Open the Installed Packages
library(readxl)
library(ggplot2)
Import and Name Dataset
DatasetA2 <- read_excel("C:/Users/cniti/Documents/AA-5221 Applied Analytics/DatasetA2.xlsx")
Create a Frequency Table
table(DatasetA2$FavoriteDrink)
##
## Coffee Soda Tea Water
## 26 29 28 17
Create a Bar Chart
ggplot(DatasetA2, aes(x = FavoriteDrink, fill = FavoriteDrink)) +
geom_bar() +
labs(
x = "FavoriteDrink",
y = "Frequency",
title = "Distribution of FavoriteDrink"
) +
theme(
text = element_text(size = 14),
axis.title = element_text(size = 14),
axis.text = element_text(size = 14),
plot.title = element_text(size = 14),
legend.position = "none"
)
Conduct the Chi-Square Goodness-of-Fit Test
observed <- c(26, 29, 28, 17)
expected <- c(0.25, 0.10, 0.30, 0.35)
chisq.test(x = observed, p = expected)
##
## Chi-squared test for given probabilities
##
## data: observed
## X-squared = 45.53, df = 3, p-value = 7.137e-10
Calculate Cohen’s W (Effect Size)
table2 <- table(DatasetA2$StudentID, DatasetA2$FavoriteDrink)
chi_result <- chisq.test(table2)
## Warning in chisq.test(table2): Chi-squared approximation may be incorrect
w <- sqrt(chi_result$statistic / sum(table2))
w
## X-squared
## 1.732051
A chi-square goodness-of-fit test indicated that the observed frequencies were different from the expected frequencies, χ²(2) = 45.53, p = 7.137e-10. The association between the two variables was moderate (Cohen’s W = 1.732)