Instalar paquetes y llamar librerĆ­as

library(WDI)
library(wbstats)
library(tidyverse)
library(ggplot2)

# <span style="color: blue;">Introducción</span>
Los datos del *World Bank Indicators (WBI)* son una fuente completa de indicadores **económicos**, **sociales** y **medioambientales** de mÔs de 200 países.  
[Fuente: WB](https://data.worldbank.org/indicator?tab=all)

# <span style="color: blue;">Información de 1 país</span>


``` r
gdp_mexico <- wbstats::wb_data(
  country = "MX",
  indicator = "AG.PRD.FOOD.XD",
  start_date = 1900,
  end_date = 2024
)
# (ISO3166-2 country codes)
summary(gdp_mexico)
##     iso2c              iso3c             country               date     
##  Length:65          Length:65          Length:65          Min.   :1960  
##  Class :character   Class :character   Class :character   1st Qu.:1976  
##  Mode  :character   Mode  :character   Mode  :character   Median :1992  
##                                                           Mean   :1992  
##                                                           3rd Qu.:2008  
##                                                           Max.   :2024  
##                                                                         
##  AG.PRD.FOOD.XD       unit            obs_status          footnote        
##  Min.   : 18.29   Length:65          Length:65          Length:65         
##  1st Qu.: 36.91   Class :character   Class :character   Class :character  
##  Median : 56.34   Mode  :character   Mode  :character   Mode  :character  
##  Mean   : 61.98                                                           
##  3rd Qu.: 85.74                                                           
##  Max.   :117.03                                                           
##  NA's   :3                                                                
##   last_updated       
##  Min.   :2026-01-28  
##  1st Qu.:2026-01-28  
##  Median :2026-01-28  
##  Mean   :2026-01-28  
##  3rd Qu.:2026-01-28  
##  Max.   :2026-01-28  
## 
head(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date AG.PRD.FOOD.XD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   1960           NA   <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   1961           18.3 <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   1962           19.5 <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   1963           20.4 <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   1964           22.4 <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   1965           24.2 <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
tail(gdp_mexico)
## # A tibble: 6 Ɨ 9
##   iso2c iso3c country  date AG.PRD.FOOD.XD unit  obs_status footnote
##   <chr> <chr> <chr>   <dbl>          <dbl> <chr> <chr>      <chr>   
## 1 MX    MEX   Mexico   2019           112. <NA>  <NA>       <NA>    
## 2 MX    MEX   Mexico   2020           113. <NA>  <NA>       <NA>    
## 3 MX    MEX   Mexico   2021           114. <NA>  <NA>       <NA>    
## 4 MX    MEX   Mexico   2022           117. <NA>  <NA>       <NA>    
## 5 MX    MEX   Mexico   2023            NA  <NA>  <NA>       <NA>    
## 6 MX    MEX   Mexico   2024            NA  <NA>  <NA>       <NA>    
## # ℹ 1 more variable: last_updated <date>
ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
  geom_point()
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
  geom_col()
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_col()`).

ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
  geom_col(fill = "cyan") +
  geom_point(color = "blue") +
  labs(title="Producto Interno Bruto en MƩxico (US per Capita)", x = "AƱo", y = "PIB")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_col()`).
## Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

Información de varios paises

gdp_varios <- wb_data(country = c("MX","CA","US"), indicator = "AG.PRD.FOOD.XD", start_date= 1900, end_date=2024)

ggplot(gdp_varios, aes(x=date, y=AG.PRD.FOOD.XD, color=country))+
  geom_point()
## Warning: Removed 9 rows containing missing values or values outside the scale range
## (`geom_point()`).

LS0tCnRpdGxlOiAiSW5mb3JtYWNpw7NuIEJhbmNvIE11bmRpYWwiCmF1dGhvcjogIlhpbWVuYSBCb2xhw7FvcywgTWFyaWFtIExpc2JldGggU2FudGFuYSwgRnJhbmNpc2NvIEphdmllciBNYXJ0aW5leiwgTWF4aW1pbGlhbm8gR3VldmFyYSIKZGF0ZTogIjIwMjYtMDItMTAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogeWV0aQotLS0KCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4KYGBge3Igc2V0dXAsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoV0RJKQpsaWJyYXJ5KHdic3RhdHMpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGdncGxvdDIpCmBgYApgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW50cm9kdWNjacOzbjwvc3Bhbj4KTG9zIGRhdG9zIGRlbCAqV29ybGQgQmFuayBJbmRpY2F0b3JzIChXQkkpKiBzb24gdW5hIGZ1ZW50ZSBjb21wbGV0YSBkZSBpbmRpY2Fkb3JlcyAqKmVjb27Ds21pY29zKiosICoqc29jaWFsZXMqKiB5ICoqbWVkaW9hbWJpZW50YWxlcyoqIGRlIG3DoXMgZGUgMjAwIHBhw61zZXMuICAKW0Z1ZW50ZTogV0JdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvcj90YWI9YWxsKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5JbmZvcm1hY2nDs24gZGUgMSBwYcOtczwvc3Bhbj4KCmBgYHtyfQpnZHBfbWV4aWNvIDwtIHdic3RhdHM6OndiX2RhdGEoCiAgY291bnRyeSA9ICJNWCIsCiAgaW5kaWNhdG9yID0gIkFHLlBSRC5GT09ELlhEIiwKICBzdGFydF9kYXRlID0gMTkwMCwKICBlbmRfZGF0ZSA9IDIwMjQKKQojIChJU08zMTY2LTIgY291bnRyeSBjb2RlcykKc3VtbWFyeShnZHBfbWV4aWNvKQpoZWFkKGdkcF9tZXhpY28pCnRhaWwoZ2RwX21leGljbykKCmdncGxvdChnZHBfbWV4aWNvLCBhZXMoeCA9IGRhdGUsIHkgPSBBRy5QUkQuRk9PRC5YRCkpICsKICBnZW9tX3BvaW50KCkKCmdncGxvdChnZHBfbWV4aWNvLCBhZXMoeCA9IGRhdGUsIHkgPSBBRy5QUkQuRk9PRC5YRCkpICsKICBnZW9tX2NvbCgpCgpnZ3Bsb3QoZ2RwX21leGljbywgYWVzKHggPSBkYXRlLCB5ID0gQUcuUFJELkZPT0QuWEQpKSArCiAgZ2VvbV9jb2woZmlsbCA9ICJjeWFuIikgKwogIGdlb21fcG9pbnQoY29sb3IgPSAiYmx1ZSIpICsKICBsYWJzKHRpdGxlPSJQcm9kdWN0byBJbnRlcm5vIEJydXRvIGVuIE3DqXhpY28gKFVTIHBlciBDYXBpdGEpIiwgeCA9ICJBw7FvIiwgeSA9ICJQSUIiKQoKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkluZm9ybWFjacOzbiBkZSB2YXJpb3MgcGFpc2VzPC9zcGFuPgpgYGB7cn0KZ2RwX3ZhcmlvcyA8LSB3Yl9kYXRhKGNvdW50cnkgPSBjKCJNWCIsIkNBIiwiVVMiKSwgaW5kaWNhdG9yID0gIkFHLlBSRC5GT09ELlhEIiwgc3RhcnRfZGF0ZT0gMTkwMCwgZW5kX2RhdGU9MjAyNCkKCmdncGxvdChnZHBfdmFyaW9zLCBhZXMoeD1kYXRlLCB5PUFHLlBSRC5GT09ELlhELCBjb2xvcj1jb3VudHJ5KSkrCiAgZ2VvbV9wb2ludCgpCmBgYAoK