En este informe se realiza un Análisis de Componentes Principales (PCA) con el objetivo de reducir la dimensionalidad del conjunto de datos de vivienda y analizar las principales variables que influyen en la variación de precios y características del mercado inmobiliario urbano.
library(paqueteMODELOS)
## Cargando paquete requerido: boot
## Cargando paquete requerido: broom
## Cargando paquete requerido: GGally
## Warning: package 'GGally' was built under R version 4.5.2
## Cargando paquete requerido: ggplot2
## Warning: package 'ggplot2' was built under R version 4.5.2
## Cargando paquete requerido: gridExtra
## Cargando paquete requerido: knitr
## Cargando paquete requerido: summarytools
data("vivienda")
str(vivienda)
## spc_tbl_ [8,322 × 13] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ id : num [1:8322] 1147 1169 1350 5992 1212 ...
## $ zona : chr [1:8322] "Zona Oriente" "Zona Oriente" "Zona Oriente" "Zona Sur" ...
## $ piso : chr [1:8322] NA NA NA "02" ...
## $ estrato : num [1:8322] 3 3 3 4 5 5 4 5 5 5 ...
## $ preciom : num [1:8322] 250 320 350 400 260 240 220 310 320 780 ...
## $ areaconst : num [1:8322] 70 120 220 280 90 87 52 137 150 380 ...
## $ parqueaderos: num [1:8322] 1 1 2 3 1 1 2 2 2 2 ...
## $ banios : num [1:8322] 3 2 2 5 2 3 2 3 4 3 ...
## $ habitaciones: num [1:8322] 6 3 4 3 3 3 3 4 6 3 ...
## $ tipo : chr [1:8322] "Casa" "Casa" "Casa" "Casa" ...
## $ barrio : chr [1:8322] "20 de julio" "20 de julio" "20 de julio" "3 de julio" ...
## $ longitud : num [1:8322] -76.5 -76.5 -76.5 -76.5 -76.5 ...
## $ latitud : num [1:8322] 3.43 3.43 3.44 3.44 3.46 ...
## - attr(*, "spec")=List of 3
## ..$ cols :List of 13
## .. ..$ id : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ zona : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ piso : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ estrato : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ preciom : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ areaconst : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ parqueaderos: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ banios : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ habitaciones: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ tipo : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ barrio : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ longitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ latitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## ..$ default: list()
## .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
## ..$ delim : chr ";"
## ..- attr(*, "class")= chr "col_spec"
## - attr(*, "problems")=<externalptr>
Se aplica PCA para reducir la dimensionalidad de las variables numéricas y detectar patrones dominantes en las propiedades.
# Se toman solo los campos numéricos
vivienda_num <- vivienda[, c("estrato",
"preciom",
"areaconst",
"parqueaderos",
"banios",
"habitaciones",
"longitud",
"latitud")]
str(vivienda_num)
## spc_tbl_ [8,322 × 8] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ estrato : num [1:8322] 3 3 3 4 5 5 4 5 5 5 ...
## $ preciom : num [1:8322] 250 320 350 400 260 240 220 310 320 780 ...
## $ areaconst : num [1:8322] 70 120 220 280 90 87 52 137 150 380 ...
## $ parqueaderos: num [1:8322] 1 1 2 3 1 1 2 2 2 2 ...
## $ banios : num [1:8322] 3 2 2 5 2 3 2 3 4 3 ...
## $ habitaciones: num [1:8322] 6 3 4 3 3 3 3 4 6 3 ...
## $ longitud : num [1:8322] -76.5 -76.5 -76.5 -76.5 -76.5 ...
## $ latitud : num [1:8322] 3.43 3.43 3.44 3.44 3.46 ...
## - attr(*, "spec")=List of 3
## ..$ cols :List of 13
## .. ..$ id : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ zona : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ piso : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ estrato : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ preciom : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ areaconst : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ parqueaderos: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ banios : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ habitaciones: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ tipo : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ barrio : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ longitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ latitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## ..$ default: list()
## .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
## ..$ delim : chr ";"
## ..- attr(*, "class")= chr "col_spec"
## - attr(*, "problems")=<externalptr>
#Se identifican variables con campos nulos
colSums(is.na(vivienda_num))
## estrato preciom areaconst parqueaderos banios habitaciones
## 3 2 3 1605 3 3
## longitud latitud
## 3 3
# Reemplazar NA en parqueaderos por 0
vivienda_num$parqueaderos[is.na(vivienda_num$parqueaderos)] <- 0
# Verificar nuevamente
colSums(is.na(vivienda_num))
## estrato preciom areaconst parqueaderos banios habitaciones
## 3 2 3 0 3 3
## longitud latitud
## 3 3
# Eliminar filas con cualquier NA restante
vivienda_num <- na.omit(vivienda_num)
# Verificar que ya no haya NA
colSums(is.na(vivienda_num))
## estrato preciom areaconst parqueaderos banios habitaciones
## 0 0 0 0 0 0
## longitud latitud
## 0 0
# Ver cuántas observaciones quedaron
nrow(vivienda_num)
## [1] 8319
pca_vivienda <- prcomp(vivienda_num, scale. = TRUE)
summary(pca_vivienda)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 1.8998 1.2258 0.9506 0.83289 0.66053 0.65321 0.48970
## Proportion of Variance 0.4512 0.1878 0.1129 0.08671 0.05454 0.05334 0.02998
## Cumulative Proportion 0.4512 0.6390 0.7519 0.83865 0.89318 0.94652 0.97649
## PC8
## Standard deviation 0.43366
## Proportion of Variance 0.02351
## Cumulative Proportion 1.00000
plot(pca_vivienda, type = "l")
pca_vivienda$rotation
## PC1 PC2 PC3 PC4 PC5
## estrato 0.3475716 -0.43782644 0.245420545 -0.08934508 0.43721104
## preciom 0.4643619 -0.03915898 0.217996847 -0.12221942 0.21085060
## areaconst 0.4111907 0.29817458 0.001360553 -0.04660611 0.12300943
## parqueaderos 0.3998506 -0.10637019 0.192727883 -0.33510245 -0.80765836
## banios 0.4434694 0.22226311 -0.105999384 0.04083449 0.20751612
## habitaciones 0.2493901 0.57630455 -0.349109009 0.25674156 -0.08438976
## longitud -0.2450610 0.42748996 0.099508516 -0.82320382 0.21394468
## latitud -0.1252530 0.37719543 0.843851485 0.34258703 -0.03143726
## PC6 PC7 PC8
## estrato -0.40896238 0.48479324 0.16081052
## preciom 0.26794552 -0.21780051 -0.74611295
## areaconst 0.67233490 0.27398506 0.44452988
## parqueaderos -0.14011568 0.04344879 0.07439762
## banios -0.36404799 -0.66605196 0.34901516
## habitaciones -0.35586700 0.44095890 -0.29946053
## longitud -0.14509140 0.05007879 -0.01729826
## latitud -0.09520807 -0.00223570 0.05026135
El primer componente principal (PC1) está fuertemente asociado con variables como área construida, precio por metro cuadrado y número de baños, lo que sugiere que captura una dimensión relacionada con la escala y nivel socioeconómico del inmueble.
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.5.2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
fviz_pca_var(pca_vivienda,
col.var = "contrib",
gradient.cols = c("blue", "orange", "red"),
repel = TRUE)
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## ℹ The deprecated feature was likely used in the ggpubr package.
## Please report the issue at <https://github.com/kassambara/ggpubr/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
El análisis de componentes principales (ACP) nos permitió identificar la estructura subyacente del conjunto de datos mediante la transformación ortogonal de las variables originales en un nuevo conjunto de ejes no correlacionados. Los resultados mostraron que los dos primeros componentes principales explicaron aproximadamente el 63,9 % de la varianza total, logrando una reducción significativa de la dimensionalidad sin pérdida significativa de información.
El primer componente principal (ACP1) representó la mayor proporción de varianza, con una alta carga en variables como la superficie construida, el precio por metro cuadrado y el número de baños. La orientación común de estas variables en el espacio factorial sugiere una fuerte correlación positiva entre ellas. Desde una perspectiva económica y estructural, este componente puede interpretarse como una dimensión latente relacionada con el nivel estructural y la valoración inmobiliaria, que captura la diferencia entre propiedades de gran tamaño, servicios y valor de mercado, y aquellas de menor tamaño y precio.
El gráfico de sedimentos muestra una marcada disminución de la varianza explicada después del primer componente principal, lo que indica que la mayor parte de la estructura del mercado se concentra en la dimensión dominante. El segundo componente captura la varianza residual asociada con patrones relacionados, pero secundarios, dentro del sistema.
La visualización de la contribución confirma que las variables relacionadas con el valor económico y las características físicas de los bienes inmuebles constituyen principalmente la composición del mercado inmobiliario urbano.
El análisis de componentes principales (ACP) nos permitió integrar la información de las ocho variables originales en un espacio bidimensional que conserva una parte significativa de la variabilidad general del sistema. Los resultados sugieren que el mercado inmobiliario urbano tiene una estructura relativamente compacta, dominada por dimensiones centrales relacionadas con el tamaño físico y económico de las propiedades.
Desde una perspectiva analítica, la evidencia empírica sugiere que variables estructurales como la superficie construida y el número de baños, junto con el precio, constituyen determinantes clave de la diferenciación en la oferta inmobiliaria. Esto sugiere que el comportamiento del mercado puede comprenderse en gran medida a través de las dimensiones estructurales de valoración que resumen la heterogeneidad observada en las características de las propiedades.
Por lo tanto, el ACP no solo reduce la dimensionalidad, sino que también proporciona una interpretación sustantiva de los factores dominantes que estructuran el mercado inmobiliario urbano analizado.
Se aplica k-means para segmentar las propiedades en grupos homogéneos según características relevantes identificadas en el PCA.
# Preparar los datos (scores de PCA)
# Extraer los scores de los dos primeros componentes
pca_scores <- as.data.frame(pca_vivienda$x[, 1:2])
head(pca_scores)
## PC1 PC2
## 1 -1.1796004 2.02639707
## 2 -1.7499046 0.76404924
## 3 -0.8909210 1.22204566
## 4 1.1211510 0.29126601
## 5 -1.3037248 0.05317749
## 6 -0.7187746 -0.67016662
#Encontrar el número óptimo de clusters
# Instala el paquete si no lo tienes
#install.packages("factoextra")
# Cárgalo
library(factoextra)
# Ahora prueba de nuevo
fviz_nbclust(pca_scores, kmeans, method = "wss")
## Warning: Quick-TRANSfer stage steps exceeded maximum (= 415950)
El número de clusters se selecciona observando el gráfico de codo (WSS),
donde la disminución de la suma de cuadrados dentro de los clusters se
estabiliza a partir de 4, indicando que este valor captura la estructura
principal de los datos.
#Aplicar el algoritmo k-means con el número elegido
# Establecemos semilla para reproducibilidad (que los resultados sean iguales cada vez que corras)
set.seed(123)
# Ejecutar k-means con 4 clusters
kmeans_result <- kmeans(pca_scores, centers = 4, nstart = 25)
# Añadir la información de cluster al dataframe original
vivienda_num$cluster <- factor(kmeans_result$cluster)
# Mirar las primeras filas con el nuevo dato
head(vivienda_num)
## # A tibble: 6 × 9
## estrato preciom areaconst parqueaderos banios habitaciones longitud latitud
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 3 250 70 1 3 6 -76.5 3.43
## 2 3 320 120 1 2 3 -76.5 3.43
## 3 3 350 220 2 2 4 -76.5 3.44
## 4 4 400 280 3 5 3 -76.5 3.44
## 5 5 260 90 1 2 3 -76.5 3.46
## 6 5 240 87 1 3 3 -76.5 3.37
## # ℹ 1 more variable: cluster <fct>
#Analizar y describir cada cluster
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following object is masked from 'package:gridExtra':
##
## combine
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
resumen_clusters <- vivienda_num %>%
group_by(cluster) %>%
summarise(
promedio_precio = mean(preciom),
promedio_banios = mean(banios),
promedio_estrato = mean(estrato),
promedio_area = mean(areaconst),
n = n()
)
print(resumen_clusters)
## # A tibble: 4 × 6
## cluster promedio_precio promedio_banios promedio_estrato promedio_area n
## <fct> <dbl> <dbl> <dbl> <dbl> <int>
## 1 1 437. 4.18 3.99 285. 1041
## 2 2 1030. 5.11 5.70 380. 1241
## 3 3 417. 3.03 5.21 140. 3060
## 4 4 202. 1.99 3.83 87.0 2977
# Visualizar los clusters
fviz_cluster(kmeans_result, data = pca_scores,
geom = "point",
ellipse.type = "convex",
palette = "jco",
ggtheme = theme_minimal())
Se aplica MCA para explorar relaciones entre variables categóricas (tipo, zona, barrio) y detectar asociaciones relevantes en la oferta inmobiliaria.
# Selección de variables categóricas
vivienda_cat <- vivienda[, c("tipo", "zona", "barrio")]
# Revisión de estructura
str(vivienda_cat)
## spc_tbl_ [8,322 × 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
## $ tipo : chr [1:8322] "Casa" "Casa" "Casa" "Casa" ...
## $ zona : chr [1:8322] "Zona Oriente" "Zona Oriente" "Zona Oriente" "Zona Sur" ...
## $ barrio: chr [1:8322] "20 de julio" "20 de julio" "20 de julio" "3 de julio" ...
## - attr(*, "spec")=List of 3
## ..$ cols :List of 13
## .. ..$ id : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ zona : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ piso : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ estrato : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ preciom : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ areaconst : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ parqueaderos: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ banios : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ habitaciones: list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ tipo : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ barrio : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_character" "collector"
## .. ..$ longitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## .. ..$ latitud : list()
## .. .. ..- attr(*, "class")= chr [1:2] "collector_double" "collector"
## ..$ default: list()
## .. ..- attr(*, "class")= chr [1:2] "collector_guess" "collector"
## ..$ delim : chr ";"
## ..- attr(*, "class")= chr "col_spec"
## - attr(*, "problems")=<externalptr>
# Ver primeras filas
head(vivienda_cat)
## # A tibble: 6 × 3
## tipo zona barrio
## <chr> <chr> <chr>
## 1 Casa Zona Oriente 20 de julio
## 2 Casa Zona Oriente 20 de julio
## 3 Casa Zona Oriente 20 de julio
## 4 Casa Zona Sur 3 de julio
## 5 Apartamento Zona Norte acopi
## 6 Apartamento Zona Norte acopi
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.5.2
library(factoextra)
# Realizar el Análisis de Correspondencia Múltiple (MCA)
# Ejecutar MCA
mca_vivienda <- MCA(vivienda_cat, graph = FALSE)
# Resumen
summary(mca_vivienda)
##
## Call:
## MCA(X = vivienda_cat, graph = FALSE)
##
##
## Eigenvalues
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7
## Variance 1.000 0.711 0.660 0.651 0.623 0.444 0.333
## % of var. 0.677 0.481 0.447 0.441 0.422 0.301 0.226
## Cumulative % of var. 0.677 1.159 1.606 2.047 2.469 2.769 2.995
## Dim.8 Dim.9 Dim.10 Dim.11 Dim.12 Dim.13 Dim.14
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 3.221 3.447 3.672 3.898 4.124 4.350 4.575
## Dim.15 Dim.16 Dim.17 Dim.18 Dim.19 Dim.20 Dim.21
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 4.801 5.027 5.252 5.478 5.704 5.930 6.155
## Dim.22 Dim.23 Dim.24 Dim.25 Dim.26 Dim.27 Dim.28
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 6.381 6.607 6.833 7.058 7.284 7.510 7.736
## Dim.29 Dim.30 Dim.31 Dim.32 Dim.33 Dim.34 Dim.35
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 7.961 8.187 8.413 8.638 8.864 9.090 9.316
## Dim.36 Dim.37 Dim.38 Dim.39 Dim.40 Dim.41 Dim.42
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 9.541 9.767 9.993 10.219 10.444 10.670 10.896
## Dim.43 Dim.44 Dim.45 Dim.46 Dim.47 Dim.48 Dim.49
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 11.122 11.347 11.573 11.799 12.024 12.250 12.476
## Dim.50 Dim.51 Dim.52 Dim.53 Dim.54 Dim.55 Dim.56
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 12.702 12.927 13.153 13.379 13.605 13.830 14.056
## Dim.57 Dim.58 Dim.59 Dim.60 Dim.61 Dim.62 Dim.63
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 14.282 14.508 14.733 14.959 15.185 15.410 15.636
## Dim.64 Dim.65 Dim.66 Dim.67 Dim.68 Dim.69 Dim.70
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 15.862 16.088 16.313 16.539 16.765 16.991 17.216
## Dim.71 Dim.72 Dim.73 Dim.74 Dim.75 Dim.76 Dim.77
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 17.442 17.668 17.894 18.119 18.345 18.571 18.796
## Dim.78 Dim.79 Dim.80 Dim.81 Dim.82 Dim.83 Dim.84
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 19.022 19.248 19.474 19.699 19.925 20.151 20.377
## Dim.85 Dim.86 Dim.87 Dim.88 Dim.89 Dim.90 Dim.91
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 20.602 20.828 21.054 21.280 21.505 21.731 21.957
## Dim.92 Dim.93 Dim.94 Dim.95 Dim.96 Dim.97 Dim.98
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 22.182 22.408 22.634 22.860 23.085 23.311 23.537
## Dim.99 Dim.100 Dim.101 Dim.102 Dim.103 Dim.104 Dim.105
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 23.763 23.988 24.214 24.440 24.666 24.891 25.117
## Dim.106 Dim.107 Dim.108 Dim.109 Dim.110 Dim.111 Dim.112
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 25.343 25.568 25.794 26.020 26.246 26.471 26.697
## Dim.113 Dim.114 Dim.115 Dim.116 Dim.117 Dim.118 Dim.119
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 26.923 27.149 27.374 27.600 27.826 28.052 28.277
## Dim.120 Dim.121 Dim.122 Dim.123 Dim.124 Dim.125 Dim.126
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 28.503 28.729 28.954 29.180 29.406 29.632 29.857
## Dim.127 Dim.128 Dim.129 Dim.130 Dim.131 Dim.132 Dim.133
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 30.083 30.309 30.535 30.760 30.986 31.212 31.438
## Dim.134 Dim.135 Dim.136 Dim.137 Dim.138 Dim.139 Dim.140
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 31.663 31.889 32.115 32.341 32.566 32.792 33.018
## Dim.141 Dim.142 Dim.143 Dim.144 Dim.145 Dim.146 Dim.147
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 33.243 33.469 33.695 33.921 34.146 34.372 34.598
## Dim.148 Dim.149 Dim.150 Dim.151 Dim.152 Dim.153 Dim.154
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 34.824 35.049 35.275 35.501 35.727 35.952 36.178
## Dim.155 Dim.156 Dim.157 Dim.158 Dim.159 Dim.160 Dim.161
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 36.404 36.629 36.855 37.081 37.307 37.532 37.758
## Dim.162 Dim.163 Dim.164 Dim.165 Dim.166 Dim.167 Dim.168
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 37.984 38.210 38.435 38.661 38.887 39.113 39.338
## Dim.169 Dim.170 Dim.171 Dim.172 Dim.173 Dim.174 Dim.175
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 39.564 39.790 40.015 40.241 40.467 40.693 40.918
## Dim.176 Dim.177 Dim.178 Dim.179 Dim.180 Dim.181 Dim.182
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 41.144 41.370 41.596 41.821 42.047 42.273 42.499
## Dim.183 Dim.184 Dim.185 Dim.186 Dim.187 Dim.188 Dim.189
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 42.724 42.950 43.176 43.401 43.627 43.853 44.079
## Dim.190 Dim.191 Dim.192 Dim.193 Dim.194 Dim.195 Dim.196
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 44.304 44.530 44.756 44.982 45.207 45.433 45.659
## Dim.197 Dim.198 Dim.199 Dim.200 Dim.201 Dim.202 Dim.203
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 45.885 46.110 46.336 46.562 46.787 47.013 47.239
## Dim.204 Dim.205 Dim.206 Dim.207 Dim.208 Dim.209 Dim.210
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 47.465 47.690 47.916 48.142 48.368 48.593 48.819
## Dim.211 Dim.212 Dim.213 Dim.214 Dim.215 Dim.216 Dim.217
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 49.045 49.271 49.496 49.722 49.948 50.173 50.399
## Dim.218 Dim.219 Dim.220 Dim.221 Dim.222 Dim.223 Dim.224
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 50.625 50.851 51.076 51.302 51.528 51.754 51.979
## Dim.225 Dim.226 Dim.227 Dim.228 Dim.229 Dim.230 Dim.231
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 52.205 52.431 52.657 52.882 53.108 53.334 53.559
## Dim.232 Dim.233 Dim.234 Dim.235 Dim.236 Dim.237 Dim.238
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 53.785 54.011 54.237 54.462 54.688 54.914 55.140
## Dim.239 Dim.240 Dim.241 Dim.242 Dim.243 Dim.244 Dim.245
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 55.365 55.591 55.817 56.043 56.268 56.494 56.720
## Dim.246 Dim.247 Dim.248 Dim.249 Dim.250 Dim.251 Dim.252
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 56.945 57.171 57.397 57.623 57.848 58.074 58.300
## Dim.253 Dim.254 Dim.255 Dim.256 Dim.257 Dim.258 Dim.259
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 58.526 58.751 58.977 59.203 59.429 59.654 59.880
## Dim.260 Dim.261 Dim.262 Dim.263 Dim.264 Dim.265 Dim.266
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 60.106 60.331 60.557 60.783 61.009 61.234 61.460
## Dim.267 Dim.268 Dim.269 Dim.270 Dim.271 Dim.272 Dim.273
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 61.686 61.912 62.137 62.363 62.589 62.815 63.040
## Dim.274 Dim.275 Dim.276 Dim.277 Dim.278 Dim.279 Dim.280
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 63.266 63.492 63.717 63.943 64.169 64.395 64.620
## Dim.281 Dim.282 Dim.283 Dim.284 Dim.285 Dim.286 Dim.287
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 64.846 65.072 65.298 65.523 65.749 65.975 66.201
## Dim.288 Dim.289 Dim.290 Dim.291 Dim.292 Dim.293 Dim.294
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 66.426 66.652 66.878 67.103 67.329 67.555 67.781
## Dim.295 Dim.296 Dim.297 Dim.298 Dim.299 Dim.300 Dim.301
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 68.006 68.232 68.458 68.684 68.909 69.135 69.361
## Dim.302 Dim.303 Dim.304 Dim.305 Dim.306 Dim.307 Dim.308
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 69.587 69.812 70.038 70.264 70.489 70.715 70.941
## Dim.309 Dim.310 Dim.311 Dim.312 Dim.313 Dim.314 Dim.315
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 71.167 71.392 71.618 71.844 72.070 72.295 72.521
## Dim.316 Dim.317 Dim.318 Dim.319 Dim.320 Dim.321 Dim.322
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 72.747 72.973 73.198 73.424 73.650 73.875 74.101
## Dim.323 Dim.324 Dim.325 Dim.326 Dim.327 Dim.328 Dim.329
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 74.327 74.553 74.778 75.004 75.230 75.456 75.681
## Dim.330 Dim.331 Dim.332 Dim.333 Dim.334 Dim.335 Dim.336
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 75.907 76.133 76.359 76.584 76.810 77.036 77.261
## Dim.337 Dim.338 Dim.339 Dim.340 Dim.341 Dim.342 Dim.343
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 77.487 77.713 77.939 78.164 78.390 78.616 78.842
## Dim.344 Dim.345 Dim.346 Dim.347 Dim.348 Dim.349 Dim.350
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 79.067 79.293 79.519 79.745 79.970 80.196 80.422
## Dim.351 Dim.352 Dim.353 Dim.354 Dim.355 Dim.356 Dim.357
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 80.648 80.873 81.099 81.325 81.550 81.776 82.002
## Dim.358 Dim.359 Dim.360 Dim.361 Dim.362 Dim.363 Dim.364
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 82.228 82.453 82.679 82.905 83.131 83.356 83.582
## Dim.365 Dim.366 Dim.367 Dim.368 Dim.369 Dim.370 Dim.371
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 83.808 84.034 84.259 84.485 84.711 84.936 85.162
## Dim.372 Dim.373 Dim.374 Dim.375 Dim.376 Dim.377 Dim.378
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 85.388 85.614 85.839 86.065 86.291 86.517 86.742
## Dim.379 Dim.380 Dim.381 Dim.382 Dim.383 Dim.384 Dim.385
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 86.968 87.194 87.420 87.645 87.871 88.097 88.322
## Dim.386 Dim.387 Dim.388 Dim.389 Dim.390 Dim.391 Dim.392
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 88.548 88.774 89.000 89.225 89.451 89.677 89.903
## Dim.393 Dim.394 Dim.395 Dim.396 Dim.397 Dim.398 Dim.399
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 90.128 90.354 90.580 90.806 91.031 91.257 91.483
## Dim.400 Dim.401 Dim.402 Dim.403 Dim.404 Dim.405 Dim.406
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 91.708 91.934 92.160 92.386 92.611 92.837 93.063
## Dim.407 Dim.408 Dim.409 Dim.410 Dim.411 Dim.412 Dim.413
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 93.289 93.514 93.740 93.966 94.192 94.417 94.643
## Dim.414 Dim.415 Dim.416 Dim.417 Dim.418 Dim.419 Dim.420
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 94.869 95.094 95.320 95.546 95.772 95.997 96.223
## Dim.421 Dim.422 Dim.423 Dim.424 Dim.425 Dim.426 Dim.427
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 96.449 96.675 96.900 97.126 97.352 97.578 97.803
## Dim.428 Dim.429 Dim.430 Dim.431 Dim.432 Dim.433 Dim.434
## Variance 0.333 0.333 0.333 0.333 0.333 0.333 0.333
## % of var. 0.226 0.226 0.226 0.226 0.226 0.226 0.226
## Cumulative % of var. 98.029 98.255 98.480 98.706 98.932 99.158 99.383
## Dim.435 Dim.436 Dim.437 Dim.438 Dim.439 Dim.440 Dim.441
## Variance 0.333 0.333 0.161 0.046 0.018 0.012 0.006
## % of var. 0.226 0.226 0.109 0.031 0.012 0.008 0.004
## Cumulative % of var. 99.609 99.835 99.944 99.975 99.988 99.996 100.000
## Dim.442 Dim.443
## Variance 0.000 0.000
## % of var. 0.000 0.000
## Cumulative % of var. 100.000 100.000
##
## Individuals (the 10 first)
## Dim.1 ctr cos2 Dim.2 ctr cos2 Dim.3 ctr
## 1 | -0.019 0.000 0.000 | 2.718 0.125 0.008 | 0.909 0.015
## 2 | -0.019 0.000 0.000 | 2.718 0.125 0.008 | 0.909 0.015
## 3 | -0.019 0.000 0.000 | 2.718 0.125 0.008 | 0.909 0.015
## 4 | -0.019 0.000 0.000 | 0.680 0.008 0.000 | -0.637 0.007
## 5 | -0.019 0.000 0.000 | -0.199 0.001 0.002 | 1.319 0.032
## 6 | -0.019 0.000 0.000 | -0.199 0.001 0.002 | 1.319 0.032
## 7 | -0.019 0.000 0.000 | -0.199 0.001 0.002 | 1.319 0.032
## 8 | -0.019 0.000 0.000 | -0.199 0.001 0.002 | 1.319 0.032
## 9 | -0.019 0.000 0.000 | 0.268 0.001 0.004 | 1.325 0.032
## 10 | -0.019 0.000 0.000 | 0.268 0.001 0.004 | 1.325 0.032
## cos2
## 1 0.001 |
## 2 0.001 |
## 3 0.001 |
## 4 0.000 |
## 5 0.094 |
## 6 0.094 |
## 7 0.094 |
## 8 0.094 |
## 9 0.093 |
## 10 0.093 |
##
## Categories (the 10 first)
## Dim.1 ctr cos2 v.test Dim.2 ctr cos2
## Apartamento | -0.019 0.007 0.001 -2.179 | -0.457 5.995 0.330
## Casa | -0.019 0.005 0.000 -1.376 | 0.724 9.499 0.330
## tipo.NA | 52.659 33.321 1.000 91.220 | 0.000 0.000 0.000
## Zona Centro | -0.019 0.000 0.000 -0.213 | 2.006 2.810 0.061
## Zona Norte | -0.019 0.003 0.000 -0.949 | -0.057 0.035 0.001
## Zona Oeste | -0.019 0.002 0.000 -0.710 | -1.726 20.094 0.501
## Zona Oriente | -0.019 0.001 0.000 -0.364 | 2.929 16.962 0.378
## Zona Sur | -0.019 0.007 0.000 -1.986 | 0.190 0.964 0.048
## zona.NA | 52.659 33.321 1.000 91.220 | 0.000 0.000 0.000
## 20 de julio | -0.019 0.000 0.000 -0.033 | 3.224 0.176 0.004
## v.test Dim.3 ctr cos2 v.test
## Apartamento -52.426 | -0.006 0.001 0.000 -0.648 |
## Casa 52.435 | 0.009 0.002 0.000 0.649 |
## tipo.NA 0.000 | 0.000 0.000 0.000 0.000 |
## Zona Centro 22.501 | 0.239 0.043 0.001 2.686 |
## Zona Norte -2.831 | 1.602 29.908 0.770 80.046 |
## Zona Oeste -64.547 | 0.157 0.178 0.004 5.857 |
## Zona Oriente 56.064 | 1.089 2.523 0.052 20.836 |
## Zona Sur 19.898 | -0.778 17.346 0.795 -81.337 |
## zona.NA 0.000 | 0.000 0.000 0.000 0.000 |
## 20 de julio 5.584 | 1.119 0.023 0.000 1.939 |
##
## Categorical variables (eta2)
## Dim.1 Dim.2 Dim.3
## tipo | 1.000 0.330 0.000 |
## zona | 1.000 0.872 0.990 |
## barrio | 1.000 0.931 0.990 |
# Categorías más representativas
fviz_mca_var(mca_vivienda,
repel = TRUE,
col.var = "cos2",
gradient.cols = c("blue", "orange", "red"),
select.var = list(cos2 = 0.3))
vivienda$barriogrupo <- ifelse(vivienda$barrio %in% c("Barrio1", "Barrio2", "Barrio3"),
vivienda$barrio, "Otros")
vivienda_cat2 <- vivienda[, c("tipo", "zona", "barriogrupo")]
mca_vivienda2 <- MCA(vivienda_cat2, graph = FALSE)
fviz_mca_var(mca_vivienda2, repel = TRUE, col.var = "cos2", gradient.cols = c("blue", "orange", "red"))
Este análisis revela cómo los tipos de vivienda, zonas y barrios se agrupan en dimensiones que reflejan patrones generales en el mercado inmobiliario. Las variables con las mayores contribuciones (cos²) ayudan a identificar los factores más importantes que definen estos patrones, como el tipo de vivienda predominante en una zona o barrio en particular. La recodificación de los barrios reduce la complejidad del gráfico, lo que permite un análisis más claro y preciso.
library(ggplot2)
ggplot(vivienda_num, aes(x = areaconst, y = preciom)) +
geom_point(alpha = 0.5) +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(title = "Relación entre Área Construida y Precio por metro cuadrado",
x = "Área Construida (m²)",
y = "Precio por metro cuadrado") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
library(factoextra)
# Supongamos que ya tienes el kmeans con 3 clusters
set.seed(123)
kmeans_res <- kmeans(pca_scores, centers = 3, nstart = 25)
fviz_cluster(kmeans_res, data = pca_scores,
geom = "point",
ellipse.type = "norm",
main = "Clusters de propiedades en el espacio PCA")
library(ggplot2)
ggplot(vivienda_num, aes(x = longitud, y = latitud, color = estrato)) +
geom_point(alpha = 0.6) +
labs(title = "Distribución espacial de las propiedades por estrato",
x = "Longitud",
y = "Latitud",
color = "Estrato") +
theme_minimal()
library(dplyr)
vivienda %>%
count(zona) %>%
ggplot(aes(x = reorder(zona, n), y = n)) +
geom_bar(stat = "identity", fill = "steelblue") +
coord_flip() +
labs(title = "Número de propiedades por zona",
x = "Zona",
y = "Cantidad de propiedades") +
theme_minimal()
El análisis de componentes principales identificó variables clave que influyen en las fluctuaciones de precios y las características de las propiedades, destacando la importancia de la superficie construida, el número de baños y el precio por metro cuadrado. Esto confirma que las dimensiones físicas y la calidad de la vivienda son factores determinantes del mercado.
El análisis de conglomerados dividió las propiedades en grupos homogéneos, revelando claras diferencias entre regiones y clases socioeconómicas. Esta división permite comprender las tendencias específicas de cada mercado local y desarrollar estrategias adaptadas a las circunstancias individuales.
El análisis de correspondencias reveló patrones de asociación entre tipos de vivienda, regiones y barrios, ilustrando cómo estas variables categóricas se combinan para definir la oferta y la demanda específicas.
Finalmente, la visualización de los resultados mediante gráficos y mapas presentó los hallazgos de forma clara y sencilla, facilitando la comunicación con los responsables de la toma de decisiones.
La elección de las técnicas multivariadas permite una comprensión más integral del mercado, facilitando decisiones estratégicas basadas en datos y la identificación de oportunidades específicas de inversión.
Las propiedades con mayor superficie construida y más servicios tienden a tener precios por metro cuadrado significativamente más altos.
Los segmentos de mercado están claramente definidos por región y nivel socioeconómico, lo que requiere estrategias de marketing personalizadas. La relación entre el tipo de vivienda y la ubicación geográfica es esencial para comprender la oferta y orientar la inversión inmobiliaria.
La combinación del análisis estadístico y la visualización permite una comprensión integral y práctica del mercado inmobiliario de una ciudad.
Optimizar la oferta por segmento: Con base en los clústeres identificados, adaptar los productos y precios a las características y necesidades de cada grupo e implemente estrategias de marketing y desarrollo.
Invertir en propiedades de alto valor añadido: Priorizar proyectos que aumenten la superficie edificable o mejoren las características clave, lo que tendrá un impacto positivo en el precio.
Aprovechar los patrones geográficos: Con base en el análisis de correspondencias, centrar las inversiones y promociones en zonas con mayor potencial de crecimiento o demanda específica.
Utilizar continuamente el análisis multidimensional: Mantener estos análisis actualizados, adaptar las fluctuaciones del mercado y toma de decisiones basadas en datos para crear una ventaja competitiva sostenible.