library(readxl)
library(ggplot2)
DatasetA <- read_excel("C:/Users/JT/Downloads/DatasetA2.xlsx")
DatasetB <- read_excel("C:/Users/JT/Downloads/DatasetB2.xlsx")
table(DatasetA$FavoriteDrink)
##
## Coffee Soda Tea Water
## 26 29 28 17
ggplot(DatasetA, aes(x = FavoriteDrink, fill = FavoriteDrink)) +
geom_bar() +
labs(
x = "Variable Name",
y = "Frequency",
title = "Distribution of Variable Name"
) +
theme(
text = element_text(size = 14),
axis.title = element_text(size = 14),
axis.text = element_text(size = 14),
plot.title = element_text(size = 14),
legend.position = "none"
)
observed <- c(26, 29, 28 , 17)
expected <- c(0.25, 0.25, 0.25 , 0.25)
chisq.test(x = observed, p = expected)
##
## Chi-squared test for given probabilities
##
## data: observed
## X-squared = 3.6, df = 3, p-value = 0.308
A chi-square goodness-of-fit test indicated that the observed frequencies were different, χ²(3) = 3.6, p = 0.308.
library(readxl)
library(ggplot2)
library(rcompanion)
tab <- table(DatasetB$StudentType, DatasetB$PetOwnership)
ggplot(DatasetB, aes(x = StudentType, fill = PetOwnership)) +
geom_bar(position = "dodge") +
labs(
x = "Variable A",
y = "Frequency",
title = "Variable B by Variable A"
) +
theme(
text = element_text(size = 14),
axis.title = element_text(size = 14),
axis.text = element_text(size = 14),
plot.title = element_text(size = 14),
legend.position = "none"
)
chisq.test(tab)
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: tab
## X-squared = 0.040064, df = 1, p-value = 0.8414
The Chi-Square Test of Independence indicated there was not a significant association between StudentType and PetOwnership, χ²(1) = 0.040064 , p = 0.8414. The p value was not statistically significant so we cannot calculate the effect size.