This analysis compares:
Important Note: The Growth Index shows percentage growth relative to 2020, NOT absolute market size. Small, emerging industries (like AI) tend to grow much faster in percentage terms than large, mature industries (like total software).
library(tidyverse)
library(lubridate)
library(scales)
ai_market <- read_csv("~/Downloads/Statista_AIMarketGrowth - Sheet1.csv")
ai_market_long <- ai_market %>%
rename(Category = Year) %>%
pivot_longer(
cols = -Category,
names_to = "Year",
values_to = "AI_Market_Billions"
) %>%
mutate(Year = as.numeric(Year)) %>%
select(Year, AI_Market_Billions)
ai_users <- read_csv("~/Downloads/Statista_AIToolsUsers - Sheet1.csv")
ai_users_long <- ai_users %>%
rename(Category = Year) %>%
pivot_longer(
cols = -Category,
names_to = "Year",
values_to = "AI_Users_Millions"
) %>%
mutate(Year = as.numeric(Year)) %>%
select(Year, AI_Users_Millions)
software_market <- read_csv("~/Downloads/Statista_SoftwareMarketSize - Sheet1-2.csv")
software_total <- software_market %>%
filter(Year == "Total (billions USD)") %>%
rename(Category = Year) %>%
pivot_longer(
cols = -Category,
names_to = "Year",
values_to = "Software_Total_Billions"
) %>%
mutate(Year = as.numeric(Year)) %>%
select(Year, Software_Total_Billions)
combinedStatista_data <- ai_market_long %>%
inner_join(ai_users_long, by = "Year") %>%
inner_join(software_total, by = "Year") %>%
arrange(Year)
knitr::kable(combinedStatista_data, caption = "Combined Statista Data (2020-2030)")
| Year | AI_Market_Billions | AI_Users_Millions | Software_Total_Billions |
|---|---|---|---|
| 2020 | 16.87 | 48.13 | 270.86 |
| 2021 | 36.09 | 59.72 | 286.85 |
| 2022 | 23.61 | 75.07 | 313.56 |
| 2023 | 25.60 | 84.10 | 338.22 |
| 2024 | 34.90 | 104.84 | 363.39 |
| 2025 | 46.99 | 129.08 | 379.29 |
| 2026 | 62.62 | 158.15 | 395.00 |
| 2027 | 84.25 | 193.36 | 410.14 |
| 2028 | 114.16 | 236.41 | 427.24 |
| 2029 | 159.28 | 289.41 | 445.40 |
| 2030 | 223.52 | 355.12 | 462.04 |
ggplot(combinedStatista_data, aes(x = Year, y = AI_Market_Billions)) +
geom_line(size = 1.2, color = "#2E86AB") +
geom_point(size = 3, color = "#2E86AB") +
labs(
title = "AI Market Growth",
y = "Billions USD",
x = "Year"
) +
theme_minimal() +
theme(plot.title = element_text(face = "bold", size = 14))
ggplot(combinedStatista_data, aes(x = Year, y = AI_Users_Millions)) +
geom_line(size = 1.2, color = "#A23B72") +
geom_point(size = 3, color = "#A23B72") +
labs(
title = "AI Tool Users",
y = "Millions of Users",
x = "Year"
) +
theme_minimal() +
theme(plot.title = element_text(face = "bold", size = 14))
ggplot(combinedStatista_data, aes(x = Year, y = Software_Total_Billions)) +
geom_line(size = 1.2, color = "#F18F01") +
geom_point(size = 3, color = "#F18F01") +
labs(
title = "Total Software Market Size",
y = "Billions USD",
x = "Year"
) +
theme_minimal() +
theme(plot.title = element_text(face = "bold", size = 14))
The Growth Index standardizes each variable so that 2020 = 100.
Formula: (Value in Year t / Value in 2020) × 100
Interpretation: - Index = 200 → the variable doubled since 2020 - Index = 150 → it grew 50%
Why AI Index rises so much: AI started small (~$16B), so large increases translate into massive percentage growth.
Why Software Index rises slowly: The total software industry is already large (~$270B). Mature industries grow incrementally, not exponentially.
normalized_data <- combinedStatista_data %>%
mutate(
AI_Market_Index = AI_Market_Billions / first(AI_Market_Billions) * 100,
AI_Users_Index = AI_Users_Millions / first(AI_Users_Millions) * 100,
Software_Index = Software_Total_Billions / first(Software_Total_Billions) * 100
)
normalized_long <- normalized_data %>%
select(Year, AI_Market_Index, AI_Users_Index, Software_Index) %>%
pivot_longer(
cols = -Year,
names_to = "Metric",
values_to = "Index_Value"
)
ggplot(normalized_long, aes(x = Year, y = Index_Value, color = Metric)) +
geom_line(size = 1.2) +
geom_point(size = 2) +
labs(
title = "Growth Comparison (Index: 2020 = 100)",
y = "Growth Index (Relative Growth)",
x = "Year",
color = "Metric"
) +
scale_color_manual(values = c("#2E86AB", "#A23B72", "#F18F01"),
labels = c("AI Market Revenue", "AI Tool Users", "Total Software Market")) +
theme_minimal() +
theme(
plot.title = element_text(face = "bold", size = 14),
legend.position = "bottom"
)
AI shows exponential-style growth because it is in an early adoption and expansion phase.
The total software market grows steadily because it is a mature industry with widespread adoption.
The Growth Index highlights relative change, not size. Therefore AI appears to “explode” compared to software.
This pattern is typical of technological innovation cycles.
# Software sector job postings index
software_data <- read_csv("~/Downloads/job-postings-sector-index-2.csv")
# AI headline share data
ai_data <- read_csv("~/Downloads/ai-headline-share.csv")
# Filter Software Development for United States
software_clean <- software_data %>%
filter(
countryName == "United States",
sectorName == "Software Development"
) %>%
mutate(date = as.Date(dateString)) %>%
select(date, software_index = value)
# Filter AI data for United States
ai_clean <- ai_data %>%
filter(countryName == "United States") %>%
mutate(date = as.Date(dateString)) %>%
select(date, ai_share = value)
# Join datasets
combined_data <- inner_join(ai_clean, software_clean, by = "date")
# Normalize AI Share to Index (Base = 100)
combined_data <- combined_data %>%
arrange(date) %>%
mutate(
ai_index = (ai_share / first(ai_share)) * 100
)
ggplot(combined_data, aes(x = date)) +
geom_line(aes(y = ai_index, color = "AI Mentions (Indexed)"), linewidth = 1) +
geom_line(aes(y = software_index, color = "Software Job Postings Index"), linewidth = 1) +
labs(
title = "AI Job Mentions vs Software Development Hiring (U.S.)",
subtitle = "Both Series Indexed to Base = 100",
x = "Date",
y = "Index (Base = 100)",
color = ""
) +
scale_y_continuous(labels = comma) +
scale_color_manual(values = c("#2E86AB", "#F18F01")) +
theme_minimal() +
theme(
legend.position = "bottom",
plot.title = element_text(face = "bold", size = 14)
)
This approximates relative AI-related software job volume by multiplying the Software Job Index by the AI Share.
combined_data <- combined_data %>%
mutate(
ai_adjusted_hiring = software_index * (ai_share / 100)
)
ggplot(combined_data, aes(x = date)) +
geom_line(aes(y = ai_adjusted_hiring), linewidth = 1, color = "#A23B72") +
labs(
title = "Approximate AI-Related Software Hiring (U.S.)",
subtitle = "Software Job Index × AI Share",
x = "Date",
y = "AI-Adjusted Hiring Index"
) +
theme_minimal() +
theme(plot.title = element_text(face = "bold", size = 14))
This analysis demonstrates the explosive growth of the AI market relative to the broader software industry, both in terms of market revenue and job postings. The indexed comparisons reveal that while AI represents a smaller absolute market size, its growth rate significantly outpaces the mature software industry.