Instalar paquetes y llamar
librerĆas
library(WDI)
library(wbstats)
library(tidyverse)
library(ggplot2)
# <span style="color: blue;">Introducción</span>
Los datos del *World Bank Indicators (WBI)* son una fuente completa de indicadores **económicos**, **sociales** y **medioambientales** de mĆ”s de 200 paĆses.
[Fuente: WB](https://data.worldbank.org/indicator?tab=all)
# <span style="color: blue;">Información de 1 paĆs</span>
``` r
gdp_mexico <- wbstats::wb_data(
country = "MX",
indicator = "AG.PRD.FOOD.XD",
start_date = 1900,
end_date = 2024
)
# (ISO3166-2 country codes)
summary(gdp_mexico)
## iso2c iso3c country date
## Length:65 Length:65 Length:65 Min. :1960
## Class :character Class :character Class :character 1st Qu.:1976
## Mode :character Mode :character Mode :character Median :1992
## Mean :1992
## 3rd Qu.:2008
## Max. :2024
##
## AG.PRD.FOOD.XD unit obs_status footnote
## Min. : 18.29 Length:65 Length:65 Length:65
## 1st Qu.: 36.91 Class :character Class :character Class :character
## Median : 56.34 Mode :character Mode :character Mode :character
## Mean : 61.98
## 3rd Qu.: 85.74
## Max. :117.03
## NA's :3
## last_updated
## Min. :2026-01-28
## 1st Qu.:2026-01-28
## Median :2026-01-28
## Mean :2026-01-28
## 3rd Qu.:2026-01-28
## Max. :2026-01-28
##
head(gdp_mexico)
## # A tibble: 6 Ć 9
## iso2c iso3c country date AG.PRD.FOOD.XD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 MX MEX Mexico 1960 NA <NA> <NA> <NA>
## 2 MX MEX Mexico 1961 18.3 <NA> <NA> <NA>
## 3 MX MEX Mexico 1962 19.5 <NA> <NA> <NA>
## 4 MX MEX Mexico 1963 20.4 <NA> <NA> <NA>
## 5 MX MEX Mexico 1964 22.4 <NA> <NA> <NA>
## 6 MX MEX Mexico 1965 24.2 <NA> <NA> <NA>
## # ā¹ 1 more variable: last_updated <date>
tail(gdp_mexico)
## # A tibble: 6 Ć 9
## iso2c iso3c country date AG.PRD.FOOD.XD unit obs_status footnote
## <chr> <chr> <chr> <dbl> <dbl> <chr> <chr> <chr>
## 1 MX MEX Mexico 2019 112. <NA> <NA> <NA>
## 2 MX MEX Mexico 2020 113. <NA> <NA> <NA>
## 3 MX MEX Mexico 2021 114. <NA> <NA> <NA>
## 4 MX MEX Mexico 2022 117. <NA> <NA> <NA>
## 5 MX MEX Mexico 2023 NA <NA> <NA> <NA>
## 6 MX MEX Mexico 2024 NA <NA> <NA> <NA>
## # ā¹ 1 more variable: last_updated <date>
ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
geom_point()
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
geom_col()
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_col()`).

ggplot(gdp_mexico, aes(x = date, y = AG.PRD.FOOD.XD)) +
geom_col(fill = "cyan") +
geom_point(color = "blue") +
labs(title="Producto Interno Bruto en MƩxico (US per Capita)", x = "AƱo", y = "PIB")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_col()`).
## Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).

LS0tCnRpdGxlOiAiSW5mb3JtYWNpw7NuIEJhbmNvIE11bmRpYWwiCmF1dGhvcjogIlhpbWVuYSBCb2xhw7FvcywgTWFyaWFtIExpc2JldGggU2FudGFuYSwgRnJhbmNpc2NvIEphdmllciBNYXJ0aW5leiwgTWF4aW1pbGlhbm8gR3VldmFyYSIKZGF0ZTogIjIwMjYtMDItMTAiCm91dHB1dDogCiAgaHRtbF9kb2N1bWVudDoKICAgIHRvYzogVFJVRQogICAgdG9jX2Zsb2F0OiBUUlVFCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFCiAgICB0aGVtZTogeWV0aQotLS0KCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW5zdGFsYXIgcGFxdWV0ZXMgeSBsbGFtYXIgbGlicmVyw61hczwvc3Bhbj4KYGBge3Igc2V0dXAsIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0V9CmxpYnJhcnkoV0RJKQpsaWJyYXJ5KHdic3RhdHMpCmxpYnJhcnkodGlkeXZlcnNlKQpsaWJyYXJ5KGdncGxvdDIpCmBgYApgYGAKCiMgPHNwYW4gc3R5bGU9ImNvbG9yOiBibHVlOyI+SW50cm9kdWNjacOzbjwvc3Bhbj4KTG9zIGRhdG9zIGRlbCAqV29ybGQgQmFuayBJbmRpY2F0b3JzIChXQkkpKiBzb24gdW5hIGZ1ZW50ZSBjb21wbGV0YSBkZSBpbmRpY2Fkb3JlcyAqKmVjb27Ds21pY29zKiosICoqc29jaWFsZXMqKiB5ICoqbWVkaW9hbWJpZW50YWxlcyoqIGRlIG3DoXMgZGUgMjAwIHBhw61zZXMuICAKW0Z1ZW50ZTogV0JdKGh0dHBzOi8vZGF0YS53b3JsZGJhbmsub3JnL2luZGljYXRvcj90YWI9YWxsKQoKIyA8c3BhbiBzdHlsZT0iY29sb3I6IGJsdWU7Ij5JbmZvcm1hY2nDs24gZGUgMSBwYcOtczwvc3Bhbj4KCmBgYHtyfQpnZHBfbWV4aWNvIDwtIHdic3RhdHM6OndiX2RhdGEoCiAgY291bnRyeSA9ICJNWCIsCiAgaW5kaWNhdG9yID0gIkFHLlBSRC5GT09ELlhEIiwKICBzdGFydF9kYXRlID0gMTkwMCwKICBlbmRfZGF0ZSA9IDIwMjQKKQojIChJU08zMTY2LTIgY291bnRyeSBjb2RlcykKc3VtbWFyeShnZHBfbWV4aWNvKQpoZWFkKGdkcF9tZXhpY28pCnRhaWwoZ2RwX21leGljbykKCmdncGxvdChnZHBfbWV4aWNvLCBhZXMoeCA9IGRhdGUsIHkgPSBBRy5QUkQuRk9PRC5YRCkpICsKICBnZW9tX3BvaW50KCkKCmdncGxvdChnZHBfbWV4aWNvLCBhZXMoeCA9IGRhdGUsIHkgPSBBRy5QUkQuRk9PRC5YRCkpICsKICBnZW9tX2NvbCgpCgpnZ3Bsb3QoZ2RwX21leGljbywgYWVzKHggPSBkYXRlLCB5ID0gQUcuUFJELkZPT0QuWEQpKSArCiAgZ2VvbV9jb2woZmlsbCA9ICJjeWFuIikgKwogIGdlb21fcG9pbnQoY29sb3IgPSAiYmx1ZSIpICsKICBsYWJzKHRpdGxlPSJQcm9kdWN0byBJbnRlcm5vIEJydXRvIGVuIE3DqXhpY28gKFVTIHBlciBDYXBpdGEpIiwgeCA9ICJBw7FvIiwgeSA9ICJQSUIiKQoKYGBgCgojIDxzcGFuIHN0eWxlPSJjb2xvcjogYmx1ZTsiPkluZm9ybWFjacOzbiBkZSB2YXJpb3MgcGFpc2VzPC9zcGFuPgpgYGB7cn0KZ2RwX3ZhcmlvcyA8LSB3Yl9kYXRhKGNvdW50cnkgPSBjKCJNWCIsIkNBIiwiVVMiKSwgaW5kaWNhdG9yID0gIkFHLlBSRC5GT09ELlhEIiwgc3RhcnRfZGF0ZT0gMTkwMCwgZW5kX2RhdGU9MjAyNCkKCmdncGxvdChnZHBfdmFyaW9zLCBhZXMoeD1kYXRlLCB5PUFHLlBSRC5GT09ELlhELCBjb2xvcj1jb3VudHJ5KSkrCiAgZ2VvbV9wb2ludCgpCmBgYAoK