchy + former_british_colony +
## factor(Year) + factor(Country), family = binomial(link = "logit"),
## data = gdd_clean)
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error z value
## (Intercept) -1.369e+00 4.826e-01 -2.837
## Dem_Type0 2.278e-01 2.147e-01 1.061
## Dem_Type2 2.323e-02 2.271e-01 0.102
## Dem_Type3 -3.911e-02 2.401e-01 -0.163
## v2x_polyarchy 1.632e+00 2.984e-01 5.468
## former_british_colony 2.152e+00 3.808e-01 5.651
## factor(Year)1947 1.162e-01 4.542e-01 0.256
## factor(Year)1948 -1.523e-01 4.527e-01 -0.336
## factor(Year)1949 -7.146e-02 4.487e-01 -0.159
## factor(Year)1950 -1.837e-01 4.516e-01 -0.407
## factor(Year)1951 1.385e-01 4.410e-01 0.314
## factor(Year)1952 2.968e-01 4.382e-01 0.677
## factor(Year)1953 3.118e-01 4.365e-01 0.714
## factor(Year)1954 2.198e-01 4.380e-01 0.502
## factor(Year)1955 2.937e-01 4.371e-01 0.672
## factor(Year)1956 -2.269e-02 4.406e-01 -0.051
## factor(Year)1957 -1.926e-02 4.367e-01 -0.044
## factor(Year)1958 -1.968e-01 4.401e-01 -0.447
## factor(Year)1959 -3.764e-01 4.444e-01 -0.847
## factor(Year)1960 -5.720e-01 4.386e-01 -1.304
## factor(Year)1961 -5.915e-01 4.371e-01 -1.353
## factor(Year)1962 -5.066e-01 4.301e-01 -1.178
## factor(Year)1963 -4.512e-01 4.270e-01 -1.057
## factor(Year)1964 -4.012e-01 4.246e-01 -0.945
## factor(Year)1965 -2.370e-01 4.176e-01 -0.567
## factor(Year)1966 -8.769e-03 4.117e-01 -0.021
## factor(Year)1967 -1.306e-01 4.137e-01 -0.316
## factor(Year)1968 -5.229e-01 4.205e-01 -1.244
## factor(Year)1969 -5.230e-01 4.207e-01 -1.243
## factor(Year)1970 -6.932e-01 4.240e-01 -1.635
## factor(Year)1971 -3.996e-01 4.151e-01 -0.963
## factor(Year)1972 -5.206e-01 4.177e-01 -1.246
## factor(Year)1973 -5.852e-01 4.197e-01 -1.394
## factor(Year)1974 -3.960e-01 4.152e-01 -0.954
## factor(Year)1975 -1.586e-01 4.108e-01 -0.386
## factor(Year)1976 -2.745e-01 4.129e-01 -0.665
## factor(Year)1977 -4.392e-01 4.148e-01 -1.059
## factor(Year)1978 -3.907e-01 4.138e-01 -0.944
## factor(Year)1979 -5.272e-01 4.164e-01 -1.266
## factor(Year)1980 -2.972e-01 4.113e-01 -0.722
## factor(Year)1981 -6.727e-01 4.193e-01 -1.605
## factor(Year)1982 -6.769e-01 4.190e-01 -1.615
## factor(Year)1983 -4.881e-01 4.146e-01 -1.177
## factor(Year)1984 -5.057e-01 4.147e-01 -1.219
## factor(Year)1985 -7.075e-01 4.190e-01 -1.689
## factor(Year)1986 -7.765e-01 4.201e-01 -1.849
## factor(Year)1987 -7.855e-01 4.205e-01 -1.868
## factor(Year)1988 -8.602e-01 4.225e-01 -2.036
## factor(Year)1989 -8.583e-01 4.222e-01 -2.033
## factor(Year)1990 -7.676e-01 4.184e-01 -1.835
## factor(Year)1991 -7.891e-01 4.169e-01 -1.893
## factor(Year)1992 -9.389e-01 4.205e-01 -2.233
## factor(Year)1993 -8.928e-01 4.188e-01 -2.132
## factor(Year)1994 -8.870e-01 4.186e-01 -2.119
## factor(Year)1995 -9.647e-01 4.205e-01 -2.294
## factor(Year)1996 -8.452e-01 4.172e-01 -2.026
## factor(Year)1997 -7.446e-01 4.146e-01 -1.796
## factor(Year)1998 -9.347e-01 4.193e-01 -2.229
## factor(Year)1999 -7.529e-01 4.148e-01 -1.815
## factor(Year)2000 -8.154e-01 4.161e-01 -1.959
## factor(Year)2001 -5.279e-01 4.101e-01 -1.287
## factor(Year)2002 -7.128e-01 4.139e-01 -1.722
## factor(Year)2003 -6.689e-01 4.130e-01 -1.620
## factor(Year)2004 -6.071e-01 4.117e-01 -1.475
## factor(Year)2005 -6.717e-01 4.131e-01 -1.626
## factor(Year)2006 -4.542e-01 4.093e-01 -1.110
## factor(Year)2007 -2.909e-01 4.070e-01 -0.715
## factor(Year)2008 -2.491e-01 4.070e-01 -0.612
## factor(Year)2009 -4.614e-01 4.102e-01 -1.125
## factor(Year)2010 -2.486e-01 4.072e-01 -0.611
## factor(Year)2011 -3.027e-01 4.079e-01 -0.742
## factor(Year)2012 -4.057e-01 4.093e-01 -0.991
## factor(Year)2013 -1.883e-01 4.062e-01 -0.464
## factor(Year)2014 -1.324e-01 4.058e-01 -0.326
## factor(Year)2015 -8.356e-02 4.056e-01 -0.206
## factor(Year)2016 -5.011e-01 4.115e-01 -1.218
## factor(Year)2017 -3.337e-01 4.090e-01 -0.816
## factor(Year)2018 -6.058e-01 4.133e-01 -1.466
## factor(Year)2019 -4.821e-01 4.109e-01 -1.173
## factor(Year)2020 -4.735e-01 4.106e-01 -1.153
## factor(Country)Albania -1.072e+00 6.831e-01 -1.569
## factor(Country)Algeria -1.828e+01 1.511e+03 -0.012
## factor(Country)Angola -1.812e+01 1.664e+03 -0.011
## factor(Country)Argentina 1.188e-01 3.952e-01 0.301
## factor(Country)Armenia -1.837e+01 1.951e+03 -0.009
## factor(Country)Australia 5.184e-01 4.220e-01 1.229
## factor(Country)Austria -1.916e+01 1.233e+03 -0.016
## factor(Country)Azerbaijan 1.749e+00 4.715e-01 3.711
## factor(Country)Bahrain 1.898e+01 1.509e+03 0.013
## factor(Country)Bangladesh 1.648e+00 4.117e-01 4.003
## factor(Country)Barbados -2.715e+00 4.546e-01 -5.972
## factor(Country)Belarus -1.837e+01 1.958e+03 -0.009
## factor(Country)Belgium -1.821e+00 5.293e-01 -3.440
## factor(Country)Benin 2.124e+00 4.106e-01 5.173
## factor(Country)Bhutan 2.904e+00 4.134e-01 7.024
## factor(Country)Bosnia and Herzegovina -3.591e-01 5.333e-01 -0.673
## factor(Country)Botswana -2.516e+00 4.577e-01 -5.497
## factor(Country)Brazil -1.655e+00 5.286e-01 -3.130
## factor(Country)Bulgaria -8.732e-01 4.556e-01 -1.916
## factor(Country)Burkina Faso -1.408e+00 5.533e-01 -2.544
## factor(Country)Burundi 6.719e-01 4.006e-01 1.677
## factor(Country)Cambodia 2.145e+00 3.912e-01 5.481
## factor(Country)Cameroon -1.830e+01 1.381e+03 -0.013
## factor(Country)Canada -1.264e-01 4.243e-01 -0.298
## factor(Country)Cape Verde -1.873e+01 1.567e+03 -0.012
## factor(Country)Central African Republic 3.998e-02 4.254e-01 0.094
## factor(Country)Chad -1.824e+01 1.367e+03 -0.013
## factor(Country)Chile -5.498e-01 4.255e-01 -1.292
## factor(Country)China 1.438e-02 4.065e-01 0.035
## factor(Country)Colombia 8.173e-01 3.906e-01 2.093
## factor(Country)Costa Rica 1.123e+00 4.149e-01 2.707
## factor(Country)Croatia -1.880e+01 1.920e+03 -0.010
## factor(Country)Cuba -3.825e-01 4.276e-01 -0.895
## factor(Country)Cyprus -2.585e+00 4.163e-01 -6.209
## factor(Country)Czech Republic -1.907e+01 2.022e+03 -0.009
## factor(Country)Democratic Republic of the Congo 3.843e-01 4.052e-01 0.949
## factor(Country)Denmark -1.924e+01 1.230e+03 -0.016
## factor(Country)Djibouti 1.359e+00 4.165e-01 3.263
## factor(Country)Dominican Republic -7.262e-01 4.449e-01 -1.632
## factor(Country)Ecuador -4.049e-01 4.153e-01 -0.975
## factor(Country)Egypt -3.189e+00 4.729e-01 -6.744
## factor(Country)El Salvador -1.847e+01 1.225e+03 -0.015
## factor(Country)Equatorial Guinea 2.821e+00 4.434e-01 6.361
## factor(Country)Eritrea -1.803e+01 2.024e+03 -0.009
## factor(Country)Estonia -1.066e+00 6.009e-01 -1.774
## factor(Country)Eswatini 1.892e+01 1.471e+03 0.013
## factor(Country)Ethiopia 8.270e-01 3.720e-01 2.223
## factor(Country)Fiji -1.388e+00 3.894e-01 -3.564
## factor(Country)Finland -3.505e+00 6.903e-01 -5.078
## factor(Country)France -1.860e+00 5.415e-01 -3.435
## factor(Country)Gabon -2.970e-01 4.401e-01 -0.675
## factor(Country)Georgia -1.857e+01 1.946e+03 -0.010
## factor(Country)Germany -1.907e+01 1.921e+03 -0.010
## factor(Country)Ghana -2.224e+00 3.977e-01 -5.591
## factor(Country)Greece 7.745e-01 3.889e-01 1.992
## factor(Country)Guatemala -8.764e-01 4.683e-01 -1.871
## factor(Country)Guinea -1.822e+01 1.348e+03 -0.014
## factor(Country)Guinea-Bissau -1.831e+01 1.551e+03 -0.012
## factor(Country)Guyana -4.463e+00 7.690e-01 -5.804
## factor(Country)Haiti 8.096e-01 3.713e-01 2.181
## factor(Country)Honduras -9.744e-01 4.792e-01 -2.034
## factor(Country)Hungary -1.857e+01 1.225e+03 -0.015
## factor(Country)Iceland -3.494e-01 4.452e-01 -0.785
## factor(Country)India -2.337e+00 4.062e-01 -5.752
## factor(Country)Indonesia -1.624e+00 5.506e-01 -2.949
## factor(Country)Iran 1.518e+00 3.679e-01 4.127
## factor(Country)Iraq -1.698e+00 3.605e-01 -4.711
## factor(Country)Ireland -3.420e-01 4.447e-01 -0.769
## factor(Country)Israel -4.636e+00 5.221e-01 -8.879
## factor(Country)Italy -2.112e+00 5.778e-01 -3.656
## factor(Country)Ivory Coast -1.842e+01 1.375e+03 -0.013
## factor(Country)Jamaica -1.925e+00 4.107e-01 -4.688
## factor(Country)Japan 9.589e-01 4.219e-01 2.273
## factor(Country)Jordan 1.873e+01 1.232e+03 0.015
## factor(Country)Kazakhstan -1.830e+01 1.955e+03 -0.009
## factor(Country)Kenya -2.767e+00 4.633e-01 -5.972
## factor(Country)Kuwait 2.099e+00 6.463e-01 3.248
## factor(Country)Kyrgyzstan -1.835e+01 1.951e+03 -0.009
## factor(Country)Laos 2.609e+00 4.051e-01 6.440
## factor(Country)Latvia -1.892e+01 1.950e+03 -0.010
## factor(Country)Lebanon 1.960e+00 3.887e-01 5.043
## factor(Country)Lesotho -2.060e+01 1.429e+03 -0.014
## factor(Country)Liberia 1.145e+00 3.708e-01 3.089
## factor(Country)Libya -1.474e+00 3.628e-01 -4.063
## factor(Country)Lithuania -1.901e+01 1.952e+03 -0.010
## factor(Country)Luxembourg -1.917e+01 1.232e+03 -0.016
## factor(Country)Madagascar -1.840e+01 1.367e+03 -0.013
## factor(Country)Malawi -3.313e+00 5.392e-01 -6.145
## factor(Country)Malaysia 9.198e-01 3.840e-01 2.395
## factor(Country)Maldives -1.527e-01 3.836e-01 -0.398
## factor(Country)Mali -1.234e-01 4.361e-01 -0.283
## factor(Country)Malta -3.259e+00 4.954e-01 -6.578
## factor(Country)Mauritius -2.039e+00 4.276e-01 -4.769
## factor(Country)Mexico 1.562e+00 3.790e-01 4.121
## factor(Country)Moldova -1.854e+01 1.948e+03 -0.010
## factor(Country)Mongolia -1.855e+01 1.230e+03 -0.015
## factor(Country)Montenegro -1.887e+01 2.772e+03 -0.007
## factor(Country)Morocco 2.094e+01 1.327e+03 0.016
## factor(Country)Mozambique -1.839e+01 1.565e+03 -0.012
## factor(Country)Myanmar -3.523e+00 5.337e-01 -6.601
## factor(Country)Namibia -1.895e+01 1.918e+03 -0.010
## factor(Country)Nepal 2.620e+00 4.054e-01 6.462
## factor(Country)Netherlands -1.912e+01 1.233e+03 -0.016
## factor(Country)New Zealand -1.147e+00 4.666e-01 -2.458
## factor(Country)Nicaragua 7.280e-01 3.743e-01 1.945
## factor(Country)Niger -1.837e+01 1.365e+03 -0.013
## factor(Country)Nigeria -2.538e+00 4.368e-01 -5.811
## factor(Country)North Korea -2.925e-02 4.128e-01 -0.071
## factor(Country)North Macedonia 4.197e-01 5.223e-01 0.804
## factor(Country)Norway -2.676e-01 4.297e-01 -0.623
## factor(Country)Oman 1.903e+01 1.494e+03 0.013
## factor(Country)Pakistan -1.796e+00 3.730e-01 -4.816
## factor(Country)Panama 1.381e+00 3.835e-01 3.602
## factor(Country)Papua New Guinea -1.843e+01 1.579e+03 -0.012
## factor(Country)Paraguay -1.794e+00 5.918e-01 -3.031
## factor(Country)Peru 2.240e-01 3.900e-01 0.574
## factor(Country)Philippines 2.247e+00 4.044e-01 5.557
## factor(Country)Poland -1.801e+00 5.597e-01 -3.218
## factor(Country)Portugal -1.927e+00 5.694e-01 -3.384
## factor(Country)Qatar 1.907e+01 1.381e+03 0.014
## factor(Country)Republic of the Congo -1.821e+01 1.369e+03 -0.013
## factor(Country)Republic of the Gambia -9.898e-01 3.752e-01 -2.638
## factor(Country)Romania -9.639e-01 4.667e-01 -2.065
## factor(Country)Russia -1.835e+01 1.233e+03 -0.015
## factor(Country)Rwanda -1.823e+01 1.391e+03 -0.013
## factor(Country)Saudi Arabia 2.115e+01 1.231e+03 0.017
## factor(Country)Senegal -1.871e+01 1.371e+03 -0.014
## factor(Country)Serbia -1.845e+01 1.943e+03 -0.009
## factor(Country)Sierra Leone -2.104e+00 4.052e-01 -5.192
## factor(Country)Singapore 2.279e-01 4.121e-01 0.553
## factor(Country)Slovakia -1.902e+01 2.017e+03 -0.009
## factor(Country)Slovenia -1.639e+00 6.933e-01 -2.364
## factor(Country)Solomon Islands -2.060e+01 1.629e+03 -0.013
## factor(Country)Somalia -1.817e+01 1.370e+03 -0.013
## factor(Country)South Africa -6.679e-01 3.715e-01 -1.798
## factor(Country)South Korea -2.286e+00 6.634e-01 -3.446
## factor(Country)South Sudan -2.052e+01 3.393e+03 -0.006
## factor(Country)Spain -1.210e+00 4.777e-01 -2.533
## factor(Country)Sri Lanka -8.400e-01 3.673e-01 -2.287
## factor(Country)Sudan -6.313e-01 3.603e-01 -1.752
## factor(Country)Suriname -1.879e+01 1.567e+03 -0.012
## factor(Country)Sweden -1.070e+00 4.615e-01 -2.319
## factor(Country)Switzerland -2.730e+00 6.785e-01 -4.024
## factor(Country)Syria 7.437e-03 4.025e-01 0.018
## factor(Country)Taiwan -7.071e-01 4.468e-01 -1.583
## factor(Country)Tajikistan -1.823e+01 1.953e+03 -0.009
## factor(Country)Tanzania -1.851e+01 1.415e+03 -0.013
## factor(Country)Thailand -5.296e-01 4.386e-01 -1.207
## factor(Country)Timor-Leste -1.882e+01 2.458e+03 -0.008
## factor(Country)Togo 5.261e-01 3.974e-01 1.324
## factor(Country)Trinidad and Tobago -2.102e+00 4.188e-01 -5.018
## factor(Country)Tunisia -1.836e+01 1.315e+03 -0.014
## factor(Country)Turkey -1.272e+00 5.208e-01 -2.442
## factor(Country)Turkmenistan -1.809e+01 1.953e+03 -0.009
## factor(Country)Uganda -2.710e+00 4.604e-01 -5.886
## factor(Country)Ukraine -1.844e+01 1.951e+03 -0.009
## factor(Country)United Arab Emirates 1.908e+01 1.512e+03 0.013
## factor(Country)United Kingdom -5.512e-01 4.375e-01 -1.260
## factor(Country)United States of America -2.544e+00 4.001e-01 -6.357
## factor(Country)Uruguay -4.629e-01 4.227e-01 -1.095
## factor(Country)Uzbekistan -1.816e+01 1.953e+03 -0.009
## factor(Country)Venezuela -7.195e-02 4.031e-01 -0.178
## factor(Country)Vietnam -1.812e+01 1.596e+03 -0.011
## factor(Country)Yemen NA NA NA
## factor(Country)Zambia -2.059e+01 1.412e+03 -0.015
## Pr(>|z|)
## (Intercept) 0.004554 **
## Dem_Type0 0.288697
## Dem_Type2 0.918538
## Dem_Type3 0.870569
## v2x_polyarchy 4.54e-08 ***
## former_british_colony 1.59e-08 ***
## factor(Year)1947 0.798028
## factor(Year)1948 0.736610
## factor(Year)1949 0.873469
## factor(Year)1950 0.684141
## factor(Year)1951 0.753401
## factor(Year)1952 0.498273
## factor(Year)1953 0.475075
## factor(Year)1954 0.615847
## factor(Year)1955 0.501676
## factor(Year)1956 0.958928
## factor(Year)1957 0.964831
## factor(Year)1958 0.654740
## factor(Year)1959 0.396928
## factor(Year)1960 0.192137
## factor(Year)1961 0.175934
## factor(Year)1962 0.238803
## factor(Year)1963 0.290674
## factor(Year)1964 0.344699
## factor(Year)1965 0.570380
## factor(Year)1966 0.983005
## factor(Year)1967 0.752185
## factor(Year)1968 0.213640
## factor(Year)1969 0.213852
## factor(Year)1970 0.102072
## factor(Year)1971 0.335633
## factor(Year)1972 0.212656
## factor(Year)1973 0.163239
## factor(Year)1974 0.340161
## factor(Year)1975 0.699469
## factor(Year)1976 0.506134
## factor(Year)1977 0.289679
## factor(Year)1978 0.345094
## factor(Year)1979 0.205479
## factor(Year)1980 0.469999
## factor(Year)1981 0.108586
## factor(Year)1982 0.106205
## factor(Year)1983 0.239091
## factor(Year)1984 0.222708
## factor(Year)1985 0.091291 .
## factor(Year)1986 0.064525 .
## factor(Year)1987 0.061722 .
## factor(Year)1988 0.041724 *
## factor(Year)1989 0.042057 *
## factor(Year)1990 0.066556 .
## factor(Year)1991 0.058356 .
## factor(Year)1992 0.025538 *
## factor(Year)1993 0.033038 *
## factor(Year)1994 0.034112 *
## factor(Year)1995 0.021796 *
## factor(Year)1996 0.042745 *
## factor(Year)1997 0.072499 .
## factor(Year)1998 0.025812 *
## factor(Year)1999 0.069474 .
## factor(Year)2000 0.050064 .
## factor(Year)2001 0.197986
## factor(Year)2002 0.085018 .
## factor(Year)2003 0.105313
## factor(Year)2004 0.140301
## factor(Year)2005 0.103997
## factor(Year)2006 0.267138
## factor(Year)2007 0.474752
## factor(Year)2008 0.540513
## factor(Year)2009 0.260641
## factor(Year)2010 0.541468
## factor(Year)2011 0.457931
## factor(Year)2012 0.321516
## factor(Year)2013 0.643000
## factor(Year)2014 0.744176
## factor(Year)2015 0.836777
## factor(Year)2016 0.223393
## factor(Year)2017 0.414605
## factor(Year)2018 0.142671
## factor(Year)2019 0.240718
## factor(Year)2020 0.248870
## factor(Country)Albania 0.116597
## factor(Country)Algeria 0.990345
## factor(Country)Angola 0.991309
## factor(Country)Argentina 0.763699
## factor(Country)Armenia 0.992489
## factor(Country)Australia 0.219241
## factor(Country)Austria 0.987599
## factor(Country)Azerbaijan 0.000207 ***
## factor(Country)Bahrain 0.989969
## factor(Country)Bangladesh 6.27e-05 ***
## factor(Country)Barbados 2.34e-09 ***
## factor(Country)Belarus 0.992515
## factor(Country)Belgium 0.000581 ***
## factor(Country)Benin 2.30e-07 ***
## factor(Country)Bhutan 2.16e-12 ***
## factor(Country)Bosnia and Herzegovina 0.500692
## factor(Country)Botswana 3.86e-08 ***
## factor(Country)Brazil 0.001747 **
## factor(Country)Bulgaria 0.055319 .
## factor(Country)Burkina Faso 0.010956 *
## factor(Country)Burundi 0.093507 .
## factor(Country)Cambodia 4.22e-08 ***
## factor(Country)Cameroon 0.989426
## factor(Country)Canada 0.765804
## factor(Country)Cape Verde 0.990462
## factor(Country)Central African Republic 0.925126
## factor(Country)Chad 0.989357
## factor(Country)Chile 0.196357
## factor(Country)China 0.971777
## factor(Country)Colombia 0.036376 *
## factor(Country)Costa Rica 0.006781 **
## factor(Country)Croatia 0.992187
## factor(Country)Cuba 0.371011
## factor(Country)Cyprus 5.34e-10 ***
## factor(Country)Czech Republic 0.992476
## factor(Country)Democratic Republic of the Congo 0.342874
## factor(Country)Denmark 0.987521
## factor(Country)Djibouti 0.001101 **
## factor(Country)Dominican Republic 0.102593
## factor(Country)Ecuador 0.329571
## factor(Country)Egypt 1.54e-11 ***
## factor(Country)El Salvador 0.987973
## factor(Country)Equatorial Guinea 2.00e-10 ***
## factor(Country)Eritrea 0.992891
## factor(Country)Estonia 0.075981 .
## factor(Country)Eswatini 0.989733
## factor(Country)Ethiopia 0.026187 *
## factor(Country)Fiji 0.000366 ***
## factor(Country)Finland 3.81e-07 ***
## factor(Country)France 0.000593 ***
## factor(Country)Gabon 0.499852
## factor(Country)Georgia 0.992385
## factor(Country)Germany 0.992082
## factor(Country)Ghana 2.25e-08 ***
## factor(Country)Greece 0.046417 *
## factor(Country)Guatemala 0.061301 .
## factor(Country)Guinea 0.989214
## factor(Country)Guinea-Bissau 0.990585
## factor(Country)Guyana 6.48e-09 ***
## factor(Country)Haiti 0.029208 *
## factor(Country)Honduras 0.041996 *
## factor(Country)Hungary 0.987906
## factor(Country)Iceland 0.432611
## factor(Country)India 8.83e-09 ***
## factor(Country)Indonesia 0.003184 **
## factor(Country)Iran 3.67e-05 ***
## factor(Country)Iraq 2.46e-06 ***
## factor(Country)Ireland 0.441864
## factor(Country)Israel < 2e-16 ***
## factor(Country)Italy 0.000256 ***
## factor(Country)Ivory Coast 0.989308
## factor(Country)Jamaica 2.76e-06 ***
## factor(Country)Japan 0.023041 *
## factor(Country)Jordan 0.987866
## factor(Country)Kazakhstan 0.992534
## factor(Country)Kenya 2.35e-09 ***
## factor(Country)Kuwait 0.001162 **
## factor(Country)Kyrgyzstan 0.992498
## factor(Country)Laos 1.20e-10 ***
## factor(Country)Latvia 0.992259
## factor(Country)Lebanon 4.59e-07 ***
## factor(Country)Lesotho 0.988497
## factor(Country)Liberia 0.002010 **
## factor(Country)Libya 4.85e-05 ***
## factor(Country)Lithuania 0.992232
## factor(Country)Luxembourg 0.987579
## factor(Country)Madagascar 0.989260
## factor(Country)Malawi 8.01e-10 ***
## factor(Country)Malaysia 0.016614 *
## factor(Country)Maldives 0.690576
## factor(Country)Mali 0.777124
## factor(Country)Malta 4.77e-11 ***
## factor(Country)Mauritius 1.85e-06 ***
## factor(Country)Mexico 3.78e-05 ***
## factor(Country)Moldova 0.992408
## factor(Country)Mongolia 0.987964
## factor(Country)Montenegro 0.994567
## factor(Country)Morocco 0.987405
## factor(Country)Mozambique 0.990622
## factor(Country)Myanmar 4.08e-11 ***
## factor(Country)Namibia 0.992118
## factor(Country)Nepal 1.03e-10 ***
## factor(Country)Netherlands 0.987630
## factor(Country)New Zealand 0.013980 *
## factor(Country)Nicaragua 0.051756 .
## factor(Country)Niger 0.989259
## factor(Country)Nigeria 6.20e-09 ***
## factor(Country)North Korea 0.943515
## factor(Country)North Macedonia 0.421570
## factor(Country)Norway 0.533516
## factor(Country)Oman 0.989838
## factor(Country)Pakistan 1.47e-06 ***
## factor(Country)Panama 0.000316 ***
## factor(Country)Papua New Guinea 0.990686
## factor(Country)Paraguay 0.002440 **
## factor(Country)Peru 0.565685
## factor(Country)Philippines 2.75e-08 ***
## factor(Country)Poland 0.001289 **
## factor(Country)Portugal 0.000715 ***
## factor(Country)Qatar 0.988986
## factor(Country)Republic of the Congo 0.989386
## factor(Country)Republic of the Gambia 0.008340 **
## factor(Country)Romania 0.038907 *
## factor(Country)Russia 0.988128
## factor(Country)Rwanda 0.989547
## factor(Country)Saudi Arabia 0.986297
## factor(Country)Senegal 0.989111
## factor(Country)Serbia 0.992423
## factor(Country)Sierra Leone 2.08e-07 ***
## factor(Country)Singapore 0.580300
## factor(Country)Slovakia 0.992477
## factor(Country)Slovenia 0.018085 *
## factor(Country)Solomon Islands 0.989912
## factor(Country)Somalia 0.989419
## factor(Country)South Africa 0.072189 .
## factor(Country)South Korea 0.000569 ***
## factor(Country)South Sudan 0.995174
## factor(Country)Spain 0.011299 *
## factor(Country)Sri Lanka 0.022185 *
## factor(Country)Sudan 0.079789 .
## factor(Country)Suriname 0.990431
## factor(Country)Sweden 0.020403 *
## factor(Country)Switzerland 5.73e-05 ***
## factor(Country)Syria 0.985259
## factor(Country)Taiwan 0.113488
## factor(Country)Tajikistan 0.992552
## factor(Country)Tanzania 0.989564
## factor(Country)Thailand 0.227258
## factor(Country)Timor-Leste 0.993891
## factor(Country)Togo 0.185521
## factor(Country)Trinidad and Tobago 5.21e-07 ***
## factor(Country)Tunisia 0.988859
## factor(Country)Turkey 0.014621 *
## factor(Country)Turkmenistan 0.992608
## factor(Country)Uganda 3.95e-09 ***
## factor(Country)Ukraine 0.992458
## factor(Country)United Arab Emirates 0.989937
## factor(Country)United Kingdom 0.207712
## factor(Country)United States of America 2.06e-10 ***
## factor(Country)Uruguay 0.273397
## factor(Country)Uzbekistan 0.992581
## factor(Country)Venezuela 0.858335
## factor(Country)Vietnam 0.990940
## factor(Country)Yemen NA
## factor(Country)Zambia 0.988366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 11724.1 on 10186 degrees of freedom
## Residual deviance: 7021.8 on 9943 degrees of freedom
## (56 observations deleted due to missingness)
## AIC: 7509.8
##
## Number of Fisher Scoring iterations: 18
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 80 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 80 rows containing non-finite outside the scale range
## (`stat_smooth()`).
## `geom_smooth()` using formula = 'y ~ x'
## Warning: Removed 1709 rows containing non-finite outside the scale range
## (`stat_smooth()`).
The results in this section are based on Boix’s definition of democracy and a defined cut-off. This will only include analysis for countries that are classified democracies according to the e_boix variable where Charles Boix classifies democracies/non democracies as 0 and 1. The Cut off Point we choose here for our analysis is to include all countries that have been democracies for at least 25% of their lifetime since 1945.
Before we proceed, it is crucial to note that now we are also adding a variable based on the different types of dynasts we have already explained before in order to make the analysis a bit more nuanced. We are adding a variable called “dynast_type” to account for the categorical variation in the types of dynasts that we have. In this classification we have a pure non-dynast (0, no family before or after the said leader is in politics), dynasty-ender (1, definitely has a predecessor in politics but does not have a successor in politics), the DYNAST (2,definitely has a predecessor in politics may or may not have a successor in politics), Dynasty-former (3, does not have any family in politics preceding him/her but definitely leaves a successor in politics), and finally dynasty-sustainer (4, necessarily has both a predecessor and successor in politics). First we will look at some basic characteristic differences in thse kind of dynasts using a basic difference in mean test (education, Spell [the number of time a leader has been in office], tenure length, is also in business)
Dynastic Variable (0/1) is recoded here as a continuous variable in terms of a dynastic score that varies between 0 and 1 to indicate that up until point t in time for a country i how long Dynastic rule has prevailed (Eg. 1970 in India would mean) TWO BASIC GRAPHS
##
## ===============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## -----------------------------------------------
## v2x_polyarchy -0.037***
## (0.012)
##
## Constant 0.222***
## (0.008)
##
## -----------------------------------------------
## Observations 6,300
## R2 0.001
## Adjusted R2 0.001
## Residual Std. Error 0.267 (df = 6298)
## F Statistic 9.090*** (df = 1; 6298)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## ===============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## -----------------------------------------------
## v2x_polyarchy 0.121***
## (0.024)
##
## log_gdp_percap -0.021***
## (0.003)
##
## v2xnp_regcorr 0.033*
## (0.018)
##
## v2caviol 0.030***
## (0.003)
##
## v2cademmob -0.026***
## (0.004)
##
## Constant 0.292***
## (0.027)
##
## -----------------------------------------------
## Observations 5,171
## R2 0.034
## Adjusted R2 0.033
## Residual Std. Error 0.258 (df = 5165)
## F Statistic 35.948*** (df = 5; 5165)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## =============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## ---------------------------------------------
## v2x_polyarchy -0.231**
## (0.115)
##
## Constant -1.249***
## (0.072)
##
## ---------------------------------------------
## Observations 6,300
## Log Likelihood -2,678.418
## Akaike Inf. Crit. 5,360.836
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## =============================================
## Dependent variable:
## ---------------------------
## Dynastic_Proportion
## ---------------------------------------------
## v2x_polyarchy 0.753***
## (0.236)
##
## log_gdp_percap -0.130***
## (0.032)
##
## v2xnp_regcorr 0.209
## (0.172)
##
## v2caviol 0.180***
## (0.031)
##
## v2cademmob -0.160***
## (0.034)
##
## Constant -0.832***
## (0.256)
##
## ---------------------------------------------
## Observations 5,171
## Log Likelihood -2,175.392
## Akaike Inf. Crit. 4,362.783
## =============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
Corruption here is Regime Corruption borrowed from VDem and the specific variable details are:
This section covers some basic regressions treating Dynasticism as a DV against other other variables like democracy scores, regime corruption level, media censorship (v2mecenefm), clean elections (v2xel_frefair), former british colony. These are all fixed effects linear models with country and year fixed effects in place and the standard error is clustered at the country level.
Are democracies and dynastic leadership compatible (and are former British Colonies likely to be more dynastic?)?
##
## Call:
## felm(formula = dynastic ~ v2x_polyarchy + log_gdp_percap + v2xnp_regcorr + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.61677 -0.23364 -0.15015 -0.03872 1.10261
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## v2x_polyarchy 0.28121 0.13089 2.148 0.0639 .
## log_gdp_percap 0.01809 0.01030 1.757 0.1170
## v2xnp_regcorr 0.13432 0.06402 2.098 0.0692 .
## former_british_colony -0.02203 0.04320 -0.510 0.6238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3951 on 5157 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.08259 Adjusted R-squared: 0.06978
## Multiple R-squared(proj model): 0.01442 Adjusted R-squared: 0.0006563
## F-statistic(full model, *iid*):6.448 on 72 and 5157 DF, p-value: < 2.2e-16
## F-statistic(proj model): 4.823 on 4 and 8 DF, p-value: 0.02826
This regression results seems to suggest that Dynasties and democracies have been historically compatible. Specifically, A one-unit increase in the electoral democracy score (v2x_polyarchy) is associated with a 33.1 percentage point increase in the probability of that polity being dynastic, according to a linear model probability design.
The significant positive relationship between electoral democracy and dynastic regimes suggests that higher levels of electoral democracy might coexist with dynastic regimes. However, the economic and corruption-related predictors, as well as the colonial history, do not show a significant impact on dynastic regimes in this model.
Is dynastic leadership more likely to produce less free and fair elections?
##
## Call:
## felm(formula = v2xel_frefair ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.67449 -0.12838 0.01527 0.14418 0.54477
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.03801 0.01681 2.261 0.0536 .
## log_gdp_percap 0.15603 0.01180 13.227 1.02e-06 ***
## former_british_colony 0.03811 0.02782 1.370 0.2079
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2071 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.5881 Adjusted R-squared: 0.5824
## Multiple R-squared(proj model): 0.3187 Adjusted R-squared: 0.3093
## F-statistic(full model, *iid*):103.7 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 93.18 on 3 and 8 DF, p-value: 1.458e-06
Consistent with our claim on compatibility with democracies, dynastic leadership is in fact not bad for free and fair elections.
##
## Call:
## felm(formula = v2xnp_regcorr ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.57421 -0.10975 0.00622 0.11837 0.64973
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.004092 0.011517 0.355 0.732
## log_gdp_percap -0.174029 0.017943 -9.699 1.07e-05 ***
## former_british_colony -0.071479 0.080857 -0.884 0.402
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1885 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.6254 Adjusted R-squared: 0.6202
## Multiple R-squared(proj model): 0.4127 Adjusted R-squared: 0.4046
## F-statistic(full model, *iid*):121.3 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 172.7 on 3 and 8 DF, p-value: 1.309e-07
No significant relationship between dynastic leadership and more regime corruption (leaders using offices for private gain).
v2psbars
##
## Call:
## felm(formula = v2psbars ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.3329 -0.5140 0.1311 0.7044 2.1835
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.19598 0.10111 1.938 0.0886 .
## log_gdp_percap 0.36661 0.03915 9.364 1.38e-05 ***
## former_british_colony 0.35558 0.19306 1.842 0.1028
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9967 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3602 Adjusted R-squared: 0.3514
## Multiple R-squared(proj model): 0.1212 Adjusted R-squared: 0.1091
## F-statistic(full model, *iid*):40.91 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 40.55 on 3 and 8 DF, p-value: 3.478e-05
v2pscnslnl
##
## Call:
## felm(formula = v2pscnslnl ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.8117 -0.5675 -0.0271 0.5574 3.2184
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.06576 0.08190 0.803 0.44522
## log_gdp_percap 0.55766 0.11567 4.821 0.00132 **
## former_british_colony 0.46325 0.35792 1.294 0.23167
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9797 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4341 Adjusted R-squared: 0.4263
## Multiple R-squared(proj model): 0.2298 Adjusted R-squared: 0.2192
## F-statistic(full model, *iid*):55.72 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 21.04 on 3 and 8 DF, p-value: 0.0003759
v2regoppgroupssize
##
## Call:
## felm(formula = v2regoppgroupssize ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2045 -0.7607 -0.1629 0.5793 4.1028
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.18456 0.09499 -1.943 0.0879 .
## log_gdp_percap -0.46499 0.16232 -2.865 0.0210 *
## former_british_colony 0.35650 0.35610 1.001 0.3461
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.133 on 5152 degrees of freedom
## (1076 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4896 Adjusted R-squared: 0.4826
## Multiple R-squared(proj model): 0.1295 Adjusted R-squared: 0.1175
## F-statistic(full model, *iid*):69.61 on 71 and 5152 DF, p-value: < 2.2e-16
## F-statistic(proj model): 8.009 on 3 and 8 DF, p-value: 0.008567
v2clrspct
##
## Call:
## felm(formula = v2clrspct ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.08441 -0.56830 0.04989 0.58006 2.73383
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.10079 0.12888 0.782 0.457
## log_gdp_percap 0.81531 0.09203 8.860 2.08e-05 ***
## former_british_colony 0.03852 0.17542 0.220 0.832
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9318 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.6293 Adjusted R-squared: 0.6242
## Multiple R-squared(proj model): 0.3788 Adjusted R-squared: 0.3702
## F-statistic(full model, *iid*):123.3 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 31.09 on 3 and 8 DF, p-value: 9.272e-05
v2clstown
##
## Call:
## felm(formula = v2clstown ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.0984 -0.3964 0.0386 0.4523 2.3470
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.001765 0.103770 -0.017 0.98685
## log_gdp_percap 0.246633 0.048847 5.049 0.00099 ***
## former_british_colony -0.232880 0.132812 -1.753 0.11761
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7345 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3814 Adjusted R-squared: 0.3729
## Multiple R-squared(proj model): 0.08966 Adjusted R-squared: 0.07713
## F-statistic(full model, *iid*):44.79 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 15.26 on 3 and 8 DF, p-value: 0.001131
v2stcritrecadm (0-5 ordinal scale)
##
## Call:
## felm(formula = v2stcritrecadm ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.81116 -0.43096 0.05112 0.45763 2.33686
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.02354 0.08247 -0.285 0.783
## log_gdp_percap 0.54400 0.06723 8.092 4.02e-05 ***
## former_british_colony 0.03801 0.14135 0.269 0.795
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7017 on 4934 degrees of freedom
## (1294 observations deleted due to missingness)
## Multiple R-squared(full model): 0.5039 Adjusted R-squared: 0.4968
## Multiple R-squared(proj model): 0.3107 Adjusted R-squared: 0.3008
## F-statistic(full model, *iid*): 70.6 on 71 and 4934 DF, p-value: < 2.2e-16
## F-statistic(proj model): 25.31 on 3 and 8 DF, p-value: 0.0001953
v2mecenefm
##
## Call:
## felm(formula = v2mecenefm ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.6960 -0.5252 0.0997 0.7356 2.5041
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.27625 0.15119 1.827 0.1051
## log_gdp_percap 0.55116 0.15794 3.490 0.0082 **
## former_british_colony -0.06699 0.19704 -0.340 0.7426
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.1 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4827 Adjusted R-squared: 0.4756
## Multiple R-squared(proj model): 0.175 Adjusted R-squared: 0.1636
## F-statistic(full model, *iid*):67.79 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 33.7 on 3 and 8 DF, p-value: 6.904e-05
v2mecorrpt
##
## Call:
## felm(formula = v2mecorrpt ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2863 -0.4478 0.1233 0.6098 2.9630
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.09022 0.09131 0.988 0.35209
## log_gdp_percap 0.78097 0.04147 18.830 6.54e-08 ***
## former_british_colony 0.57095 0.14752 3.870 0.00474 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9619 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.5774 Adjusted R-squared: 0.5716
## Multiple R-squared(proj model): 0.3711 Adjusted R-squared: 0.3624
## F-statistic(full model, *iid*):99.25 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 329.2 on 3 and 8 DF, p-value: 1.023e-08
v2pepwrses (0-4)
##
## Call:
## felm(formula = v2pepwrses ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4186 -0.4283 0.0371 0.4748 2.5535
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.08648 0.07560 -1.144 0.2857
## log_gdp_percap 0.29418 0.12252 2.401 0.0431 *
## former_british_colony 0.27228 0.17731 1.536 0.1632
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8236 on 5158 degrees of freedom
## (1070 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3895 Adjusted R-squared: 0.381
## Multiple R-squared(proj model): 0.1074 Adjusted R-squared: 0.09506
## F-statistic(full model, *iid*):46.34 on 71 and 5158 DF, p-value: < 2.2e-16
## F-statistic(proj model): 2.246 on 3 and 8 DF, p-value: 0.1602
v2exl_legitideol
##
## Call:
## felm(formula = v2exl_legitideol ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2795 -0.7966 -0.1499 0.7561 3.9378
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.08410 0.15464 0.544 0.601
## log_gdp_percap -0.10339 0.16256 -0.636 0.543
## former_british_colony 0.04565 0.36814 0.124 0.904
##
## Residual standard error: 1.093 on 5143 degrees of freedom
## (1085 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3146 Adjusted R-squared: 0.3051
## Multiple R-squared(proj model): 0.007678 Adjusted R-squared: -0.006021
## F-statistic(full model, *iid*):33.25 on 71 and 5143 DF, p-value: < 2.2e-16
## F-statistic(proj model): 0.2148 on 3 and 8 DF, p-value: 0.8834
v2exl_legitlead
##
## Call:
## felm(formula = v2exl_legitlead ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5739 -0.7897 -0.1258 0.7445 4.9250
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic -0.06576 0.08783 -0.749 0.47547
## log_gdp_percap -0.38092 0.10363 -3.676 0.00626 **
## former_british_colony 0.13820 0.43637 0.317 0.75957
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.12 on 5156 degrees of freedom
## (1072 observations deleted due to missingness)
## Multiple R-squared(full model): 0.4003 Adjusted R-squared: 0.3921
## Multiple R-squared(proj model): 0.08502 Adjusted R-squared: 0.07242
## F-statistic(full model, *iid*):48.48 on 71 and 5156 DF, p-value: < 2.2e-16
## F-statistic(proj model): 6.49 on 3 and 8 DF, p-value: 0.0155
v2caviol
##
## Call:
## felm(formula = v2caviol ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9826 -0.8518 -0.1209 0.7346 4.0336
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.08914 0.13562 0.657 0.52943
## log_gdp_percap -0.40492 0.09299 -4.354 0.00243 **
## former_british_colony -0.36681 0.11284 -3.251 0.01169 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.205 on 5138 degrees of freedom
## (1090 observations deleted due to missingness)
## Multiple R-squared(full model): 0.3208 Adjusted R-squared: 0.3114
## Multiple R-squared(proj model): 0.09566 Adjusted R-squared: 0.08317
## F-statistic(full model, *iid*):34.17 on 71 and 5138 DF, p-value: < 2.2e-16
## F-statistic(proj model): 39.01 on 3 and 8 DF, p-value: 4.019e-05
v2cademmob
##
## Call:
## felm(formula = v2cademmob ~ dynastic + log_gdp_percap + former_british_colony | Region + Year | 0 | Region, data = gdd_vdem_dem)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2609 -0.7758 -0.1522 0.6511 4.5795
##
## Coefficients:
## Estimate Cluster s.e. t value Pr(>|t|)
## dynastic 0.19245 0.08997 2.139 0.0649 .
## log_gdp_percap -0.13760 0.16114 -0.854 0.4180
## former_british_colony -0.41357 0.08659 -4.776 0.0014 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.129 on 5099 degrees of freedom
## (1129 observations deleted due to missingness)
## Multiple R-squared(full model): 0.2116 Adjusted R-squared: 0.2006
## Multiple R-squared(proj model): 0.03501 Adjusted R-squared: 0.02157
## F-statistic(full model, *iid*):19.27 on 71 and 5099 DF, p-value: < 2.2e-16
## F-statistic(proj model): 9.342 on 3 and 8 DF, p-value: 0.005425