Airquality Assignment

Author

M. Ouattara

Airquality Assignment

Load the library

library(tidyverse)

Load the dataset into your global environment

data("airquality")

Look at the structure of the data

View the data using the “head” function

head(airquality)
  Ozone Solar.R Wind Temp Month Day
1    41     190  7.4   67     5   1
2    36     118  8.0   72     5   2
3    12     149 12.6   74     5   3
4    18     313 11.5   62     5   4
5    NA      NA 14.3   56     5   5
6    28      NA 14.9   66     5   6

Calculate Summary Statistics

mean(airquality$Temp)
[1] 77.88235

Calculate Median, Standard Deviation, and Variance

median(airquality$Temp)
[1] 79
sd(airquality$Wind)
[1] 3.523001
var(airquality$Wind)
[1] 12.41154

Rename the Months from number to names

#airquality$Month

airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"

Now look at the summary statistics of the dataset

summary(airquality$Month)
   Length     Class      Mode 
      153 character character 

Month is a categorical variable with different levels, called factors.

airquality$Month<-factor(airquality$Month,
                         labels = c("May", "June","July", "August",
                                  "September"))

Plot 1: Create a histogram categorized by Month

p1 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity")+
  scale_fill_discrete(name = "Month", 
                      labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")
p1
`stat_bin()` using `bins = 30`. Pick better value `binwidth`.

Plot 2: Improve the histogram of Average Temperature by Month

p2 <- airquality |>
  ggplot(aes(x=Temp, fill=Month)) +
  geom_histogram(position="identity", alpha=0.5, binwidth = 5, color = "white")+
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September")) +
  labs(x = "Monthly Temperatures from May - Sept", 
       y = "Frequency of Temps",
       title = "Histogram of Monthly Temperatures from May - Sept, 1973",
       caption = "New York State Department of Conservation and the National Weather Service")
p2

Create side-by-side boxplots categorized by Month

p3 <- airquality |>
  ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Months from May through September", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot() +
  scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3

Side by Side Boxplots in Gray Scale

p4 <- airquality |>
ggplot(aes(Month, Temp, fill = Month)) + 
  labs(x = "Monthly Temperatures", y = "Temperatures", 
       title = "Side-by-Side Boxplot of Monthly Temperatures",
       caption = "New York State Department of Conservation and the National Weather Service") +
  geom_boxplot()+
  scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4

scatterplot of Solar Radiation and Ozone levels by Month

p5 <- airquality |>
  ggplot(aes(x = Solar.R, y = Ozone, color = Month)) +
  geom_point(size = 3) +
  scale_color_brewer(palette = "Dark2", name = "Month", labels = c("May", "June","July", "August", "September")) +
  labs(x = "Solar Radiation", y = "Ozone",
       title = "Relationship between Solar Radiation and  ozone levels",
       caption = "New York State Department of Conservation and the National Weather Service")
p5
Warning: Removed 42 rows containing missing values or values outside the scale range
(`geom_point()`).

Essay

I created a scatterplot to show the relationship between solar radiation and ozone levels. A scatterplot is useful for showing the relationship between two quantitative variables. In this graph, solar radiation is on the x-axis and ozone is on the y-axis, and the different colors represent each month from May to September. The plot shows that when solar radiation increases, ozone levels also tend to increase, which suggests a positive relationship between the two variables.The variation in colors also shows that some months, especially July and August, tend to have higher ozone values. I used geom_point() to create the scatterplot and scale_color_brewer() to add different colors for each month.