$all
[1] 270
2_3 condition study
Data preparation - raw dataset
Import
Sample size
Data Quality
Manipulation check and bot
Manipulation flag
FALSE TRUE
no_reward 128 0
performance_reward 135 7
FALSE TRUE
both_ori 75 2
EEC_ori 83 19
EEF_ori 73 18
Descriptive stats on failed manipulation checks
Reward manipulation check
FALSE TRUE
1 128 0
2 135 7
Overall percentages (out of all participants)
FALSE TRUE
1 47.41 0.00
2 50.00 2.59
Within each condition (row percentages)
FALSE TRUE
1 100.00 0.00
2 95.07 4.93
Total failed manipulation check (Reward condition):
7 participants ( 2.59 %)
Eco-orientation manipulation check
FALSE TRUE
1 73 18
2 83 19
3 75 2
Overall percentages (out of all participants)
FALSE TRUE
1 27.04 6.67
2 30.74 7.04
3 27.78 0.74
Within each condition (row percentages)
FALSE TRUE
1 80.22 19.78
2 81.37 18.63
3 97.40 2.60
Total failed manipulation check (eco condition):
39 participants ( 14.44 %)
Response bias checks
Total approvals
vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 270 928.87 1012.21 560 740.51 603.42 0 5278 5278 1.91 3.97
se
X1 61.6
Correlation between total approvals and passing attention check
Bot flag
FALSE TRUE
269 1
Attention
Duration
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.750 4.217 5.417 6.241 7.042 25.000
Outliers defined as 3 std. deviations below or above the mean
Outliers on completion time
FALSE TRUE
263 7
On scales
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.8287 1.1507 1.1605 1.4746 2.5300
Flagged outliers based on scales
FALSE TRUE
266 4
Removing bad participants
Exclude participants
| cond.reward_flag | cond.eco_flag | outliers_completion | bot_flag | outliers_scales | n |
|---|---|---|---|---|---|
| TRUE | FALSE | FALSE | FALSE | FALSE | 5 |
| TRUE | TRUE | FALSE | FALSE | FALSE | 2 |
| FALSE | FALSE | FALSE | FALSE | TRUE | 3 |
| FALSE | FALSE | FALSE | TRUE | FALSE | 1 |
| FALSE | FALSE | TRUE | FALSE | FALSE | 7 |
| FALSE | TRUE | FALSE | FALSE | FALSE | 36 |
| FALSE | TRUE | FALSE | FALSE | TRUE | 1 |
total excluded from the dataset
$all
[1] 55
Filtered dataset
Descriptive on good participants
Descriptive tables
✅ All descriptive tables have been saved to 'descriptive_tables.xlsx'
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 214 43.19 11.62 41 42.61 11.86 19 73 54 0.45 -0.61 0.79
Sex n percent
1 Female 123 57.5
2 Male 90 42.1
3 Prefer not to say 1 0.5
Employment.status n percent
1 Full-Time 160 74.8
2 Part-Time 54 25.2
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 214 43.19 11.62 41 42.61 11.86 19 73 54 0.45 -0.61 0.79
vars n mean sd median trimmed mad min max range skew kurtosis
X1 1 214 938.69 1034.65 560.5 740.38 576.73 0 5278 5278 2.03 4.44
se
X1 70.73
Conditions
Group statistics
Reward groups
no_reward performance_reward
109 105
Eco orientation groups
both_ori EEC_ori EEF_ori
72 72 70
# A tibble: 6 × 9
Condition_reward_name Condition_eco_name n mean_EEF sd_EEF mean_EEC sd_EEC
<chr> <chr> <int> <dbl> <dbl> <dbl> <dbl>
1 no_reward EEC_ori 36 5.42 1.24 4.51 1.46
2 no_reward EEF_ori 37 5.39 0.848 4.09 1.05
3 no_reward both_ori 36 5.09 1.08 4.14 1.05
4 performance_reward EEC_ori 36 5.67 1.05 4.64 1.14
5 performance_reward EEF_ori 33 5.71 1.06 4.47 1.20
6 performance_reward both_ori 36 5.14 1.31 3.97 1.40
# ℹ 2 more variables: mean_IM <dbl>, sd_IM <dbl>
Ease and feedback
Q: Were there anything that you found confusing or difficult to follow/answer?
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 214 4.07 0.82 4.19 4.16 0.91 1.37 5 3.63 -0.81 -0.03 0.06
Scales
Descriptive stats on scales
all good
270 214
vars n mean sd median trimmed mad min max range skew kurtosis se
IM1 1 214 5.15 1.17 5 5.22 1.48 1 7 6 -0.75 0.71 0.08
IM2 2 214 5.66 1.08 6 5.78 1.48 1 7 6 -1.32 3.08 0.07
IM3 3 214 5.48 1.17 6 5.60 1.48 1 7 6 -1.31 2.67 0.08
EEF1 4 214 5.28 1.19 5 5.38 1.48 1 7 6 -1.03 1.89 0.08
EEF2 5 214 5.43 1.21 6 5.55 1.48 1 7 6 -0.89 0.87 0.08
EEF3 6 214 5.48 1.15 6 5.58 1.48 1 7 6 -0.93 1.33 0.08
EEC1 7 214 4.25 1.32 4 4.30 1.48 1 7 6 -0.28 -0.50 0.09
EEC2 8 214 4.29 1.44 5 4.37 1.48 1 7 6 -0.42 -0.43 0.10
EEC3 9 214 4.36 1.37 5 4.43 1.48 1 7 6 -0.38 -0.22 0.09
ADT1 10 214 5.39 1.05 5 5.43 1.48 1 7 6 -0.57 0.77 0.07
ADT2 11 214 5.33 1.06 5 5.37 1.48 1 7 6 -0.66 1.00 0.07
ADT3 12 214 5.25 1.20 5 5.32 1.48 1 7 6 -0.60 0.16 0.08
TR1 13 214 3.79 1.50 4 3.81 1.48 1 7 6 -0.09 -0.83 0.10
TR2 14 214 3.76 1.55 4 3.78 1.48 1 7 6 -0.12 -1.13 0.11
TR3 15 214 3.48 1.51 4 3.51 1.48 1 7 6 -0.11 -1.05 0.10
Descriptive stats on scales
all good
270 214
Variable vars n mean sd median trimmed mad min max range
IM1 IM1 1 214 5.149533 1.165254 5 5.215116 1.4826 1 7 6
IM2 IM2 2 214 5.663551 1.078548 6 5.784884 1.4826 1 7 6
IM3 IM3 3 214 5.476636 1.165593 6 5.598837 1.4826 1 7 6
EEF1 EEF1 4 214 5.280374 1.189109 5 5.377907 1.4826 1 7 6
EEF2 EEF2 5 214 5.429907 1.211154 6 5.552326 1.4826 1 7 6
EEF3 EEF3 6 214 5.481308 1.149454 6 5.575581 1.4826 1 7 6
EEC1 EEC1 7 214 4.247664 1.317762 4 4.302326 1.4826 1 7 6
EEC2 EEC2 8 214 4.294393 1.438004 5 4.372093 1.4826 1 7 6
EEC3 EEC3 9 214 4.359813 1.369168 5 4.430233 1.4826 1 7 6
ADT1 ADT1 10 214 5.387850 1.045465 5 5.430233 1.4826 1 7 6
ADT2 ADT2 11 214 5.331776 1.060259 5 5.366279 1.4826 1 7 6
ADT3 ADT3 12 214 5.247664 1.198344 5 5.319767 1.4826 1 7 6
TR1 TR1 13 214 3.794393 1.502663 4 3.808140 1.4826 1 7 6
TR2 TR2 14 214 3.761682 1.545622 4 3.779070 1.4826 1 7 6
TR3 TR3 15 214 3.476636 1.509568 4 3.505814 1.4826 1 7 6
skew kurtosis se
IM1 -0.75151662 0.7088089 0.07965512
IM2 -1.31757192 3.0807794 0.07372804
IM3 -1.30711427 2.6734375 0.07967828
EEF1 -1.03398779 1.8891674 0.08128579
EEF2 -0.89419883 0.8716892 0.08279281
EEF3 -0.93296574 1.3260497 0.07857508
EEC1 -0.27581240 -0.4959343 0.09008036
EEC2 -0.41715981 -0.4286639 0.09829994
EEC3 -0.37865475 -0.2174569 0.09359441
ADT1 -0.57402680 0.7699548 0.07146652
ADT2 -0.66312767 1.0036774 0.07247784
ADT3 -0.59607506 0.1612733 0.08191708
TR1 -0.08742161 -0.8302237 0.10271994
TR2 -0.12440585 -1.1321737 0.10565655
TR3 -0.11033638 -1.0525237 0.10319191
Normality tests
Non-normality test across all scales
$IM1
Shapiro-Wilk normality test
data: newX[, i]
W = 0.89828, p-value = 7.037e-11
$IM2
Shapiro-Wilk normality test
data: newX[, i]
W = 0.8369, p-value = 3.068e-14
$IM3
Shapiro-Wilk normality test
data: newX[, i]
W = 0.84179, p-value = 5.232e-14
$EEF1
Shapiro-Wilk normality test
data: newX[, i]
W = 0.86711, p-value = 1.016e-12
$EEF2
Shapiro-Wilk normality test
data: newX[, i]
W = 0.88319, p-value = 8.227e-12
$EEF3
Shapiro-Wilk normality test
data: newX[, i]
W = 0.87878, p-value = 4.549e-12
$EEC1
Shapiro-Wilk normality test
data: newX[, i]
W = 0.93787, p-value = 6.574e-08
$EEC2
Shapiro-Wilk normality test
data: newX[, i]
W = 0.93103, p-value = 1.712e-08
$EEC3
Shapiro-Wilk normality test
data: newX[, i]
W = 0.93714, p-value = 5.665e-08
$ADT1
Shapiro-Wilk normality test
data: newX[, i]
W = 0.89708, p-value = 5.889e-11
$ADT2
Shapiro-Wilk normality test
data: newX[, i]
W = 0.89669, p-value = 5.561e-11
$ADT3
Shapiro-Wilk normality test
data: newX[, i]
W = 0.91222, p-value = 6.201e-10
$TR1
Shapiro-Wilk normality test
data: newX[, i]
W = 0.93235, p-value = 2.209e-08
$TR2
Shapiro-Wilk normality test
data: newX[, i]
W = 0.92099, p-value = 2.744e-09
$TR3
Shapiro-Wilk normality test
data: newX[, i]
W = 0.92493, p-value = 5.528e-09
Non-normality test on EEF composite
Shapiro-Wilk normality test
data: data_filtered$EEF_composite
W = 0.91886, p-value = 1.894e-09
Non-normality test on EEC composite
Shapiro-Wilk normality test
data: data_filtered$EEC_composite
W = 0.97719, p-value = 0.001521
Non-normality test on DV per condition
Reward condition on EEF
# A tibble: 2 × 3
Condition_reward_name n shapiro_p
<chr> <int> <dbl>
1 no_reward 109 0.0000692
2 performance_reward 105 0.000000224
Reward condition on EEC
# A tibble: 2 × 3
Condition_reward_name n shapiro_p
<chr> <int> <dbl>
1 no_reward 109 0.0785
2 performance_reward 105 0.0148
Eco condition on EEF
# A tibble: 3 × 3
Condition_eco_name n shapiro_p
<chr> <int> <dbl>
1 EEC_ori 72 0.0000168
2 EEF_ori 70 0.00165
3 both_ori 72 0.0000608
Eco condition on EEC
# A tibble: 3 × 3
Condition_eco_name n shapiro_p
<chr> <int> <dbl>
1 EEC_ori 72 0.0536
2 EEF_ori 70 0.152
3 both_ori 72 0.0106
Non-normality test on IM composite
Shapiro-Wilk normality test
data: data_filtered$IM_composite
W = 0.93519, p-value = 3.841e-08
Non-normality test on IM per condition
# A tibble: 2 × 3
Condition_reward_name n shapiro_p
<chr> <int> <dbl>
1 no_reward 109 0.0000303
2 performance_reward 105 0.0000587
# A tibble: 3 × 3
Condition_eco_name n shapiro_p
<chr> <int> <dbl>
1 EEC_ori 72 0.00132
2 EEF_ori 70 0.0000113
3 both_ori 72 0.0123
Factor analyses
KMO
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = efa_data_good)
Overall MSA = 0.86
MSA for each item =
IM1 IM2 IM3 EEF1 EEF2 EEF3 EEC1 EEC2 EEC3 ADT1 ADT2 ADT3 TR1 TR2 TR3
0.92 0.82 0.85 0.88 0.90 0.91 0.91 0.85 0.82 0.90 0.82 0.86 0.90 0.78 0.82
Correlation analysis
Bartlett test
R was not square, finding R from data
$chisq
[1] 2708.657
$p.value
[1] 0
$df
[1] 105
Correlation matrix
IM1 IM2 IM3 EEF1 EEF2 EEF3 EEC1
IM1 1.0000000 0.71262664 0.62823456 0.5727130 0.6361886 0.5979741 0.4588498
IM2 0.7126266 1.00000000 0.76302737 0.3777322 0.4958078 0.4720588 0.3991398
IM3 0.6282346 0.76302737 1.00000000 0.3502518 0.4394806 0.4587153 0.4607446
EEF1 0.5727130 0.37773216 0.35025185 1.0000000 0.8514946 0.8282150 0.5097636
EEF2 0.6361886 0.49580780 0.43948059 0.8514946 1.0000000 0.8353906 0.5242375
EEF3 0.5979741 0.47205876 0.45871527 0.8282150 0.8353906 1.0000000 0.5098388
EEC1 0.4588498 0.39913977 0.46074456 0.5097636 0.5242375 0.5098388 1.0000000
EEC2 0.5003468 0.35475987 0.35004673 0.5006247 0.5496824 0.5188643 0.6055075
EEC3 0.4840296 0.31126891 0.33918961 0.5231259 0.5489536 0.5457312 0.7049909
ADT1 0.3799424 0.18288808 0.16735796 0.3992853 0.3942005 0.3518112 0.3252536
ADT2 0.2674586 0.09396665 0.08038113 0.2982523 0.2722882 0.2651405 0.2601366
ADT3 0.3801755 0.23186565 0.20079144 0.3826485 0.3597516 0.3288763 0.3177411
TR1 0.3045355 0.22072568 0.21972388 0.3030427 0.2938621 0.3049110 0.3056084
TR2 0.2701257 0.14599969 0.12849649 0.2383268 0.2280353 0.2604160 0.1881631
TR3 0.2608877 0.15086114 0.15311072 0.2965969 0.2751431 0.3136058 0.2448330
EEC2 EEC3 ADT1 ADT2 ADT3 TR1 TR2
IM1 0.5003468 0.4840296 0.3799424 0.26745861 0.3801755 0.3045355 0.2701257
IM2 0.3547599 0.3112689 0.1828881 0.09396665 0.2318656 0.2207257 0.1459997
IM3 0.3500467 0.3391896 0.1673580 0.08038113 0.2007914 0.2197239 0.1284965
EEF1 0.5006247 0.5231259 0.3992853 0.29825231 0.3826485 0.3030427 0.2383268
EEF2 0.5496824 0.5489536 0.3942005 0.27228822 0.3597516 0.2938621 0.2280353
EEF3 0.5188643 0.5457312 0.3518112 0.26514049 0.3288763 0.3049110 0.2604160
EEC1 0.6055075 0.7049909 0.3252536 0.26013655 0.3177411 0.3056084 0.1881631
EEC2 1.0000000 0.8329934 0.3421561 0.27127818 0.3470874 0.3040757 0.2175972
EEC3 0.8329934 1.0000000 0.3841870 0.30223586 0.3431703 0.3441873 0.2714351
ADT1 0.3421561 0.3841870 1.0000000 0.79398707 0.7623848 0.4604202 0.4351735
ADT2 0.2712782 0.3022359 0.7939871 1.00000000 0.7996797 0.4290446 0.4209084
ADT3 0.3470874 0.3431703 0.7623848 0.79967969 1.0000000 0.4403519 0.4020901
TR1 0.3040757 0.3441873 0.4604202 0.42904461 0.4403519 1.0000000 0.8237549
TR2 0.2175972 0.2714351 0.4351735 0.42090838 0.4020901 0.8237549 1.0000000
TR3 0.2248661 0.2959732 0.4475272 0.42286050 0.4638784 0.7947046 0.8698778
TR3
IM1 0.2608877
IM2 0.1508611
IM3 0.1531107
EEF1 0.2965969
EEF2 0.2751431
EEF3 0.3136058
EEC1 0.2448330
EEC2 0.2248661
EEC3 0.2959732
ADT1 0.4475272
ADT2 0.4228605
ADT3 0.4638784
TR1 0.7947046
TR2 0.8698778
TR3 1.0000000
Outliers
EFA
Parallel analysis suggests that the number of factors = 5 and the number of components = NA
Threshold=0.35
Loadings:
MR2 MR5 MR3 MR4 MR1
IM1 NA 0.390 NA 0.636 NA
IM2 NA NA NA 0.897 NA
IM3 NA NA NA 0.783 NA
EEF1 NA 0.849 NA NA NA
EEF2 NA 0.804 NA NA NA
EEF3 NA 0.775 NA NA NA
EEC1 NA NA NA NA 0.589
EEC2 NA NA NA NA 0.740
EEC3 NA NA NA NA 0.933
ADT1 NA NA 0.791 NA NA
ADT2 NA NA 0.880 NA NA
ADT3 NA NA 0.810 NA NA
TR1 0.807 NA NA NA NA
TR2 0.923 NA NA NA NA
TR3 0.868 NA NA NA NA
MR2 MR5 MR3 MR4 MR1
SS loadings NA NA NA NA NA
Proportion Var NA NA NA NA NA
Cumulative Var NA NA NA NA NA
Factor Analysis using method = minres
Call: fa(r = cor(efa_data_good, use = "pairwise.complete.obs"), nfactors = 5,
rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
MR2 MR5 MR3 MR4 MR1 h2 u2 com
IM1 0.13 0.39 0.20 0.64 0.26 0.68 0.3179 2.4
IM2 0.06 0.20 0.05 0.90 0.13 0.87 0.1314 1.2
IM3 0.07 0.18 0.02 0.78 0.20 0.69 0.3104 1.3
EEF1 0.12 0.85 0.19 0.18 0.26 0.87 0.1288 1.4
EEF2 0.10 0.80 0.17 0.31 0.29 0.86 0.1375 1.7
EEF3 0.15 0.77 0.13 0.30 0.28 0.81 0.1927 1.7
EEC1 0.11 0.29 0.15 0.30 0.59 0.55 0.4475 2.2
EEC2 0.10 0.28 0.16 0.21 0.74 0.71 0.2942 1.6
EEC3 0.15 0.25 0.15 0.13 0.93 1.00 0.0014 1.3
ADT1 0.25 0.19 0.79 0.08 0.17 0.76 0.2371 1.5
ADT2 0.23 0.09 0.88 0.00 0.11 0.85 0.1502 1.2
ADT3 0.24 0.15 0.81 0.14 0.14 0.78 0.2248 1.4
TR1 0.81 0.10 0.24 0.13 0.17 0.77 0.2346 1.4
TR2 0.92 0.08 0.21 0.06 0.07 0.91 0.0904 1.1
TR3 0.87 0.14 0.24 0.05 0.09 0.84 0.1598 1.2
MR2 MR5 MR3 MR4 MR1
SS loadings 2.55 2.52 2.42 2.24 2.23
Proportion Var 0.17 0.17 0.16 0.15 0.15
Cumulative Var 0.17 0.34 0.50 0.65 0.80
Proportion Explained 0.21 0.21 0.20 0.19 0.19
Cumulative Proportion 0.21 0.42 0.63 0.81 1.00
Mean item complexity = 1.5
Test of the hypothesis that 5 factors are sufficient.
df null model = 105 with the objective function = 13.07
df of the model are 40 and the objective function was 0.23
The root mean square of the residuals (RMSR) is 0.01
The df corrected root mean square of the residuals is 0.01
Fit based upon off diagonal values = 1
Measures of factor score adequacy
MR2 MR5 MR3 MR4 MR1
Correlation of (regression) scores with factors 0.96 0.95 0.95 0.94 1.00
Multiple R square of scores with factors 0.93 0.90 0.89 0.89 0.99
Minimum correlation of possible factor scores 0.86 0.79 0.79 0.77 0.98
Loading required namespace: GPArotation
Threshold = 0.35
Loadings:
MR1 MR2 MR3 MR5 MR4
IM1 NA NA NA NA 0.574
IM2 NA NA NA NA 0.951
IM3 NA NA NA NA 0.816
EEF1 0.971 NA NA NA NA
EEF2 0.875 NA NA NA NA
EEF3 0.842 NA NA NA NA
EEC1 NA NA NA 0.572 NA
EEC2 NA NA NA 0.774 NA
EEC3 NA NA NA 1.032 NA
ADT1 NA NA 0.820 NA NA
ADT2 NA NA 0.954 NA NA
ADT3 NA NA 0.857 NA NA
TR1 NA 0.825 NA NA NA
TR2 NA 0.980 NA NA NA
TR3 NA 0.903 NA NA NA
MR1 MR2 MR3 MR5 MR4
SS loadings NA NA NA NA NA
Proportion Var NA NA NA NA NA
Cumulative Var NA NA NA NA NA
Factor Correlation Matrix:
1 2 3 4 5
1 1.000 0.310 0.399 0.607 0.530
2 0.310 1.000 0.516 0.312 0.198
3 0.399 0.516 1.000 0.384 0.203
4 0.607 0.312 0.384 1.000 0.418
5 0.530 0.198 0.203 0.418 1.000
1 2 3 4 5
1 1.000 0.311 0.399 0.610 0.531
2 0.311 1.000 0.517 0.314 0.198
3 0.399 0.517 1.000 0.386 0.205
4 0.610 0.314 0.386 1.000 0.419
5 0.531 0.198 0.205 0.419 1.000
CFA
Without moderators
lavaan 0.6-21 ended normally after 34 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 97.943 92.692
Degrees of freedom 24 24
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.057
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1591.464 907.183
Degrees of freedom 36 36
P-value 0.000 0.000
Scaling correction factor 1.754
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.952 0.921
Tucker-Lewis Index (TLI) 0.929 0.882
Robust Comparative Fit Index (CFI) 0.953
Robust Tucker-Lewis Index (TLI) 0.929
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2375.203 -2375.203
Scaling correction factor 2.460
for the MLR correction
Loglikelihood unrestricted model (H1) -2326.231 -2326.231
Scaling correction factor 1.712
for the MLR correction
Akaike (AIC) 4792.406 4792.406
Bayesian (BIC) 4863.092 4863.092
Sample-size adjusted Bayesian (SABIC) 4796.548 4796.548
Root Mean Square Error of Approximation:
RMSEA 0.120 0.116
90 Percent confidence interval - lower 0.096 0.092
90 Percent confidence interval - upper 0.145 0.140
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.996 0.992
Robust RMSEA 0.119
90 Percent confidence interval - lower 0.094
90 Percent confidence interval - upper 0.145
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.994
Standardized Root Mean Square Residual:
SRMR 0.069 0.069
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
EEC =~
EEC1 1.000 1.000 1.000
EEC2 1.289 0.108 11.885 0.000 1.076 1.502
EEC3 1.330 0.093 14.310 0.000 1.147 1.512
EEF =~
EEF1 1.000 1.000 1.000
EEF2 1.047 0.052 20.022 0.000 0.944 1.149
EEF3 0.963 0.054 17.668 0.000 0.856 1.070
IM =~
IM1 1.000 1.000 1.000
IM2 1.000 0.161 6.229 0.000 0.686 1.315
IM3 1.002 0.180 5.560 0.000 0.649 1.355
Std.lv Std.all
0.973 0.740
1.254 0.874
1.293 0.947
1.077 0.908
1.128 0.933
1.037 0.904
0.952 0.819
0.952 0.885
0.953 0.820
Covariances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
EEC ~~
EEF 0.674 0.121 5.579 0.000 0.437 0.911
IM 0.459 0.137 3.354 0.001 0.191 0.727
EEF ~~
IM 0.640 0.159 4.027 0.000 0.328 0.951
Std.lv Std.all
0.643 0.643
0.496 0.496
0.624 0.624
Variances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
.EEC1 0.782 0.093 8.402 0.000 0.600 0.965
.EEC2 0.486 0.104 4.666 0.000 0.282 0.690
.EEC3 0.193 0.061 3.147 0.002 0.073 0.313
.EEF1 0.247 0.046 5.416 0.000 0.157 0.336
.EEF2 0.188 0.046 4.102 0.000 0.098 0.278
.EEF3 0.239 0.064 3.765 0.000 0.115 0.364
.IM1 0.446 0.165 2.698 0.007 0.122 0.770
.IM2 0.251 0.073 3.428 0.001 0.108 0.395
.IM3 0.444 0.218 2.035 0.042 0.016 0.871
EEC 0.946 0.149 6.367 0.000 0.655 1.238
EEF 1.161 0.184 6.298 0.000 0.800 1.522
IM 0.906 0.210 4.312 0.000 0.494 1.317
Std.lv Std.all
0.782 0.453
0.486 0.236
0.193 0.103
0.247 0.175
0.188 0.129
0.239 0.182
0.446 0.330
0.251 0.217
0.444 0.328
1.000 1.000
1.000 1.000
1.000 1.000
R-Square:
Estimate
EEC1 0.547
EEC2 0.764
EEC3 0.897
EEF1 0.825
EEF2 0.871
EEF3 0.818
IM1 0.670
IM2 0.783
IM3 0.672
With moderators
lavaan 0.6-21 ended normally after 49 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 40
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 175.241 160.591
Degrees of freedom 80 80
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.091
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 2798.001 1963.914
Degrees of freedom 105 105
P-value 0.000 0.000
Scaling correction factor 1.425
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.965 0.957
Tucker-Lewis Index (TLI) 0.954 0.943
Robust Comparative Fit Index (CFI) 0.967
Robust Tucker-Lewis Index (TLI) 0.956
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -3958.712 -3958.712
Scaling correction factor 2.043
for the MLR correction
Loglikelihood unrestricted model (H1) -3871.091 -3871.091
Scaling correction factor 1.408
for the MLR correction
Akaike (AIC) 7997.424 7997.424
Bayesian (BIC) 8132.063 8132.063
Sample-size adjusted Bayesian (SABIC) 8005.313 8005.313
Root Mean Square Error of Approximation:
RMSEA 0.075 0.069
90 Percent confidence interval - lower 0.060 0.054
90 Percent confidence interval - upper 0.090 0.083
P-value H_0: RMSEA <= 0.050 0.004 0.021
P-value H_0: RMSEA >= 0.080 0.287 0.104
Robust RMSEA 0.072
90 Percent confidence interval - lower 0.055
90 Percent confidence interval - upper 0.088
P-value H_0: Robust RMSEA <= 0.050 0.016
P-value H_0: Robust RMSEA >= 0.080 0.205
Standardized Root Mean Square Residual:
SRMR 0.061 0.061
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
EEC =~
EEC1 1.000 1.000 1.000
EEC2 1.287 0.108 11.932 0.000 1.076 1.499
EEC3 1.332 0.093 14.258 0.000 1.149 1.515
EEF =~
EEF1 1.000 1.000 1.000
EEF2 1.045 0.053 19.733 0.000 0.941 1.149
EEF3 0.961 0.056 17.299 0.000 0.852 1.070
ADT =~
ADT1 1.000 1.000 1.000
ADT2 1.037 0.068 15.299 0.000 0.904 1.170
ADT3 1.147 0.076 15.133 0.000 0.998 1.295
IM =~
IM1 1.000 1.000 1.000
IM2 0.999 0.166 6.036 0.000 0.675 1.324
IM3 1.001 0.186 5.387 0.000 0.637 1.365
TR =~
TR1 1.000 1.000 1.000
TR2 1.110 0.055 20.135 0.000 1.002 1.218
TR3 1.060 0.058 18.145 0.000 0.945 1.174
Std.lv Std.all
0.973 0.740
1.252 0.873
1.295 0.948
1.079 0.909
1.127 0.933
1.037 0.904
0.918 0.880
0.952 0.900
1.052 0.880
0.952 0.819
0.952 0.884
0.953 0.819
1.309 0.873
1.452 0.942
1.386 0.921
Covariances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
EEC ~~
EEF 0.674 0.121 5.566 0.000 0.437 0.911
ADT 0.366 0.085 4.307 0.000 0.200 0.533
IM 0.458 0.139 3.293 0.001 0.186 0.731
TR 0.417 0.103 4.040 0.000 0.215 0.619
EEF ~~
ADT 0.408 0.102 4.021 0.000 0.209 0.607
IM 0.641 0.163 3.933 0.000 0.322 0.960
TR 0.451 0.113 3.997 0.000 0.230 0.672
ADT ~~
IM 0.240 0.116 2.077 0.038 0.014 0.467
TR 0.635 0.106 6.018 0.000 0.428 0.842
IM ~~
TR 0.305 0.137 2.235 0.025 0.038 0.573
Std.lv Std.all
0.642 0.642
0.410 0.410
0.495 0.495
0.327 0.327
0.412 0.412
0.624 0.624
0.320 0.320
0.275 0.275
0.529 0.529
0.245 0.245
Variances:
Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
.EEC1 0.782 0.093 8.420 0.000 0.600 0.965
.EEC2 0.491 0.104 4.732 0.000 0.287 0.694
.EEC3 0.188 0.061 3.070 0.002 0.068 0.308
.EEF1 0.244 0.045 5.397 0.000 0.155 0.332
.EEF2 0.190 0.047 4.072 0.000 0.098 0.281
.EEF3 0.240 0.063 3.788 0.000 0.116 0.364
.ADT1 0.246 0.057 4.344 0.000 0.135 0.357
.ADT2 0.213 0.053 4.003 0.000 0.109 0.317
.ADT3 0.322 0.088 3.647 0.000 0.149 0.495
.IM1 0.444 0.172 2.589 0.010 0.108 0.781
.IM2 0.252 0.075 3.350 0.001 0.105 0.400
.IM3 0.444 0.220 2.019 0.043 0.013 0.875
.TR1 0.535 0.101 5.302 0.000 0.337 0.733
.TR2 0.269 0.068 3.946 0.000 0.135 0.402
.TR3 0.346 0.088 3.945 0.000 0.174 0.518
EEC 0.946 0.148 6.373 0.000 0.655 1.237
EEF 1.164 0.185 6.288 0.000 0.801 1.527
ADT 0.842 0.124 6.812 0.000 0.600 1.084
IM 0.907 0.217 4.182 0.000 0.482 1.332
TR 1.712 0.186 9.230 0.000 1.349 2.076
Std.lv Std.all
0.782 0.453
0.491 0.238
0.188 0.101
0.244 0.173
0.190 0.130
0.240 0.183
0.246 0.226
0.213 0.190
0.322 0.225
0.444 0.329
0.252 0.218
0.444 0.328
0.535 0.238
0.269 0.113
0.346 0.152
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
1.000 1.000
R-Square:
Estimate
EEC1 0.547
EEC2 0.762
EEC3 0.899
EEF1 0.827
EEF2 0.870
EEF3 0.817
ADT1 0.774
ADT2 0.810
ADT3 0.775
IM1 0.671
IM2 0.782
IM3 0.672
TR1 0.762
TR2 0.887
TR3 0.848
Cronbach’s Alpha:
EEC EEF ADT IM TR
0.883 0.939 0.914 0.874 0.936
Omega:
EEC EEF ADT IM TR
0.902 0.939 0.917 0.882 0.938
Average Variance Extracted (AVE):
EEC EEF ADT IM TR
0.742 0.839 0.785 0.705 0.833
$type
[1] "cor.bentler"
$cov
EEC1 EEC2 EEC3 EEF1 EEF2 EEF3 ADT1 ADT2 ADT3 IM1
EEC1 0.000
EEC2 -0.040 0.000
EEC3 0.003 0.005 0.000
EEF1 0.078 -0.009 -0.031 0.000
EEF2 0.081 0.027 -0.019 0.003 0.000
EEF3 0.080 0.012 -0.005 0.006 -0.008 0.000
ADT1 0.058 0.027 0.042 0.069 0.056 0.024 0.000
ADT2 -0.013 -0.051 -0.048 -0.039 -0.074 -0.070 0.002 0.000
ADT3 0.051 0.032 0.001 0.053 0.021 0.001 -0.012 0.008 0.000
IM1 0.159 0.146 0.100 0.108 0.159 0.136 0.182 0.065 0.182 0.000
IM2 0.075 -0.027 -0.104 -0.124 -0.019 -0.027 -0.031 -0.125 0.018 -0.012
IM3 0.161 -0.004 -0.045 -0.115 -0.037 -0.003 -0.031 -0.122 0.003 -0.043
TR1 0.094 0.055 0.073 0.049 0.034 0.053 0.054 0.014 0.034 0.129
TR2 -0.040 -0.052 -0.021 -0.035 -0.053 -0.012 -0.003 -0.027 -0.036 0.081
TR3 0.022 -0.038 0.010 0.029 0.001 0.048 0.019 -0.015 0.035 0.076
IM2 IM3 TR1 TR2 TR3
EEC1
EEC2
EEC3
EEF1
EEF2
EEF3
ADT1
ADT2
ADT3
IM1
IM2 0.000
IM3 0.038 0.000
TR1 0.032 0.044 0.000
TR2 -0.058 -0.061 0.002 0.000
TR3 -0.049 -0.032 -0.009 0.003 0.000
$cov.z
EEC1 EEC2 EEC3 EEF1 EEF2 EEF3 ADT1 ADT2 ADT3 IM1
EEC1 0.000
EEC2 -0.776 0.000
EEC3 0.067 0.068 0.000
EEF1 0.963 -0.095 -0.304 0.000
EEF2 1.141 0.293 -0.196 0.028 0.000
EEF3 1.119 0.142 -0.053 0.057 -0.082 0.000
ADT1 0.882 0.351 0.545 0.821 0.612 0.250 0.000
ADT2 -0.196 -0.659 -0.614 -0.435 -0.811 -0.720 0.027 0.000
ADT3 0.780 0.422 0.010 0.605 0.229 0.007 -0.136 0.089 0.000
IM1 2.501 2.255 1.533 1.266 1.898 1.605 2.128 0.777 2.220 0.000
IM2 1.601 -0.492 -1.946 -1.596 -0.309 -0.451 -0.637 -2.693 0.396 -0.236
IM3 2.402 -0.068 -0.787 -1.434 -0.569 -0.058 -0.562 -2.256 0.049 -0.928
TR1 1.463 0.911 1.217 0.774 0.501 0.778 0.857 0.226 0.543 1.791
TR2 -0.612 -0.791 -0.334 -0.473 -0.699 -0.154 -0.043 -0.419 -0.530 1.297
TR3 0.341 -0.613 0.170 0.429 0.010 0.669 0.288 -0.242 0.556 1.107
IM2 IM3 TR1 TR2 TR3
EEC1
EEC2
EEC3
EEF1
EEF2
EEF3
ADT1
ADT2
ADT3
IM1
IM2 0.000
IM3 0.639 0.000
TR1 0.680 0.829 0.000
TR2 -1.327 -1.298 0.041 0.000
TR3 -1.010 -0.614 -0.252 0.059 0.000
$summary
cov
srmr 0.061
srmr.se 0.035
srmr.exactfit.z 0.000
srmr.exactfit.pvalue 0.500
usrmr 0.000
usrmr.se 0.059
usrmr.ci.lower -0.097
usrmr.ci.upper 0.097
usrmr.closefit.h0.value 0.050
usrmr.closefit.z -0.850
usrmr.closefit.pvalue 0.802
EEC EEF ADT IM TR
EEC 1.000
EEF 0.642 1.000
ADT 0.410 0.412 1.000
IM 0.495 0.624 0.275 1.000
TR 0.327 0.320 0.529 0.245 1.000
Correlation matrix
Latent factor correlation matrix with p-values:
IM ADT TR EEF EEC
IM "1" "0.27 (0.009)" "0.24 (0.004)" "0.62 (0)" "0.49 (0)"
ADT "0.27 (0.009)" "1" "0.53 (0)" "0.41 (0)" "0.41 (0)"
TR "0.24 (0.004)" "0.53 (0)" "1" "0.32 (0)" "0.33 (0)"
EEF "0.62 (0)" "0.41 (0)" "0.32 (0)" "1" "0.64 (0)"
EEC "0.49 (0)" "0.41 (0)" "0.33 (0)" "0.64 (0)" "1"
VIF
VIF for EEF model - composite
IM_composite_standardized ADT_composite_standardized
1.098069 1.375429
TR_composite_standardized
1.356606
VIF for EEC model - composite
IM_composite_standardized ADT_composite_standardized
1.098069 1.375429
TR_composite_standardized
1.356606
SEM
No mediation
No moderation - using individual items
lavaan 0.6-21 ended normally after 54 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 29
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 212.944 200.701
Degrees of freedom 61 61
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.061
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1635.931 1229.293
Degrees of freedom 81 81
P-value 0.000 0.000
Scaling correction factor 1.331
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.902 0.878
Tucker-Lewis Index (TLI) 0.870 0.838
Robust Comparative Fit Index (CFI) 0.903
Robust Tucker-Lewis Index (TLI) 0.871
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2410.470 -2410.470
Scaling correction factor 1.964
for the MLR correction
Loglikelihood unrestricted model (H1) -2303.998 -2303.998
Scaling correction factor 1.352
for the MLR correction
Akaike (AIC) 4878.940 4878.940
Bayesian (BIC) 4976.553 4976.553
Sample-size adjusted Bayesian (SABIC) 4884.660 4884.660
Root Mean Square Error of Approximation:
RMSEA 0.108 0.103
90 Percent confidence interval - lower 0.092 0.088
90 Percent confidence interval - upper 0.124 0.119
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.998 0.994
Robust RMSEA 0.107
90 Percent confidence interval - lower 0.090
90 Percent confidence interval - upper 0.123
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.996
Standardized Root Mean Square Residual:
SRMR 0.194 0.194
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.086 0.916
EEF2 1.033 0.052 20.016 0.000 1.122 0.928
EEF3 0.953 0.055 17.192 0.000 1.035 0.903
EEC =~
EEC1 1.000 0.970 0.738
EEC2 1.292 0.108 11.960 0.000 1.253 0.873
EEC3 1.336 0.093 14.406 0.000 1.296 0.949
IM =~
IM1 1.000 0.890 0.766
IM2 1.124 0.160 7.041 0.000 1.001 0.930
IM3 1.071 0.160 6.703 0.000 0.954 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
reward1_eco1 0.320 0.232 1.382 0.167 0.295 0.107
reward0_eco2 0.028 0.247 0.113 0.910 0.026 0.010
reward1_eco2 0.281 0.221 1.270 0.204 0.258 0.097
reward0_eco3 -0.298 0.226 -1.318 0.187 -0.275 -0.103
reward1_eco3 -0.241 0.257 -0.937 0.349 -0.222 -0.083
EEC ~
reward1_eco1 0.308 0.216 1.427 0.153 0.318 0.115
reward0_eco2 0.284 0.243 1.170 0.242 0.293 0.109
reward1_eco2 0.369 0.222 1.665 0.096 0.380 0.142
reward0_eco3 0.003 0.198 0.013 0.989 0.003 0.001
reward1_eco3 -0.113 0.236 -0.480 0.631 -0.117 -0.044
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF ~~
.EEC 0.639 0.111 5.752 0.000 0.632 0.632
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.227 0.045 5.040 0.000 0.227 0.161
.EEF2 0.202 0.050 4.038 0.000 0.202 0.138
.EEF3 0.243 0.064 3.805 0.000 0.243 0.185
.EEC1 0.788 0.092 8.525 0.000 0.788 0.456
.EEC2 0.488 0.104 4.717 0.000 0.488 0.237
.EEC3 0.186 0.060 3.119 0.002 0.186 0.100
.IM1 0.559 0.154 3.634 0.000 0.559 0.413
.IM2 0.156 0.050 3.096 0.002 0.156 0.134
.IM3 0.443 0.202 2.190 0.029 0.443 0.327
.EEF 1.126 0.177 6.360 0.000 0.954 0.954
.EEC 0.907 0.139 6.520 0.000 0.964 0.964
IM 0.793 0.185 4.279 0.000 1.000 1.000
R-Square:
Estimate
EEF1 0.839
EEF2 0.862
EEF3 0.815
EEC1 0.544
EEC2 0.763
EEC3 0.900
IM1 0.587
IM2 0.866
IM3 0.673
EEF 0.046
EEC 0.036
No moderation - using composite variables
lavaan 0.6-21 ended normally after 13 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 13
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Model Test Baseline Model:
Test statistic 117.595 117.789
Degrees of freedom 11 11
P-value 0.000 0.000
Scaling correction factor 0.998
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -617.053 -617.053
Loglikelihood unrestricted model (H1) -617.053 -617.053
Akaike (AIC) 1260.105 1260.105
Bayesian (BIC) 1303.863 1303.863
Sample-size adjusted Bayesian (SABIC) 1262.669 1262.669
Root Mean Square Error of Approximation:
RMSEA 0.000 NA
90 Percent confidence interval - lower 0.000 NA
90 Percent confidence interval - upper 0.000 NA
P-value H_0: RMSEA <= 0.050 NA NA
P-value H_0: RMSEA >= 0.080 NA NA
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF_composite ~
reward1_eco1 0.320 0.227 1.406 0.160 0.320 0.104
reward0_eco2 0.029 0.245 0.119 0.905 0.029 0.010
reward1_eco2 0.279 0.221 1.265 0.206 0.279 0.094
reward0_eco3 -0.295 0.224 -1.313 0.189 -0.295 -0.099
reward1_eco3 -0.248 0.255 -0.973 0.331 -0.248 -0.083
EEC_composite ~
reward1_eco1 0.385 0.267 1.443 0.149 0.385 0.112
reward0_eco2 0.419 0.294 1.424 0.155 0.419 0.127
reward1_eco2 0.549 0.253 2.171 0.030 0.549 0.166
reward0_eco3 0.049 0.242 0.201 0.840 0.049 0.015
reward1_eco3 -0.118 0.286 -0.412 0.680 -0.118 -0.036
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite ~~
.EEC_composite 0.804 0.119 6.753 0.000 0.804 0.609
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite 1.190 0.156 7.613 0.000 1.190 0.957
.EEC_composite 1.464 0.134 10.921 0.000 1.464 0.960
R-Square:
Estimate
EEF_composite 0.043
EEC_composite 0.040
Only reward
lavaan 0.6-21 ended normally after 30 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 15
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 16.866 15.013
Degrees of freedom 12 12
P-value (Chi-square) 0.155 0.241
Scaling correction factor 1.123
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1083.011 786.571
Degrees of freedom 21 21
P-value 0.000 0.000
Scaling correction factor 1.377
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.995 0.996
Tucker-Lewis Index (TLI) 0.992 0.993
Robust Comparative Fit Index (CFI) 0.997
Robust Tucker-Lewis Index (TLI) 0.994
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1597.734 -1597.734
Scaling correction factor 1.534
for the MLR correction
Loglikelihood unrestricted model (H1) -1589.301 -1589.301
Scaling correction factor 1.351
for the MLR correction
Akaike (AIC) 3225.467 3225.467
Bayesian (BIC) 3275.957 3275.957
Sample-size adjusted Bayesian (SABIC) 3228.425 3228.425
Root Mean Square Error of Approximation:
RMSEA 0.044 0.034
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.088 0.079
P-value H_0: RMSEA <= 0.050 0.542 0.666
P-value H_0: RMSEA >= 0.080 0.096 0.046
Robust RMSEA 0.036
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.087
P-value H_0: Robust RMSEA <= 0.050 0.614
P-value H_0: Robust RMSEA >= 0.080 0.083
Standardized Root Mean Square Residual:
SRMR 0.032 0.032
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.086 0.915
EEF2 1.034 0.052 19.856 0.000 1.123 0.929
EEF3 0.953 0.055 17.218 0.000 1.035 0.903
EEC =~
EEC1 1.000 0.968 0.736
EEC2 1.290 0.108 11.992 0.000 1.249 0.870
EEC3 1.345 0.094 14.378 0.000 1.301 0.953
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
Reward_PBP 0.204 0.152 1.341 0.180 0.188 0.094
EEC ~
Reward_PBP 0.091 0.138 0.657 0.511 0.094 0.047
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF ~~
.EEC 0.667 0.122 5.465 0.000 0.638 0.638
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.228 0.045 5.094 0.000 0.228 0.162
.EEF2 0.200 0.050 3.999 0.000 0.200 0.137
.EEF3 0.244 0.064 3.824 0.000 0.244 0.185
.EEC1 0.792 0.093 8.519 0.000 0.792 0.458
.EEC2 0.499 0.104 4.805 0.000 0.499 0.243
.EEC3 0.172 0.059 2.926 0.003 0.172 0.092
.EEF 1.169 0.187 6.234 0.000 0.991 0.991
.EEC 0.935 0.147 6.361 0.000 0.998 0.998
R-Square:
Estimate
EEF1 0.838
EEF2 0.863
EEF3 0.815
EEC1 0.542
EEC2 0.757
EEC3 0.908
EEF 0.009
EEC 0.002
lavaan 0.6-21 ended normally after 19 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 7
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 1.449 1.178
Degrees of freedom 2 2
P-value (Chi-square) 0.485 0.555
Scaling correction factor 1.231
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 348.056 90.801
Degrees of freedom 6 6
P-value 0.000 0.000
Scaling correction factor 3.833
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.005 1.029
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.009
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -817.854 -817.854
Scaling correction factor 3.835
for the MLR correction
Loglikelihood unrestricted model (H1) -817.129 -817.129
Scaling correction factor 3.256
for the MLR correction
Akaike (AIC) 1649.707 1649.707
Bayesian (BIC) 1673.269 1673.269
Sample-size adjusted Bayesian (SABIC) 1651.088 1651.088
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.123 0.104
P-value H_0: RMSEA <= 0.050 0.643 0.744
P-value H_0: RMSEA >= 0.080 0.198 0.121
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.129
P-value H_0: Robust RMSEA <= 0.050 0.677
P-value H_0: Robust RMSEA >= 0.080 0.194
Standardized Root Mean Square Residual:
SRMR 0.015 0.015
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM =~
IM1 1.000 0.890 0.765
IM2 1.127 0.159 7.099 0.000 1.002 0.931
IM3 1.071 0.159 6.728 0.000 0.953 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
Reward_PBP 0.095 0.129 0.741 0.459 0.107 0.054
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM1 0.560 0.153 3.663 0.000 0.560 0.414
.IM2 0.153 0.050 3.062 0.002 0.153 0.133
.IM3 0.444 0.202 2.195 0.028 0.444 0.328
.IM 0.789 0.183 4.315 0.000 0.997 0.997
R-Square:
Estimate
IM1 0.586
IM2 0.867
IM3 0.672
IM 0.003
Only eco-conditions - as predictors
lavaan 0.6-21 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 17
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 23.616 21.493
Degrees of freedom 16 16
P-value (Chi-square) 0.098 0.160
Scaling correction factor 1.099
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1096.894 846.941
Degrees of freedom 27 27
P-value 0.000 0.000
Scaling correction factor 1.295
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.993 0.993
Tucker-Lewis Index (TLI) 0.988 0.989
Robust Comparative Fit Index (CFI) 0.994
Robust Tucker-Lewis Index (TLI) 0.990
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1594.167 -1594.167
Scaling correction factor 1.468
for the MLR correction
Loglikelihood unrestricted model (H1) -1582.359 -1582.359
Scaling correction factor 1.289
for the MLR correction
Akaike (AIC) 3222.335 3222.335
Bayesian (BIC) 3279.556 3279.556
Sample-size adjusted Bayesian (SABIC) 3225.688 3225.688
Root Mean Square Error of Approximation:
RMSEA 0.047 0.040
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.085 0.078
P-value H_0: RMSEA <= 0.050 0.505 0.622
P-value H_0: RMSEA >= 0.080 0.081 0.040
Robust RMSEA 0.042
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.084
P-value H_0: Robust RMSEA <= 0.050 0.576
P-value H_0: Robust RMSEA >= 0.080 0.069
Standardized Root Mean Square Residual:
SRMR 0.032 0.032
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.087 0.916
EEF2 1.032 0.052 20.012 0.000 1.121 0.928
EEF3 0.953 0.056 17.097 0.000 1.036 0.903
EEC =~
EEC1 1.000 0.970 0.738
EEC2 1.290 0.107 12.000 0.000 1.251 0.872
EEC3 1.339 0.093 14.353 0.000 1.298 0.950
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
Condtn_EEF (a) 0.421 0.183 2.304 0.021 0.387 0.182
Condtn_EEC (b) 0.424 0.194 2.191 0.028 0.390 0.184
EEC ~
Condtn_EEF (c) 0.201 0.160 1.258 0.208 0.207 0.097
Condtn_EEC (d) 0.380 0.180 2.116 0.034 0.392 0.185
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF ~~
.EEC 0.647 0.112 5.757 0.000 0.633 0.633
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.227 0.045 5.018 0.000 0.227 0.161
.EEF2 0.203 0.050 4.059 0.000 0.203 0.139
.EEF3 0.242 0.064 3.791 0.000 0.242 0.184
.EEC1 0.788 0.093 8.510 0.000 0.788 0.456
.EEC2 0.494 0.102 4.823 0.000 0.494 0.240
.EEC3 0.181 0.059 3.054 0.002 0.181 0.097
.EEF 1.141 0.177 6.452 0.000 0.966 0.966
.EEC 0.916 0.141 6.509 0.000 0.974 0.974
The effect of EEF_ori on EEF vs. EEC
$stat
[1] 0.0003175485
$df
[1] 1
$p.value
[1] 0.9857825
$se
[1] "robust.huber.white"
The effect of EEC_ori on EEC vs. EEF
$stat
[1] 1.09681
$df
[1] 1
$p.value
[1] 0.2949672
$se
[1] "robust.huber.white"
The effect of combining both orientations on EEF vs. EEC as compared to individually
$stat
[1] 7.73023
$df
[1] 4
$p.value
[1] 0.1019753
$se
[1] "robust.huber.white"
Group difference between being assigned to an eco orientation group
$stat
[1] 4.801772
$df
[1] 1
$p.value
[1] 0.02843048
$se
[1] "robust.huber.white"
$stat
[1] 5.309948
$df
[1] 1
$p.value
[1] 0.02120399
$se
[1] "robust.huber.white"
$stat
[1] 0.0003175485
$df
[1] 1
$p.value
[1] 0.9857825
$se
[1] "robust.huber.white"
lavaan 0.6-21 ended normally after 40 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 23
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 196.426 181.437
Degrees of freedom 40 40
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.083
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1615.752 1086.268
Degrees of freedom 54 54
P-value 0.000 0.000
Scaling correction factor 1.487
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.900 0.863
Tucker-Lewis Index (TLI) 0.865 0.815
Robust Comparative Fit Index (CFI) 0.900
Robust Tucker-Lewis Index (TLI) 0.865
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2412.300 -2412.300
Scaling correction factor 2.213
for the MLR correction
Loglikelihood unrestricted model (H1) -2314.087 -2314.087
Scaling correction factor 1.495
for the MLR correction
Akaike (AIC) 4870.600 4870.600
Bayesian (BIC) 4948.018 4948.018
Sample-size adjusted Bayesian (SABIC) 4875.136 4875.136
Root Mean Square Error of Approximation:
RMSEA 0.135 0.129
90 Percent confidence interval - lower 0.117 0.111
90 Percent confidence interval - upper 0.154 0.147
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.134
90 Percent confidence interval - lower 0.114
90 Percent confidence interval - upper 0.154
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.245 0.245
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.087 0.916
EEF2 1.032 0.052 20.012 0.000 1.121 0.928
EEF3 0.953 0.056 17.097 0.000 1.036 0.903
EEC =~
EEC1 1.000 0.970 0.738
EEC2 1.290 0.107 12.000 0.000 1.251 0.872
EEC3 1.339 0.093 14.353 0.000 1.298 0.950
IM =~
IM1 1.000 0.890 0.766
IM2 1.124 0.160 7.041 0.000 1.001 0.930
IM3 1.071 0.160 6.703 0.000 0.954 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
Condition_both -0.421 0.183 -2.304 0.021 -0.387 -0.183
Condition_EEC 0.003 0.177 0.018 0.986 0.003 0.001
EEC ~
Condition_both -0.201 0.160 -1.258 0.208 -0.207 -0.098
Condition_EEC 0.179 0.171 1.047 0.295 0.185 0.087
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF ~~
.EEC 0.647 0.112 5.757 0.000 0.633 0.633
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.227 0.045 5.018 0.000 0.227 0.161
.EEF2 0.203 0.050 4.059 0.000 0.203 0.139
.EEF3 0.242 0.064 3.791 0.000 0.242 0.184
.EEC1 0.788 0.093 8.510 0.000 0.788 0.456
.EEC2 0.494 0.102 4.823 0.000 0.494 0.240
.EEC3 0.181 0.059 3.054 0.002 0.181 0.097
.IM1 0.559 0.154 3.634 0.000 0.559 0.413
.IM2 0.156 0.050 3.096 0.002 0.156 0.134
.IM3 0.443 0.202 2.190 0.029 0.443 0.327
.EEF 1.141 0.177 6.452 0.000 0.966 0.966
.EEC 0.916 0.141 6.509 0.000 0.974 0.974
IM 0.793 0.185 4.279 0.000 1.000 1.000
lhs op rhs est se z pvalue ci.lower ci.upper std.lv
10 EEF ~ Condition_both -0.421 0.183 -2.304 0.021 -0.779 -0.063 -0.387
11 EEF ~ Condition_EEC 0.003 0.177 0.018 0.986 -0.344 0.350 0.003
12 EEC ~ Condition_both -0.201 0.160 -1.258 0.208 -0.514 0.112 -0.207
13 EEC ~ Condition_EEC 0.179 0.171 1.047 0.295 -0.156 0.515 0.185
std.all std.nox
10 -0.183 -0.387
11 0.001 0.003
12 -0.098 -0.207
13 0.087 0.185
Only EEF
lavaan 0.6-21 ended normally after 29 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 11
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 6.372 6.056
Degrees of freedom 10 10
P-value (Chi-square) 0.783 0.811
Scaling correction factor 1.052
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 586.644 458.910
Degrees of freedom 18 18
P-value 0.000 0.000
Scaling correction factor 1.278
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.011 1.016
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.013
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -727.189 -727.189
Scaling correction factor 1.599
for the MLR correction
Loglikelihood unrestricted model (H1) -724.003 -724.003
Scaling correction factor 1.339
for the MLR correction
Akaike (AIC) 1476.378 1476.378
Bayesian (BIC) 1513.404 1513.404
Sample-size adjusted Bayesian (SABIC) 1478.548 1478.548
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.050 0.045
P-value H_0: RMSEA <= 0.050 0.951 0.963
P-value H_0: RMSEA >= 0.080 0.004 0.002
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.048
P-value H_0: Robust RMSEA <= 0.050 0.956
P-value H_0: Robust RMSEA >= 0.080 0.004
Standardized Root Mean Square Residual:
SRMR 0.011 0.011
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.090 0.919
EEF2 1.027 0.051 20.078 0.000 1.119 0.926
EEF3 0.949 0.057 16.663 0.000 1.034 0.902
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
reward1_eco1 0.320 0.232 1.378 0.168 0.294 0.106
reward0_eco2 0.026 0.248 0.104 0.917 0.024 0.009
reward1_eco2 0.279 0.222 1.257 0.209 0.256 0.096
reward0_eco3 -0.300 0.227 -1.323 0.186 -0.276 -0.103
reward1_eco3 -0.244 0.258 -0.944 0.345 -0.224 -0.084
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.220 0.046 4.733 0.000 0.220 0.156
.EEF2 0.207 0.052 3.979 0.000 0.207 0.142
.EEF3 0.245 0.066 3.710 0.000 0.245 0.186
.EEF 1.133 0.177 6.399 0.000 0.954 0.954
R-Square:
Estimate
EEF1 0.844
EEF2 0.858
EEF3 0.814
EEF 0.046
Only EEC
lavaan 0.6-21 ended normally after 31 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 11
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 12.579 12.705
Degrees of freedom 10 10
P-value (Chi-square) 0.248 0.241
Scaling correction factor 0.990
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 419.779 376.677
Degrees of freedom 18 18
P-value 0.000 0.000
Scaling correction factor 1.114
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.994 0.992
Tucker-Lewis Index (TLI) 0.988 0.986
Robust Comparative Fit Index (CFI) 0.993
Robust Tucker-Lewis Index (TLI) 0.988
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -909.881 -909.881
Scaling correction factor 1.148
for the MLR correction
Loglikelihood unrestricted model (H1) -903.592 -903.592
Scaling correction factor 1.073
for the MLR correction
Akaike (AIC) 1841.763 1841.763
Bayesian (BIC) 1878.789 1878.789
Sample-size adjusted Bayesian (SABIC) 1843.932 1843.932
Root Mean Square Error of Approximation:
RMSEA 0.035 0.036
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.086 0.087
P-value H_0: RMSEA <= 0.050 0.626 0.617
P-value H_0: RMSEA >= 0.080 0.080 0.084
Robust RMSEA 0.035
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.086
P-value H_0: Robust RMSEA <= 0.050 0.621
P-value H_0: Robust RMSEA >= 0.080 0.081
Standardized Root Mean Square Residual:
SRMR 0.023 0.023
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.947 0.720
EEC2 1.291 0.106 12.136 0.000 1.222 0.852
EEC3 1.410 0.108 13.109 0.000 1.335 0.977
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC ~
reward1_eco1 0.286 0.209 1.372 0.170 0.302 0.109
reward0_eco2 0.246 0.233 1.058 0.290 0.260 0.097
reward1_eco2 0.316 0.220 1.438 0.150 0.334 0.125
reward0_eco3 -0.028 0.191 -0.149 0.882 -0.030 -0.011
reward1_eco3 -0.100 0.230 -0.437 0.662 -0.106 -0.040
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.831 0.093 8.896 0.000 0.831 0.481
.EEC2 0.564 0.123 4.568 0.000 0.564 0.274
.EEC3 0.083 0.076 1.100 0.271 0.083 0.045
.EEC 0.869 0.137 6.328 0.000 0.969 0.969
R-Square:
Estimate
EEC1 0.519
EEC2 0.726
EEC3 0.955
EEC 0.031
Mediation
Individual items
Non-connected DVs
Simple mediation only on reward - H2a
lavaan 0.6-21 ended normally after 34 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 24
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 103.369 96.972
Degrees of freedom 30 30
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.066
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1598.761 986.859
Degrees of freedom 45 45
P-value 0.000 0.000
Scaling correction factor 1.620
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.953 0.929
Tucker-Lewis Index (TLI) 0.929 0.893
Robust Comparative Fit Index (CFI) 0.953
Robust Tucker-Lewis Index (TLI) 0.930
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2374.267 -2374.267
Scaling correction factor 2.283
for the MLR correction
Loglikelihood unrestricted model (H1) -2322.583 -2322.583
Scaling correction factor 1.607
for the MLR correction
Akaike (AIC) 4796.534 4796.534
Bayesian (BIC) 4877.318 4877.318
Sample-size adjusted Bayesian (SABIC) 4801.267 4801.267
Root Mean Square Error of Approximation:
RMSEA 0.107 0.102
90 Percent confidence interval - lower 0.085 0.081
90 Percent confidence interval - upper 0.130 0.124
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.976 0.954
Robust RMSEA 0.105
90 Percent confidence interval - lower 0.082
90 Percent confidence interval - upper 0.129
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.965
Standardized Root Mean Square Residual:
SRMR 0.063 0.063
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.973 0.740
EEC2 1.289 0.109 11.877 0.000 1.254 0.874
EEC3 1.329 0.093 14.314 0.000 1.293 0.947
EEF =~
EEF1 1.000 1.077 0.908
EEF2 1.048 0.052 19.969 0.000 1.128 0.934
EEF3 0.963 0.054 17.743 0.000 1.037 0.904
IM =~
IM1 1.000 0.952 0.819
IM2 1.000 0.161 6.215 0.000 0.952 0.885
IM3 1.001 0.181 5.532 0.000 0.953 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
Reward_PBP 0.085 0.138 0.619 0.536 0.090 0.045
EEF ~
IM 0.703 0.075 9.335 0.000 0.621 0.621
Reward_PBP 0.144 0.124 1.160 0.246 0.134 0.067
EEC ~
IM 0.506 0.076 6.661 0.000 0.495 0.495
Reward_PBP 0.047 0.124 0.377 0.706 0.048 0.024
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.348 0.108 3.210 0.001 0.491 0.491
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.782 0.093 8.404 0.000 0.782 0.453
.EEC2 0.485 0.104 4.656 0.000 0.485 0.236
.EEC3 0.193 0.061 3.147 0.002 0.193 0.104
.EEF1 0.247 0.045 5.437 0.000 0.247 0.176
.EEF2 0.187 0.046 4.063 0.000 0.187 0.128
.EEF3 0.240 0.063 3.787 0.000 0.240 0.183
.IM1 0.445 0.166 2.679 0.007 0.445 0.329
.IM2 0.252 0.074 3.403 0.001 0.252 0.218
.IM3 0.444 0.219 2.029 0.042 0.444 0.328
.EEC 0.713 0.116 6.152 0.000 0.753 0.753
.EEF 0.703 0.166 4.226 0.000 0.606 0.606
.IM 0.905 0.209 4.324 0.000 0.998 0.998
R-Square:
Estimate
EEC1 0.547
EEC2 0.764
EEC3 0.896
EEF1 0.824
EEF2 0.872
EEF3 0.817
IM1 0.671
IM2 0.782
IM3 0.672
EEC 0.247
EEF 0.394
IM 0.002
Simple mediation on both dependent variables with interaction between IVs - H2b and H2c
lavaan 0.6-21 ended normally after 55 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 36
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 124.251 121.729
Degrees of freedom 54 54
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.021
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1635.931 1229.293
Degrees of freedom 81 81
P-value 0.000 0.000
Scaling correction factor 1.331
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.955 0.941
Tucker-Lewis Index (TLI) 0.932 0.912
Robust Comparative Fit Index (CFI) 0.955
Robust Tucker-Lewis Index (TLI) 0.932
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2366.123 -2366.123
Scaling correction factor 1.849
for the MLR correction
Loglikelihood unrestricted model (H1) -2303.998 -2303.998
Scaling correction factor 1.352
for the MLR correction
Akaike (AIC) 4804.246 4804.246
Bayesian (BIC) 4925.421 4925.421
Sample-size adjusted Bayesian (SABIC) 4811.346 4811.346
Root Mean Square Error of Approximation:
RMSEA 0.078 0.077
90 Percent confidence interval - lower 0.060 0.059
90 Percent confidence interval - upper 0.096 0.095
P-value H_0: RMSEA <= 0.050 0.007 0.009
P-value H_0: RMSEA >= 0.080 0.444 0.393
Robust RMSEA 0.077
90 Percent confidence interval - lower 0.059
90 Percent confidence interval - upper 0.096
P-value H_0: Robust RMSEA <= 0.050 0.008
P-value H_0: Robust RMSEA >= 0.080 0.423
Standardized Root Mean Square Residual:
SRMR 0.048 0.048
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.847 0.000 1.257 0.876
EEC3 1.324 0.093 14.305 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.023 0.000 1.128 0.933
EEF3 0.962 0.054 17.770 0.000 1.037 0.904
IM =~
IM1 1.000 0.947 0.814
IM2 1.008 0.159 6.345 0.000 0.954 0.887
IM3 1.011 0.178 5.669 0.000 0.957 0.823
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.321 0.217 1.477 0.140 0.339 0.122
reward0_eco2 0.311 0.219 1.421 0.155 0.328 0.123
reward1_eco2 0.405 0.194 2.086 0.037 0.428 0.160
reward0_eco3 -0.085 0.261 -0.324 0.746 -0.089 -0.033
reward1_eco3 -0.231 0.249 -0.927 0.354 -0.243 -0.091
EEF ~
IM 0.697 0.075 9.275 0.000 0.612 0.612
reward1_eco1 0.097 0.185 0.522 0.602 0.090 0.032
reward0_eco2 -0.184 0.203 -0.909 0.363 -0.171 -0.064
reward1_eco2 0.002 0.195 0.008 0.994 0.001 0.001
reward0_eco3 -0.234 0.178 -1.312 0.189 -0.217 -0.081
reward1_eco3 -0.073 0.205 -0.353 0.724 -0.067 -0.025
EEC ~
IM 0.492 0.075 6.547 0.000 0.478 0.478
reward1_eco1 0.154 0.205 0.748 0.454 0.158 0.057
reward0_eco2 0.136 0.221 0.617 0.537 0.140 0.052
reward1_eco2 0.178 0.214 0.831 0.406 0.182 0.068
reward0_eco3 0.049 0.184 0.267 0.789 0.050 0.019
reward1_eco3 -0.002 0.222 -0.007 0.994 -0.002 -0.001
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.352 0.107 3.281 0.001 0.498 0.498
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.413 0.000 0.780 0.451
.EEC2 0.478 0.104 4.602 0.000 0.478 0.232
.EEC3 0.203 0.062 3.296 0.001 0.203 0.109
.EEF1 0.246 0.046 5.369 0.000 0.246 0.174
.EEF2 0.188 0.046 4.097 0.000 0.188 0.129
.EEF3 0.240 0.063 3.805 0.000 0.240 0.183
.IM1 0.455 0.164 2.769 0.006 0.455 0.337
.IM2 0.248 0.067 3.672 0.000 0.248 0.214
.IM3 0.436 0.212 2.054 0.040 0.436 0.323
.EEC 0.710 0.115 6.173 0.000 0.749 0.749
.EEF 0.701 0.165 4.250 0.000 0.603 0.603
.IM 0.840 0.205 4.107 0.000 0.937 0.937
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.663
IM2 0.786
IM3 0.677
EEC 0.251
EEF 0.397
IM 0.063
Mediation EEF–> EEC
Non-connected DVs - H3
lavaan 0.6-21 ended normally after 41 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 31
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 133.626 131.043
Degrees of freedom 59 59
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.020
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1635.931 1229.293
Degrees of freedom 81 81
P-value 0.000 0.000
Scaling correction factor 1.331
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.952 0.937
Tucker-Lewis Index (TLI) 0.934 0.914
Robust Comparative Fit Index (CFI) 0.952
Robust Tucker-Lewis Index (TLI) 0.934
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2370.811 -2370.811
Scaling correction factor 1.984
for the MLR correction
Loglikelihood unrestricted model (H1) -2303.998 -2303.998
Scaling correction factor 1.352
for the MLR correction
Akaike (AIC) 4803.621 4803.621
Bayesian (BIC) 4907.967 4907.967
Sample-size adjusted Bayesian (SABIC) 4809.735 4809.735
Root Mean Square Error of Approximation:
RMSEA 0.077 0.076
90 Percent confidence interval - lower 0.060 0.058
90 Percent confidence interval - upper 0.094 0.093
P-value H_0: RMSEA <= 0.050 0.007 0.009
P-value H_0: RMSEA >= 0.080 0.400 0.350
Robust RMSEA 0.076
90 Percent confidence interval - lower 0.059
90 Percent confidence interval - upper 0.094
P-value H_0: Robust RMSEA <= 0.050 0.008
P-value H_0: Robust RMSEA >= 0.080 0.380
Standardized Root Mean Square Residual:
SRMR 0.068 0.068
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.969 0.739
EEC2 1.291 0.109 11.847 0.000 1.251 0.875
EEC3 1.324 0.093 14.305 0.000 1.283 0.943
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.047 0.053 19.827 0.000 1.129 0.934
EEF3 0.961 0.054 17.759 0.000 1.036 0.903
IM =~
IM1 1.000 0.935 0.811
IM2 1.008 0.159 6.344 0.000 0.942 0.884
IM3 1.011 0.178 5.667 0.000 0.945 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
EEF (a) 0.526 0.134 3.920 0.000 0.607 0.607
reward1_c1 0.162 0.183 0.887 0.375 0.174 0.063
reward0_c2 0.295 0.178 1.659 0.097 0.315 0.118
reward1_c2 0.264 0.172 1.536 0.125 0.283 0.106
reward0_c3 0.061 0.211 0.287 0.774 0.065 0.024
reward1_c3 -0.115 0.208 -0.555 0.579 -0.123 -0.046
EEC ~
IM (b) 0.142 0.093 1.532 0.125 0.137 0.137
reward1_c1 0.115 0.203 0.569 0.570 0.119 0.043
reward0_c2 0.230 0.199 1.158 0.247 0.237 0.089
reward1_c2 0.186 0.193 0.960 0.337 0.191 0.072
reward0_c3 0.158 0.176 0.894 0.371 0.163 0.061
reward1_c3 0.027 0.201 0.136 0.892 0.028 0.011
EEF (c) 0.500 0.078 6.440 0.000 0.556 0.556
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.413 0.000 0.780 0.454
.EEC2 0.478 0.104 4.600 0.000 0.478 0.234
.EEC3 0.203 0.062 3.296 0.001 0.203 0.110
.EEF1 0.245 0.046 5.374 0.000 0.245 0.174
.EEF2 0.186 0.046 4.085 0.000 0.186 0.128
.EEF3 0.242 0.063 3.824 0.000 0.242 0.184
.IM1 0.455 0.164 2.769 0.006 0.455 0.342
.IM2 0.248 0.068 3.671 0.000 0.248 0.218
.IM3 0.436 0.212 2.054 0.040 0.436 0.328
.EEC 0.534 0.084 6.378 0.000 0.568 0.568
EEF 1.162 0.184 6.300 0.000 1.000 1.000
.IM 0.531 0.087 6.092 0.000 0.607 0.607
R-Square:
Estimate
EEC1 0.546
EEC2 0.766
EEC3 0.890
EEF1 0.826
EEF2 0.872
EEF3 0.816
IM1 0.658
IM2 0.782
IM3 0.672
EEC 0.432
IM 0.393
Defined Parameters:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
indirect 0.075 0.058 1.294 0.196 0.083 0.083
total 0.575 0.061 9.394 0.000 0.640 0.640
Only EEF
lavaan 0.6-21 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 18
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 72.150 74.571
Degrees of freedom 33 33
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.968
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1079.141 722.264
Degrees of freedom 45 45
P-value 0.000 0.000
Scaling correction factor 1.494
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.962 0.939
Tucker-Lewis Index (TLI) 0.948 0.916
Robust Comparative Fit Index (CFI) 0.960
Robust Tucker-Lewis Index (TLI) 0.946
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1504.987 -1504.987
Scaling correction factor 2.595
for the MLR correction
Loglikelihood unrestricted model (H1) -1468.911 -1468.911
Scaling correction factor 1.542
for the MLR correction
Akaike (AIC) 3045.973 3045.973
Bayesian (BIC) 3106.561 3106.561
Sample-size adjusted Bayesian (SABIC) 3049.523 3049.523
Root Mean Square Error of Approximation:
RMSEA 0.074 0.077
90 Percent confidence interval - lower 0.051 0.053
90 Percent confidence interval - upper 0.098 0.100
P-value H_0: RMSEA <= 0.050 0.044 0.032
P-value H_0: RMSEA >= 0.080 0.369 0.432
Robust RMSEA 0.075
90 Percent confidence interval - lower 0.053
90 Percent confidence interval - upper 0.098
P-value H_0: Robust RMSEA <= 0.050 0.034
P-value H_0: Robust RMSEA >= 0.080 0.393
Standardized Root Mean Square Residual:
SRMR 0.045 0.045
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.188 0.000 1.128 0.933
EEF3 0.961 0.055 17.472 0.000 1.037 0.904
IM =~
IM1 1.000 0.939 0.808
IM2 1.024 0.153 6.682 0.000 0.961 0.893
IM3 1.019 0.172 5.935 0.000 0.957 0.823
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.330 0.214 1.544 0.122 0.352 0.127
reward0_eco2 0.290 0.217 1.334 0.182 0.309 0.115
reward1_eco2 0.404 0.191 2.115 0.034 0.430 0.161
reward0_eco3 -0.105 0.256 -0.410 0.682 -0.112 -0.042
reward1_eco3 -0.235 0.245 -0.957 0.339 -0.250 -0.093
EEF ~
IM 0.709 0.075 9.417 0.000 0.617 0.617
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.245 0.046 5.289 0.000 0.245 0.174
.EEF2 0.188 0.047 4.009 0.000 0.188 0.129
.EEF3 0.240 0.065 3.680 0.000 0.240 0.183
.IM1 0.470 0.157 2.989 0.003 0.470 0.348
.IM2 0.234 0.060 3.912 0.000 0.234 0.202
.IM3 0.437 0.208 2.098 0.036 0.437 0.323
.EEF 0.719 0.163 4.411 0.000 0.619 0.619
.IM 0.824 0.195 4.218 0.000 0.935 0.935
R-Square:
Estimate
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.652
IM2 0.798
IM3 0.677
EEF 0.381
IM 0.065
Only EEC
lavaan 0.6-21 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 18
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 73.346 74.807
Degrees of freedom 33 33
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.980
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 873.803 616.512
Degrees of freedom 45 45
P-value 0.000 0.000
Scaling correction factor 1.417
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.951 0.927
Tucker-Lewis Index (TLI) 0.934 0.900
Robust Comparative Fit Index (CFI) 0.949
Robust Tucker-Lewis Index (TLI) 0.931
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1704.410 -1704.410
Scaling correction factor 2.233
for the MLR correction
Loglikelihood unrestricted model (H1) -1667.737 -1667.737
Scaling correction factor 1.423
for the MLR correction
Akaike (AIC) 3444.820 3444.820
Bayesian (BIC) 3505.408 3505.408
Sample-size adjusted Bayesian (SABIC) 3448.370 3448.370
Root Mean Square Error of Approximation:
RMSEA 0.076 0.077
90 Percent confidence interval - lower 0.052 0.054
90 Percent confidence interval - upper 0.099 0.100
P-value H_0: RMSEA <= 0.050 0.037 0.031
P-value H_0: RMSEA >= 0.080 0.399 0.438
Robust RMSEA 0.076
90 Percent confidence interval - lower 0.053
90 Percent confidence interval - upper 0.099
P-value H_0: Robust RMSEA <= 0.050 0.032
P-value H_0: Robust RMSEA >= 0.080 0.414
Standardized Root Mean Square Residual:
SRMR 0.050 0.050
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.967 0.735
EEC2 1.292 0.109 11.807 0.000 1.249 0.871
EEC3 1.346 0.096 14.085 0.000 1.301 0.953
IM =~
IM1 1.000 0.918 0.790
IM2 1.056 0.149 7.069 0.000 0.969 0.900
IM3 1.056 0.165 6.409 0.000 0.969 0.833
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.330 0.208 1.584 0.113 0.359 0.130
reward0_eco2 0.310 0.212 1.465 0.143 0.338 0.126
reward1_eco2 0.413 0.187 2.210 0.027 0.450 0.168
reward0_eco3 -0.076 0.247 -0.308 0.758 -0.083 -0.031
reward1_eco3 -0.220 0.240 -0.920 0.358 -0.240 -0.090
EEC ~
IM 0.503 0.079 6.364 0.000 0.477 0.477
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.793 0.092 8.626 0.000 0.793 0.459
.EEC2 0.498 0.114 4.379 0.000 0.498 0.242
.EEC3 0.172 0.068 2.516 0.012 0.172 0.092
.IM1 0.509 0.154 3.300 0.001 0.509 0.377
.IM2 0.219 0.050 4.376 0.000 0.219 0.189
.IM3 0.413 0.190 2.173 0.030 0.413 0.306
.EEC 0.722 0.113 6.407 0.000 0.772 0.772
.IM 0.787 0.188 4.193 0.000 0.934 0.934
R-Square:
Estimate
EEC1 0.541
EEC2 0.758
EEC3 0.908
IM1 0.623
IM2 0.811
IM3 0.694
EEC 0.228
IM 0.066
Partial mediation EEF->>EEC
Partial mediation EEF --> EEC
lavaan 0.6-21 ended normally after 52 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 37
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 124.251 119.475
Degrees of freedom 53 53
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.040
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1635.931 1229.293
Degrees of freedom 81 81
P-value 0.000 0.000
Scaling correction factor 1.331
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.954 0.942
Tucker-Lewis Index (TLI) 0.930 0.912
Robust Comparative Fit Index (CFI) 0.955
Robust Tucker-Lewis Index (TLI) 0.931
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2366.123 -2366.123
Scaling correction factor 1.799
for the MLR correction
Loglikelihood unrestricted model (H1) -2303.998 -2303.998
Scaling correction factor 1.352
for the MLR correction
Akaike (AIC) 4806.246 4806.246
Bayesian (BIC) 4930.787 4930.787
Sample-size adjusted Bayesian (SABIC) 4813.544 4813.544
Root Mean Square Error of Approximation:
RMSEA 0.079 0.077
90 Percent confidence interval - lower 0.061 0.059
90 Percent confidence interval - upper 0.097 0.095
P-value H_0: RMSEA <= 0.050 0.005 0.009
P-value H_0: RMSEA >= 0.080 0.491 0.393
Robust RMSEA 0.078
90 Percent confidence interval - lower 0.059
90 Percent confidence interval - upper 0.097
P-value H_0: Robust RMSEA <= 0.050 0.008
P-value H_0: Robust RMSEA >= 0.080 0.451
Standardized Root Mean Square Residual:
SRMR 0.048 0.048
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.847 0.000 1.257 0.876
EEC3 1.324 0.093 14.305 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.023 0.000 1.128 0.933
EEF3 0.962 0.054 17.770 0.000 1.037 0.904
IM =~
IM1 1.000 0.947 0.814
IM2 1.008 0.159 6.345 0.000 0.954 0.887
IM3 1.011 0.178 5.669 0.000 0.957 0.823
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.321 0.217 1.477 0.140 0.339 0.122
reward0_eco2 0.311 0.219 1.421 0.155 0.328 0.123
reward1_eco2 0.405 0.194 2.086 0.037 0.428 0.160
reward0_eco3 -0.085 0.261 -0.324 0.746 -0.089 -0.033
reward1_eco3 -0.231 0.249 -0.927 0.354 -0.243 -0.091
EEF ~
IM 0.697 0.075 9.275 0.000 0.612 0.612
reward1_eco1 0.097 0.185 0.522 0.602 0.090 0.032
reward0_eco2 -0.184 0.203 -0.909 0.363 -0.171 -0.064
reward1_eco2 0.002 0.195 0.008 0.994 0.001 0.001
reward0_eco3 -0.234 0.178 -1.312 0.189 -0.217 -0.081
reward1_eco3 -0.073 0.205 -0.353 0.724 -0.067 -0.025
EEC ~
IM 0.135 0.529 0.254 0.799 0.131 0.131
reward1_eco1 0.104 0.219 0.476 0.634 0.107 0.039
reward0_eco2 0.231 0.231 0.998 0.318 0.237 0.089
reward1_eco2 0.177 0.194 0.911 0.362 0.181 0.068
reward0_eco3 0.169 0.240 0.704 0.481 0.174 0.065
reward1_eco3 0.036 0.208 0.171 0.864 0.037 0.014
EEF 0.513 0.747 0.686 0.493 0.567 0.567
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF -0.008 0.516 -0.015 0.988 -0.013 -0.013
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.413 0.000 0.780 0.451
.EEC2 0.478 0.104 4.602 0.000 0.478 0.232
.EEC3 0.203 0.062 3.296 0.001 0.203 0.109
.EEF1 0.246 0.046 5.369 0.000 0.246 0.174
.EEF2 0.188 0.046 4.097 0.000 0.188 0.129
.EEF3 0.240 0.063 3.805 0.000 0.240 0.183
.IM1 0.455 0.164 2.769 0.006 0.455 0.337
.IM2 0.248 0.067 3.672 0.000 0.248 0.214
.IM3 0.436 0.212 2.054 0.040 0.436 0.323
.EEC 0.534 0.085 6.256 0.000 0.563 0.563
.EEF 0.701 0.165 4.250 0.000 0.603 0.603
.IM 0.840 0.205 4.107 0.000 0.937 0.937
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.663
IM2 0.786
IM3 0.677
EEC 0.437
EEF 0.397
IM 0.063
Partial EEC->>EEF
Partial mediation EEC --> EEF
lavaan 0.6-21 ended normally after 51 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 36
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 124.251 121.729
Degrees of freedom 54 54
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.021
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1635.931 1229.293
Degrees of freedom 81 81
P-value 0.000 0.000
Scaling correction factor 1.331
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.955 0.941
Tucker-Lewis Index (TLI) 0.932 0.912
Robust Comparative Fit Index (CFI) 0.955
Robust Tucker-Lewis Index (TLI) 0.932
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2366.123 -2366.123
Scaling correction factor 1.849
for the MLR correction
Loglikelihood unrestricted model (H1) -2303.998 -2303.998
Scaling correction factor 1.352
for the MLR correction
Akaike (AIC) 4804.246 4804.246
Bayesian (BIC) 4925.421 4925.421
Sample-size adjusted Bayesian (SABIC) 4811.346 4811.346
Root Mean Square Error of Approximation:
RMSEA 0.078 0.077
90 Percent confidence interval - lower 0.060 0.059
90 Percent confidence interval - upper 0.096 0.095
P-value H_0: RMSEA <= 0.050 0.007 0.009
P-value H_0: RMSEA >= 0.080 0.444 0.393
Robust RMSEA 0.077
90 Percent confidence interval - lower 0.059
90 Percent confidence interval - upper 0.096
P-value H_0: Robust RMSEA <= 0.050 0.008
P-value H_0: Robust RMSEA >= 0.080 0.423
Standardized Root Mean Square Residual:
SRMR 0.048 0.048
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.847 0.000 1.257 0.876
EEC3 1.324 0.093 14.305 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.023 0.000 1.128 0.933
EEF3 0.962 0.054 17.770 0.000 1.037 0.904
IM =~
IM1 1.000 0.947 0.814
IM2 1.008 0.159 6.345 0.000 0.954 0.887
IM3 1.011 0.178 5.669 0.000 0.957 0.823
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.321 0.217 1.477 0.140 0.339 0.122
reward0_eco2 0.311 0.219 1.421 0.155 0.328 0.123
reward1_eco2 0.405 0.194 2.086 0.037 0.428 0.160
reward0_eco3 -0.085 0.261 -0.324 0.746 -0.089 -0.033
reward1_eco3 -0.231 0.249 -0.927 0.354 -0.243 -0.091
EEF ~
IM 0.453 0.084 5.416 0.000 0.398 0.398
reward1_eco1 0.020 0.191 0.107 0.915 0.019 0.007
reward0_eco2 -0.252 0.184 -1.365 0.172 -0.233 -0.087
reward1_eco2 -0.086 0.182 -0.475 0.634 -0.080 -0.030
reward0_eco3 -0.258 0.171 -1.511 0.131 -0.240 -0.090
reward1_eco3 -0.072 0.188 -0.382 0.703 -0.067 -0.025
EEC 0.495 0.119 4.165 0.000 0.447 0.447
EEC ~
IM 0.492 0.075 6.547 0.000 0.478 0.478
reward1_eco1 0.154 0.205 0.748 0.454 0.158 0.057
reward0_eco2 0.136 0.221 0.617 0.537 0.140 0.052
reward1_eco2 0.177 0.214 0.831 0.406 0.182 0.068
reward0_eco3 0.049 0.184 0.267 0.789 0.050 0.019
reward1_eco3 -0.002 0.222 -0.007 0.994 -0.002 -0.001
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.413 0.000 0.780 0.451
.EEC2 0.478 0.104 4.602 0.000 0.478 0.232
.EEC3 0.203 0.062 3.296 0.001 0.203 0.109
.EEF1 0.246 0.046 5.369 0.000 0.246 0.174
.EEF2 0.188 0.046 4.097 0.000 0.188 0.129
.EEF3 0.240 0.063 3.805 0.000 0.240 0.183
.IM1 0.455 0.164 2.769 0.006 0.455 0.337
.IM2 0.248 0.067 3.672 0.000 0.248 0.214
.IM3 0.436 0.212 2.054 0.040 0.436 0.323
.EEC 0.710 0.115 6.173 0.000 0.749 0.749
.EEF 0.527 0.094 5.626 0.000 0.453 0.453
.IM 0.840 0.205 4.107 0.000 0.937 0.937
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.663
IM2 0.786
IM3 0.677
EEC 0.251
EEF 0.547
IM 0.063
IM
IM as DV and only manipulations as IVs
lavaan 0.6-21 ended normally after 28 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 11
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 5.678 6.197
Degrees of freedom 10 10
P-value (Chi-square) 0.842 0.798
Scaling correction factor 0.916
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 364.355 194.854
Degrees of freedom 18 18
P-value 0.000 0.000
Scaling correction factor 1.870
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.022 1.039
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.019
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -811.818 -811.818
Scaling correction factor 2.800
for the MLR correction
Loglikelihood unrestricted model (H1) -808.979 -808.979
Scaling correction factor 1.903
for the MLR correction
Akaike (AIC) 1645.637 1645.637
Bayesian (BIC) 1682.663 1682.663
Sample-size adjusted Bayesian (SABIC) 1647.806 1647.806
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.043 0.051
P-value H_0: RMSEA <= 0.050 0.968 0.947
P-value H_0: RMSEA >= 0.080 0.002 0.005
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.046
P-value H_0: Robust RMSEA <= 0.050 0.961
P-value H_0: Robust RMSEA >= 0.080 0.002
Standardized Root Mean Square Residual:
SRMR 0.015 0.015
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM =~
IM1 1.000 0.889 0.765
IM2 1.125 0.158 7.111 0.000 1.000 0.930
IM3 1.075 0.161 6.681 0.000 0.956 0.822
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.320 0.203 1.575 0.115 0.361 0.130
reward0_eco2 0.279 0.207 1.349 0.177 0.313 0.117
reward1_eco2 0.388 0.184 2.104 0.035 0.437 0.163
reward0_eco3 -0.077 0.235 -0.327 0.744 -0.087 -0.032
reward1_eco3 -0.211 0.234 -0.901 0.368 -0.237 -0.089
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM1 0.561 0.153 3.676 0.000 0.561 0.415
.IM2 0.157 0.049 3.213 0.001 0.157 0.136
.IM3 0.438 0.203 2.162 0.031 0.438 0.324
.IM 0.740 0.179 4.127 0.000 0.937 0.937
R-Square:
Estimate
IM1 0.585
IM2 0.864
IM3 0.676
IM 0.063
IM without independent variables
lavaan 0.6-21 ended normally after 33 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 97.943 92.692
Degrees of freedom 24 24
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.057
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1591.464 907.183
Degrees of freedom 36 36
P-value 0.000 0.000
Scaling correction factor 1.754
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.952 0.921
Tucker-Lewis Index (TLI) 0.929 0.882
Robust Comparative Fit Index (CFI) 0.953
Robust Tucker-Lewis Index (TLI) 0.929
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2375.203 -2375.203
Scaling correction factor 2.460
for the MLR correction
Loglikelihood unrestricted model (H1) -2326.231 -2326.231
Scaling correction factor 1.712
for the MLR correction
Akaike (AIC) 4792.406 4792.406
Bayesian (BIC) 4863.092 4863.092
Sample-size adjusted Bayesian (SABIC) 4796.548 4796.548
Root Mean Square Error of Approximation:
RMSEA 0.120 0.116
90 Percent confidence interval - lower 0.096 0.092
90 Percent confidence interval - upper 0.145 0.140
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.996 0.992
Robust RMSEA 0.119
90 Percent confidence interval - lower 0.094
90 Percent confidence interval - upper 0.145
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.994
Standardized Root Mean Square Residual:
SRMR 0.069 0.069
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.973 0.740
EEC2 1.289 0.108 11.885 0.000 1.254 0.874
EEC3 1.330 0.093 14.310 0.000 1.293 0.947
EEF =~
EEF1 1.000 1.077 0.908
EEF2 1.047 0.052 20.022 0.000 1.128 0.933
EEF3 0.963 0.054 17.668 0.000 1.037 0.904
IM =~
IM1 1.000 0.952 0.819
IM2 1.000 0.161 6.229 0.000 0.952 0.885
IM3 1.002 0.180 5.560 0.000 0.953 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.706 0.074 9.485 0.000 0.624 0.624
EEC ~
IM 0.507 0.076 6.680 0.000 0.496 0.496
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.350 0.107 3.264 0.001 0.492 0.492
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.782 0.093 8.402 0.000 0.782 0.453
.EEC2 0.486 0.104 4.666 0.000 0.486 0.236
.EEC3 0.193 0.061 3.147 0.002 0.193 0.103
.EEF1 0.247 0.046 5.416 0.000 0.247 0.175
.EEF2 0.188 0.046 4.102 0.000 0.188 0.129
.EEF3 0.239 0.064 3.765 0.000 0.239 0.182
.IM1 0.446 0.165 2.698 0.007 0.446 0.330
.IM2 0.251 0.073 3.428 0.001 0.251 0.217
.IM3 0.444 0.218 2.035 0.042 0.444 0.328
.EEC 0.714 0.116 6.168 0.000 0.754 0.754
.EEF 0.709 0.164 4.318 0.000 0.611 0.611
IM 0.906 0.210 4.312 0.000 1.000 1.000
R-Square:
Estimate
EEC1 0.547
EEC2 0.764
EEC3 0.897
EEF1 0.825
EEF2 0.871
EEF3 0.818
IM1 0.670
IM2 0.783
IM3 0.672
EEC 0.246
EEF 0.389
ADT and full mediation by IM
lavaan 0.6-21 ended normally after 41 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 30
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 134.813 118.054
Degrees of freedom 48 48
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.142
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 2129.667 1338.116
Degrees of freedom 66 66
P-value 0.000 0.000
Scaling correction factor 1.592
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.958 0.945
Tucker-Lewis Index (TLI) 0.942 0.924
Robust Comparative Fit Index (CFI) 0.960
Robust Tucker-Lewis Index (TLI) 0.946
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -3094.749 -3094.749
Scaling correction factor 2.271
for the MLR correction
Loglikelihood unrestricted model (H1) -3027.343 -3027.343
Scaling correction factor 1.576
for the MLR correction
Akaike (AIC) 6249.498 6249.498
Bayesian (BIC) 6350.478 6350.478
Sample-size adjusted Bayesian (SABIC) 6255.415 6255.415
Root Mean Square Error of Approximation:
RMSEA 0.092 0.083
90 Percent confidence interval - lower 0.074 0.065
90 Percent confidence interval - upper 0.110 0.100
P-value H_0: RMSEA <= 0.050 0.000 0.002
P-value H_0: RMSEA >= 0.080 0.865 0.612
Robust RMSEA 0.088
90 Percent confidence interval - lower 0.068
90 Percent confidence interval - upper 0.108
P-value H_0: Robust RMSEA <= 0.050 0.001
P-value H_0: Robust RMSEA >= 0.080 0.764
Standardized Root Mean Square Residual:
SRMR 0.068 0.068
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.973 0.740
EEC2 1.288 0.108 11.907 0.000 1.254 0.874
EEC3 1.329 0.093 14.332 0.000 1.293 0.947
EEF =~
EEF1 1.000 1.079 0.909
EEF2 1.045 0.053 19.772 0.000 1.128 0.933
EEF3 0.961 0.055 17.310 0.000 1.036 0.904
IM =~
IM1 1.000 0.952 0.819
IM2 1.000 0.166 6.039 0.000 0.952 0.885
IM3 1.001 0.186 5.393 0.000 0.953 0.820
ADT =~
ADT1 1.000 0.916 0.878
ADT2 1.040 0.068 15.254 0.000 0.953 0.901
ADT3 1.150 0.077 14.926 0.000 1.053 0.881
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.213 0.155 1.370 0.171 0.188 0.188
EEC 0.974 0.270 3.607 0.000 0.879 0.879
EEC ~
IM 0.424 0.078 5.461 0.000 0.415 0.415
ADT 0.315 0.083 3.773 0.000 0.296 0.296
IM ~
ADT 0.285 0.140 2.028 0.043 0.274 0.274
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF -0.345 0.177 -1.954 0.051 -0.515 -0.515
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.781 0.093 8.388 0.000 0.781 0.452
.EEC2 0.486 0.103 4.711 0.000 0.486 0.236
.EEC3 0.193 0.062 3.139 0.002 0.193 0.104
.EEF1 0.244 0.045 5.406 0.000 0.244 0.173
.EEF2 0.189 0.046 4.089 0.000 0.189 0.129
.EEF3 0.241 0.063 3.799 0.000 0.241 0.183
.IM1 0.445 0.172 2.594 0.009 0.445 0.329
.IM2 0.252 0.075 3.361 0.001 0.252 0.217
.IM3 0.444 0.220 2.018 0.044 0.444 0.328
.ADT1 0.249 0.057 4.343 0.000 0.249 0.229
.ADT2 0.211 0.053 4.005 0.000 0.211 0.189
.ADT3 0.320 0.087 3.674 0.000 0.320 0.224
.EEC 0.637 0.099 6.422 0.000 0.673 0.673
.EEF 0.706 0.211 3.345 0.001 0.607 0.607
.IM 0.838 0.162 5.176 0.000 0.925 0.925
ADT 0.839 0.124 6.777 0.000 1.000 1.000
R-Square:
Estimate
EEC1 0.548
EEC2 0.764
EEC3 0.896
EEF1 0.827
EEF2 0.871
EEF3 0.817
IM1 0.671
IM2 0.783
IM3 0.672
ADT1 0.771
ADT2 0.811
ADT3 0.776
EEC 0.327
EEF 0.393
IM 0.075
GG plot
Direct effect of manipulations on IM (EEF)
`geom_smooth()` using formula = 'y ~ x'
Direct effect of manipulations on IM (EEC)
`geom_smooth()` using formula = 'y ~ x'
Composite variables
Simple mediation with partial mediation
lavaan 0.6-21 ended normally after 9 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 0.000 0.000
Degrees of freedom 0 0
Model Test Baseline Model:
Test statistic 221.582 210.615
Degrees of freedom 18 18
P-value 0.000 0.000
Scaling correction factor 1.052
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.000 1.000
Robust Comparative Fit Index (CFI) NA
Robust Tucker-Lewis Index (TLI) NA
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -871.672 -871.672
Loglikelihood unrestricted model (H1) -871.672 -871.672
Akaike (AIC) 1785.345 1785.345
Bayesian (BIC) 1856.030 1856.030
Sample-size adjusted Bayesian (SABIC) 1789.487 1789.487
Root Mean Square Error of Approximation:
RMSEA 0.000 NA
90 Percent confidence interval - lower 0.000 NA
90 Percent confidence interval - upper 0.000 NA
P-value H_0: RMSEA <= 0.050 NA NA
P-value H_0: RMSEA >= 0.080 NA NA
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.000
P-value H_0: Robust RMSEA <= 0.050 NA
P-value H_0: Robust RMSEA >= 0.080 NA
Standardized Root Mean Square Residual:
SRMR 0.000 0.000
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM_composite ~
reward1_eco1 0.301 0.220 1.366 0.172 0.301 0.107
reward0_eco2 0.324 0.221 1.462 0.144 0.324 0.119
reward1_eco2 0.398 0.197 2.018 0.044 0.398 0.147
reward0_eco3 -0.084 0.264 -0.318 0.751 -0.084 -0.031
reward1_eco3 -0.232 0.251 -0.923 0.356 -0.232 -0.086
EEF_composite ~
IM_composite 0.625 0.068 9.145 0.000 0.625 0.568
reward1_eco1 0.132 0.186 0.707 0.480 0.132 0.043
reward0_eco2 -0.173 0.205 -0.843 0.399 -0.173 -0.058
reward1_eco2 0.031 0.191 0.161 0.872 0.031 0.010
reward0_eco3 -0.242 0.180 -1.346 0.178 -0.242 -0.081
reward1_eco3 -0.104 0.205 -0.504 0.614 -0.104 -0.035
EEC_composite ~
IM_composite 0.592 0.072 8.179 0.000 0.592 0.486
reward1_eco1 0.206 0.246 0.839 0.401 0.206 0.060
reward0_eco2 0.227 0.262 0.868 0.386 0.227 0.069
reward1_eco2 0.313 0.239 1.313 0.189 0.313 0.095
reward0_eco3 0.098 0.212 0.464 0.643 0.098 0.030
reward1_eco3 0.020 0.261 0.075 0.940 0.020 0.006
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite ~~
.EEC_composite 0.444 0.096 4.625 0.000 0.444 0.466
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM_composite 0.973 0.126 7.710 0.000 0.973 0.946
.EEF_composite 0.810 0.124 6.525 0.000 0.810 0.651
.EEC_composite 1.123 0.116 9.704 0.000 1.123 0.736
R-Square:
Estimate
IM_composite 0.054
EEF_composite 0.349
EEC_composite 0.264
Simple mediation with full mediation
lavaan 0.6-21 ended normally after 9 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 11
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 7.341 7.259
Degrees of freedom 10 10
P-value (Chi-square) 0.693 0.701
Scaling correction factor 1.011
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 221.582 210.615
Degrees of freedom 18 18
P-value 0.000 0.000
Scaling correction factor 1.052
User Model versus Baseline Model:
Comparative Fit Index (CFI) 1.000 1.000
Tucker-Lewis Index (TLI) 1.024 1.026
Robust Comparative Fit Index (CFI) 1.000
Robust Tucker-Lewis Index (TLI) 1.025
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -875.343 -875.343
Scaling correction factor 1.222
for the MLR correction
Loglikelihood unrestricted model (H1) -871.672 -871.672
Scaling correction factor 1.122
for the MLR correction
Akaike (AIC) 1772.686 1772.686
Bayesian (BIC) 1809.712 1809.712
Sample-size adjusted Bayesian (SABIC) 1774.855 1774.855
Root Mean Square Error of Approximation:
RMSEA 0.000 0.000
90 Percent confidence interval - lower 0.000 0.000
90 Percent confidence interval - upper 0.058 0.057
P-value H_0: RMSEA <= 0.050 0.919 0.923
P-value H_0: RMSEA >= 0.080 0.008 0.007
Robust RMSEA 0.000
90 Percent confidence interval - lower 0.000
90 Percent confidence interval - upper 0.057
P-value H_0: Robust RMSEA <= 0.050 0.921
P-value H_0: Robust RMSEA >= 0.080 0.008
Standardized Root Mean Square Residual:
SRMR 0.024 0.024
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM_composite ~
reward1_eco1 0.301 0.220 1.366 0.172 0.301 0.107
reward0_eco2 0.324 0.221 1.462 0.144 0.324 0.119
reward1_eco2 0.398 0.197 2.018 0.044 0.398 0.147
reward0_eco3 -0.084 0.264 -0.318 0.751 -0.084 -0.031
reward1_eco3 -0.232 0.251 -0.923 0.356 -0.232 -0.086
EEF_composite ~
IM_composite 0.638 0.070 9.154 0.000 0.638 0.580
EEC_composite ~
IM_composite 0.616 0.073 8.481 0.000 0.616 0.506
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite ~~
.EEC_composite 0.447 0.096 4.675 0.000 0.447 0.462
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM_composite 0.973 0.126 7.710 0.000 0.973 0.946
.EEF_composite 0.825 0.124 6.670 0.000 0.825 0.664
.EEC_composite 1.136 0.115 9.837 0.000 1.136 0.744
R-Square:
Estimate
IM_composite 0.054
EEF_composite 0.336
EEC_composite 0.256
Response bias check
Moderation
ADT without IVs
Continuous ADT
On reward groups
function (..., domain = NULL, appendLF = TRUE)
{
cond <- if (...length() == 1L && inherits(..1, "condition")) {
if (nargs() > 1L)
warning("additional arguments ignored in message()")
..1
}
else {
msg <- .makeMessage(..., domain = domain, appendLF = appendLF)
call <- sys.call()
simpleMessage(msg, call)
}
defaultHandler <- function(c) {
cat(conditionMessage(c), file = stderr(), sep = "")
}
withRestarts({
signalCondition(cond)
defaultHandler(cond)
}, muffleMessage = function() NULL)
invisible()
}
<bytecode: 0x14dd28808>
<environment: namespace:base>
lavaan 0.6-21 ended normally after 46 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 84
Number of observations per group:
no_reward 109
performance_reward 105
Model Test User Model:
Standard Scaled
Test Statistic 211.222 215.445
Degrees of freedom 96 96
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.980
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
no_reward 94.458 94.458
performance_reward 120.987 120.987
Model Test Baseline Model:
Test statistic 2264.264 1602.257
Degrees of freedom 132 132
P-value 0.000 0.000
Scaling correction factor 1.413
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.946 0.919
Tucker-Lewis Index (TLI) 0.926 0.888
Robust Comparative Fit Index (CFI) 0.944
Robust Tucker-Lewis Index (TLI) 0.923
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -3054.575 -3054.575
Scaling correction factor 1.806
for the MLR correction
Loglikelihood unrestricted model (H1) -2948.964 -2948.964
Scaling correction factor 1.366
for the MLR correction
Akaike (AIC) 6277.149 6277.149
Bayesian (BIC) 6559.891 6559.891
Sample-size adjusted Bayesian (SABIC) 6293.716 6293.716
Root Mean Square Error of Approximation:
RMSEA 0.106 0.108
90 Percent confidence interval - lower 0.087 0.088
90 Percent confidence interval - upper 0.125 0.127
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.985 0.990
Robust RMSEA 0.107
90 Percent confidence interval - lower 0.088
90 Percent confidence interval - upper 0.126
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.989
Standardized Root Mean Square Residual:
SRMR 0.077 0.077
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [no_reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.891 0.724
EEC2 1.469 0.150 9.790 0.000 1.310 0.891
EEC3 1.362 0.129 10.526 0.000 1.214 0.933
EEF =~
EEF1 1.000 1.004 0.895
EEF2 1.043 0.071 14.594 0.000 1.047 0.908
EEF3 1.018 0.050 20.279 0.000 1.021 0.920
IM =~
IM1 1.000 1.136 0.920
IM2 0.860 0.076 11.389 0.000 0.977 0.938
IM3 0.842 0.104 8.123 0.000 0.956 0.803
ADT =~
ADT1 1.000 0.898 0.863
ADT2 0.973 0.080 12.092 0.000 0.873 0.938
ADT3 1.137 0.095 11.950 0.000 1.021 0.867
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.534 0.085 6.262 0.000 0.604 0.604
ADT 0.161 0.090 1.794 0.073 0.144 0.144
EEC ~
IM 0.365 0.088 4.127 0.000 0.465 0.465
ADT 0.176 0.106 1.663 0.096 0.177 0.177
IM ~
ADT 0.295 0.168 1.759 0.079 0.233 0.233
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.254 0.078 3.244 0.001 0.444 0.444
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.165 0.118 35.341 0.000 4.165 3.385
.EEC2 4.275 0.141 30.351 0.000 4.275 2.907
.EEC3 4.294 0.125 34.445 0.000 4.294 3.299
.EEF1 5.193 0.107 48.365 0.000 5.193 4.633
.EEF2 5.303 0.110 47.999 0.000 5.303 4.597
.EEF3 5.404 0.106 50.837 0.000 5.404 4.869
.IM1 5.156 0.118 43.574 0.000 5.156 4.174
.IM2 5.596 0.100 56.098 0.000 5.596 5.373
.IM3 5.431 0.114 47.591 0.000 5.431 4.558
.ADT1 5.394 0.100 54.121 0.000 5.394 5.184
.ADT2 5.422 0.089 60.768 0.000 5.422 5.820
.ADT3 5.229 0.113 46.345 0.000 5.229 4.439
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.719 0.128 5.608 0.000 0.719 0.475
.EEC2 0.447 0.114 3.927 0.000 0.447 0.207
.EEC3 0.220 0.086 2.565 0.010 0.220 0.130
.EEF1 0.249 0.070 3.584 0.000 0.249 0.198
.EEF2 0.235 0.076 3.103 0.002 0.235 0.176
.EEF3 0.188 0.075 2.498 0.012 0.188 0.153
.IM1 0.236 0.072 3.293 0.001 0.236 0.154
.IM2 0.130 0.044 2.971 0.003 0.130 0.120
.IM3 0.505 0.322 1.567 0.117 0.505 0.356
.ADT1 0.277 0.083 3.354 0.001 0.277 0.256
.ADT2 0.105 0.056 1.872 0.061 0.105 0.121
.ADT3 0.346 0.149 2.326 0.020 0.346 0.249
.EEC 0.568 0.133 4.284 0.000 0.714 0.714
.EEF 0.578 0.133 4.335 0.000 0.574 0.574
.IM 1.221 0.202 6.046 0.000 0.946 0.946
ADT 0.806 0.129 6.247 0.000 1.000 1.000
Group 2 [performance_reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 1.045 0.751
EEC2 1.159 0.150 7.730 0.000 1.212 0.868
EEC3 1.305 0.133 9.835 0.000 1.364 0.956
EEF =~
EEF1 1.000 1.154 0.928
EEF2 1.032 0.076 13.578 0.000 1.191 0.954
EEF3 0.906 0.094 9.606 0.000 1.046 0.888
IM =~
IM1 1.000 0.734 0.678
IM2 1.293 0.503 2.569 0.010 0.949 0.858
IM3 1.304 0.549 2.377 0.017 0.957 0.846
ADT =~
ADT1 1.000 0.940 0.899
ADT2 1.097 0.110 9.974 0.000 1.031 0.884
ADT3 1.151 0.113 10.219 0.000 1.082 0.892
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.708 0.126 5.600 0.000 0.450 0.450
ADT 0.498 0.163 3.051 0.002 0.405 0.405
EEC ~
IM 0.496 0.133 3.714 0.000 0.348 0.348
ADT 0.479 0.116 4.133 0.000 0.431 0.431
IM ~
ADT 0.199 0.208 0.955 0.340 0.254 0.254
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.272 0.146 1.862 0.063 0.390 0.390
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.333 0.136 31.909 0.000 4.333 3.114
.EEC2 4.314 0.136 31.668 0.000 4.314 3.090
.EEC3 4.429 0.139 31.808 0.000 4.429 3.104
.EEF1 5.371 0.121 44.242 0.000 5.371 4.318
.EEF2 5.562 0.122 45.624 0.000 5.562 4.452
.EEF3 5.562 0.115 48.357 0.000 5.562 4.719
.IM1 5.143 0.106 48.718 0.000 5.143 4.754
.IM2 5.733 0.108 53.099 0.000 5.733 5.182
.IM3 5.524 0.110 50.069 0.000 5.524 4.886
.ADT1 5.381 0.102 52.741 0.000 5.381 5.147
.ADT2 5.238 0.114 45.986 0.000 5.238 4.488
.ADT3 5.267 0.118 44.485 0.000 5.267 4.341
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.844 0.138 6.109 0.000 0.844 0.436
.EEC2 0.481 0.153 3.142 0.002 0.481 0.247
.EEC3 0.174 0.088 1.970 0.049 0.174 0.086
.EEF1 0.216 0.055 3.898 0.000 0.216 0.139
.EEF2 0.141 0.050 2.832 0.005 0.141 0.090
.EEF3 0.295 0.100 2.946 0.003 0.295 0.212
.IM1 0.632 0.301 2.097 0.036 0.632 0.540
.IM2 0.324 0.115 2.811 0.005 0.324 0.265
.IM3 0.363 0.259 1.399 0.162 0.363 0.284
.ADT1 0.210 0.079 2.655 0.008 0.210 0.192
.ADT2 0.299 0.081 3.690 0.000 0.299 0.219
.ADT3 0.301 0.082 3.669 0.000 0.301 0.205
.EEC 0.674 0.134 5.026 0.000 0.617 0.617
.EEF 0.721 0.244 2.958 0.003 0.541 0.541
.IM 0.503 0.238 2.115 0.034 0.935 0.935
ADT 0.883 0.211 4.180 0.000 1.000 1.000
On eco groups
lavaan 0.6-21 ended normally after 49 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 129
Number of observations per group:
EEF orientation 70
Combination of EEF and EEC 72
EEC orientation 72
Model Test User Model:
Standard Scaled
Test Statistic 260.132 262.513
Degrees of freedom 141 141
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.991
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
EEF orientation 70.406 70.406
Combination of EEF and EEC 97.476 97.476
EEC orientation 94.631 94.631
Model Test Baseline Model:
Test statistic 2331.901 1848.415
Degrees of freedom 198 198
P-value 0.000 0.000
Scaling correction factor 1.262
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.944 0.926
Tucker-Lewis Index (TLI) 0.922 0.897
Robust Comparative Fit Index (CFI) 0.942
Robust Tucker-Lewis Index (TLI) 0.919
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2998.573 -2998.573
Scaling correction factor 1.526
for the MLR correction
Loglikelihood unrestricted model (H1) -2868.507 -2868.507
Scaling correction factor 1.247
for the MLR correction
Akaike (AIC) 6255.147 6255.147
Bayesian (BIC) 6689.358 6689.358
Sample-size adjusted Bayesian (SABIC) 6280.589 6280.589
Root Mean Square Error of Approximation:
RMSEA 0.109 0.110
90 Percent confidence interval - lower 0.088 0.089
90 Percent confidence interval - upper 0.129 0.131
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.987 0.989
Robust RMSEA 0.109
90 Percent confidence interval - lower 0.089
90 Percent confidence interval - upper 0.130
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.989
Standardized Root Mean Square Residual:
SRMR 0.078 0.078
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [EEF orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.864 0.681
EEC2 1.290 0.195 6.622 0.000 1.114 0.838
EEC3 1.319 0.170 7.751 0.000 1.139 0.906
EEF =~
EEF1 1.000 0.888 0.855
EEF2 1.129 0.160 7.061 0.000 1.003 0.887
EEF3 0.903 0.128 7.079 0.000 0.802 0.809
IM =~
IM1 1.000 0.961 0.881
IM2 0.978 0.142 6.901 0.000 0.940 0.915
IM3 0.693 0.260 2.664 0.008 0.665 0.570
ADT =~
ADT1 1.000 0.823 0.793
ADT2 1.220 0.169 7.233 0.000 1.003 0.914
ADT3 1.280 0.182 7.017 0.000 1.053 0.905
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.580 0.216 2.685 0.007 0.628 0.628
EEC 0.061 0.588 0.104 0.917 0.059 0.059
ADT 0.128 0.199 0.641 0.521 0.118 0.118
EEC ~
IM 0.263 0.146 1.803 0.071 0.292 0.292
ADT 0.211 0.155 1.367 0.172 0.201 0.201
IM ~
ADT 0.613 0.262 2.339 0.019 0.525 0.525
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.072 0.307 0.234 0.815 0.152 0.152
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.143 0.152 27.333 0.000 4.143 3.267
.EEC2 4.271 0.159 26.868 0.000 4.271 3.211
.EEC3 4.400 0.150 29.260 0.000 4.400 3.497
.EEF1 5.471 0.124 44.095 0.000 5.471 5.270
.EEF2 5.543 0.135 41.042 0.000 5.543 4.905
.EEF3 5.600 0.118 47.260 0.000 5.600 5.649
.IM1 5.200 0.130 39.906 0.000 5.200 4.770
.IM2 5.729 0.123 46.665 0.000 5.729 5.578
.IM3 5.443 0.139 39.034 0.000 5.443 4.665
.ADT1 5.457 0.124 44.001 0.000 5.457 5.259
.ADT2 5.371 0.131 40.941 0.000 5.371 4.893
.ADT3 5.300 0.139 38.124 0.000 5.300 4.557
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.862 0.170 5.062 0.000 0.862 0.536
.EEC2 0.527 0.201 2.618 0.009 0.527 0.298
.EEC3 0.285 0.145 1.968 0.049 0.285 0.180
.EEF1 0.289 0.105 2.748 0.006 0.289 0.268
.EEF2 0.271 0.111 2.448 0.014 0.271 0.212
.EEF3 0.339 0.119 2.850 0.004 0.339 0.345
.IM1 0.266 0.112 2.372 0.018 0.266 0.224
.IM2 0.171 0.098 1.757 0.079 0.171 0.163
.IM3 0.918 0.518 1.774 0.076 0.918 0.675
.ADT1 0.400 0.123 3.243 0.001 0.400 0.371
.ADT2 0.198 0.100 1.972 0.049 0.198 0.164
.ADT3 0.245 0.092 2.648 0.008 0.245 0.181
.EEC 0.607 0.165 3.681 0.000 0.812 0.812
.EEF 0.366 0.149 2.453 0.014 0.464 0.464
.IM 0.669 0.167 3.995 0.000 0.724 0.724
ADT 0.677 0.137 4.924 0.000 1.000 1.000
Group 2 [Combination of EEF and EEC]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 1.035 0.759
EEC2 1.135 0.186 6.119 0.000 1.175 0.868
EEC3 1.240 0.156 7.946 0.000 1.283 0.944
EEF =~
EEF1 1.000 1.140 0.940
EEF2 1.067 0.055 19.496 0.000 1.217 0.967
EEF3 0.991 0.099 9.968 0.000 1.130 0.938
IM =~
IM1 1.000 0.988 0.767
IM2 1.162 0.304 3.822 0.000 1.148 0.901
IM3 1.322 0.330 4.010 0.000 1.306 0.948
ADT =~
ADT1 1.000 0.985 0.956
ADT2 0.894 0.069 13.004 0.000 0.881 0.907
ADT3 0.984 0.085 11.591 0.000 0.970 0.831
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.439 0.132 3.317 0.001 0.380 0.380
EEC 0.234 0.248 0.947 0.344 0.213 0.213
ADT 0.386 0.147 2.633 0.008 0.334 0.334
EEC ~
IM 0.389 0.116 3.358 0.001 0.371 0.371
ADT 0.486 0.121 4.009 0.000 0.463 0.463
IM ~
ADT 0.248 0.222 1.118 0.263 0.247 0.247
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.128 0.138 0.930 0.352 0.221 0.221
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.028 0.161 25.057 0.000 4.028 2.953
.EEC2 4.028 0.160 25.247 0.000 4.028 2.975
.EEC3 4.111 0.160 25.656 0.000 4.111 3.024
.EEF1 5.000 0.143 34.966 0.000 5.000 4.121
.EEF2 5.167 0.148 34.841 0.000 5.167 4.106
.EEF3 5.181 0.142 36.461 0.000 5.181 4.297
.IM1 4.917 0.152 32.383 0.000 4.917 3.816
.IM2 5.375 0.150 35.797 0.000 5.375 4.219
.IM3 5.181 0.162 31.908 0.000 5.181 3.760
.ADT1 5.278 0.121 43.462 0.000 5.278 5.122
.ADT2 5.264 0.115 45.965 0.000 5.264 5.417
.ADT3 5.167 0.137 37.578 0.000 5.167 4.429
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.790 0.164 4.805 0.000 0.790 0.425
.EEC2 0.453 0.186 2.434 0.015 0.453 0.247
.EEC3 0.202 0.102 1.991 0.046 0.202 0.109
.EEF1 0.172 0.052 3.299 0.001 0.172 0.117
.EEF2 0.103 0.047 2.180 0.029 0.103 0.065
.EEF3 0.176 0.076 2.302 0.021 0.176 0.121
.IM1 0.684 0.337 2.028 0.043 0.684 0.412
.IM2 0.306 0.084 3.635 0.000 0.306 0.189
.IM3 0.192 0.102 1.874 0.061 0.192 0.101
.ADT1 0.091 0.052 1.746 0.081 0.091 0.085
.ADT2 0.168 0.069 2.426 0.015 0.168 0.178
.ADT3 0.421 0.212 1.985 0.047 0.421 0.309
.EEC 0.602 0.138 4.366 0.000 0.562 0.562
.EEF 0.563 0.129 4.369 0.000 0.433 0.433
.IM 0.916 0.305 3.003 0.003 0.939 0.939
ADT 0.971 0.269 3.608 0.000 1.000 1.000
Group 3 [EEC orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.953 0.765
EEC2 1.459 0.209 6.965 0.000 1.390 0.896
EEC3 1.474 0.182 8.109 0.000 1.405 0.981
EEF =~
EEF1 1.000 1.130 0.911
EEF2 0.983 0.094 10.402 0.000 1.111 0.936
EEF3 0.953 0.069 13.751 0.000 1.077 0.923
IM =~
IM1 1.000 0.832 0.789
IM2 0.823 0.113 7.296 0.000 0.684 0.846
IM3 0.844 0.146 5.781 0.000 0.702 0.906
ADT =~
ADT1 1.000 0.923 0.878
ADT2 1.062 0.116 9.165 0.000 0.980 0.894
ADT3 1.231 0.120 10.222 0.000 1.137 0.910
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.484 1.058 0.457 0.648 0.356 0.356
EEC 0.543 1.946 0.279 0.780 0.458 0.458
ADT 0.079 0.681 0.116 0.908 0.064 0.064
EEC ~
IM 0.549 0.133 4.125 0.000 0.479 0.479
ADT 0.345 0.112 3.077 0.002 0.334 0.334
IM ~
ADT -0.013 0.126 -0.106 0.916 -0.015 -0.015
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.057 1.177 0.048 0.962 0.098 0.098
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.569 0.147 31.136 0.000 4.569 3.669
.EEC2 4.583 0.183 25.053 0.000 4.583 2.953
.EEC3 4.569 0.169 27.075 0.000 4.569 3.191
.EEF1 5.375 0.146 36.753 0.000 5.375 4.331
.EEF2 5.583 0.140 39.902 0.000 5.583 4.702
.EEF3 5.667 0.137 41.214 0.000 5.667 4.857
.IM1 5.333 0.124 42.933 0.000 5.333 5.060
.IM2 5.889 0.095 61.774 0.000 5.889 7.280
.IM3 5.806 0.091 63.540 0.000 5.806 7.488
.ADT1 5.431 0.124 43.810 0.000 5.431 5.163
.ADT2 5.361 0.129 41.476 0.000 5.361 4.888
.ADT3 5.278 0.147 35.836 0.000 5.278 4.223
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.642 0.133 4.838 0.000 0.642 0.414
.EEC2 0.476 0.124 3.829 0.000 0.476 0.198
.EEC3 0.076 0.071 1.073 0.283 0.076 0.037
.EEF1 0.263 0.063 4.190 0.000 0.263 0.171
.EEF2 0.176 0.062 2.823 0.005 0.176 0.125
.EEF3 0.201 0.120 1.681 0.093 0.201 0.148
.IM1 0.419 0.214 1.960 0.050 0.419 0.377
.IM2 0.186 0.065 2.862 0.004 0.186 0.285
.IM3 0.108 0.056 1.941 0.052 0.108 0.179
.ADT1 0.253 0.090 2.828 0.005 0.253 0.229
.ADT2 0.242 0.094 2.578 0.010 0.242 0.201
.ADT3 0.269 0.103 2.608 0.009 0.269 0.172
.EEC 0.603 0.182 3.321 0.001 0.664 0.664
.EEF 0.560 0.276 2.026 0.043 0.438 0.438
.IM 0.692 0.193 3.593 0.000 1.000 1.000
ADT 0.853 0.178 4.791 0.000 1.000 1.000
ADT as categorical variable
SEM
Grouped by reward
Note: High ADT is coded as above 5
lavaan 0.6-21 ended normally after 82 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 66
Number of observations per group:
no_reward 109
performance_reward 105
Model Test User Model:
Standard Scaled
Test Statistic 141.219 154.386
Degrees of freedom 60 60
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.915
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
no_reward 66.456 66.456
performance_reward 87.930 87.930
Model Test Baseline Model:
Test statistic 1709.294 1191.994
Degrees of freedom 90 90
P-value 0.000 0.000
Scaling correction factor 1.434
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.950 0.914
Tucker-Lewis Index (TLI) 0.925 0.872
Robust Comparative Fit Index (CFI) 0.945
Robust Tucker-Lewis Index (TLI) 0.918
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2330.439 -2330.439
Scaling correction factor 1.818
for the MLR correction
Loglikelihood unrestricted model (H1) -2259.830 -2259.830
Scaling correction factor 1.388
for the MLR correction
Akaike (AIC) 4792.878 4792.878
Bayesian (BIC) 5015.033 5015.033
Sample-size adjusted Bayesian (SABIC) 4805.895 4805.895
Root Mean Square Error of Approximation:
RMSEA 0.112 0.121
90 Percent confidence interval - lower 0.089 0.097
90 Percent confidence interval - upper 0.137 0.146
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.986 0.996
Robust RMSEA 0.116
90 Percent confidence interval - lower 0.094
90 Percent confidence interval - upper 0.139
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.995
Standardized Root Mean Square Residual:
SRMR 0.072 0.072
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [no_reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.891 0.724
EEC2 1.471 0.150 9.787 0.000 1.311 0.891
EEC3 1.362 0.129 10.541 0.000 1.214 0.933
EEF =~
EEF1 1.000 1.003 0.895
EEF2 1.044 0.071 14.641 0.000 1.047 0.908
EEF3 1.018 0.050 20.224 0.000 1.021 0.920
IM =~
IM1 1.000 1.136 0.920
IM2 0.860 0.076 11.286 0.000 0.977 0.938
IM3 0.842 0.104 8.079 0.000 0.956 0.802
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.505 0.084 6.042 0.000 0.572 0.572
ADT_high 0.443 0.168 2.639 0.008 0.442 0.221
EEC ~
IM 0.133 0.110 1.210 0.226 0.169 0.169
ADT_high 0.110 0.158 0.698 0.485 0.124 0.062
EEF 0.443 0.123 3.605 0.000 0.499 0.499
IM ~
ADT_high 0.680 0.231 2.949 0.003 0.599 0.299
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.334 0.283 11.780 0.000 3.334 2.710
.EEC2 3.052 0.402 7.589 0.000 3.052 2.076
.EEC3 3.161 0.368 8.588 0.000 3.161 2.429
.EEF1 4.002 0.314 12.751 0.000 4.002 3.570
.EEF2 4.060 0.317 12.816 0.000 4.060 3.520
.EEF3 4.191 0.313 13.402 0.000 4.191 3.777
.IM1 4.126 0.395 10.447 0.000 4.126 3.340
.IM2 4.711 0.337 13.963 0.000 4.711 4.523
.IM3 4.565 0.359 12.714 0.000 4.565 3.831
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.720 0.129 5.596 0.000 0.720 0.476
.EEC2 0.445 0.112 3.978 0.000 0.445 0.206
.EEC3 0.221 0.087 2.546 0.011 0.221 0.130
.EEF1 0.250 0.070 3.586 0.000 0.250 0.199
.EEF2 0.234 0.075 3.105 0.002 0.234 0.176
.EEF3 0.189 0.076 2.488 0.013 0.189 0.153
.IM1 0.236 0.072 3.282 0.001 0.236 0.154
.IM2 0.130 0.044 2.965 0.003 0.130 0.120
.IM3 0.505 0.323 1.565 0.118 0.505 0.356
.EEC 0.461 0.110 4.196 0.000 0.580 0.580
.EEF 0.552 0.132 4.188 0.000 0.549 0.549
.IM 1.175 0.202 5.806 0.000 0.910 0.910
Group 2 [performance_reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 1.045 0.751
EEC2 1.162 0.150 7.733 0.000 1.215 0.870
EEC3 1.302 0.132 9.840 0.000 1.361 0.954
EEF =~
EEF1 1.000 1.153 0.926
EEF2 1.034 0.075 13.701 0.000 1.192 0.954
EEF3 0.909 0.093 9.780 0.000 1.047 0.889
IM =~
IM1 1.000 0.737 0.681
IM2 1.289 0.503 2.561 0.010 0.949 0.858
IM3 1.295 0.536 2.415 0.016 0.954 0.844
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.825 0.116 7.121 0.000 0.527 0.527
ADT_high 0.486 0.247 1.969 0.049 0.421 0.211
EEC ~
IM 0.224 0.135 1.657 0.097 0.158 0.158
ADT_high 0.505 0.167 3.014 0.003 0.483 0.241
EEF 0.443 0.093 4.750 0.000 0.489 0.489
IM ~
ADT_high 0.192 0.230 0.837 0.403 0.261 0.130
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.071 0.329 9.337 0.000 3.071 2.207
.EEC2 2.848 0.406 7.009 0.000 2.848 2.040
.EEC3 2.786 0.412 6.763 0.000 2.786 1.953
.EEF1 4.396 0.417 10.540 0.000 4.396 3.533
.EEF2 4.553 0.404 11.259 0.000 4.553 3.645
.EEF3 4.675 0.379 12.324 0.000 4.675 3.967
.IM1 4.852 0.383 12.681 0.000 4.852 4.485
.IM2 5.358 0.364 14.715 0.000 5.358 4.843
.IM3 5.147 0.349 14.734 0.000 5.147 4.553
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.844 0.138 6.127 0.000 0.844 0.436
.EEC2 0.472 0.152 3.113 0.002 0.472 0.242
.EEC3 0.184 0.089 2.071 0.038 0.184 0.090
.EEF1 0.219 0.054 4.036 0.000 0.219 0.142
.EEF2 0.140 0.051 2.726 0.006 0.140 0.090
.EEF3 0.292 0.101 2.899 0.004 0.292 0.210
.IM1 0.627 0.299 2.099 0.036 0.627 0.536
.IM2 0.323 0.122 2.657 0.008 0.323 0.264
.IM3 0.368 0.257 1.432 0.152 0.368 0.288
.EEC 0.565 0.118 4.774 0.000 0.517 0.517
.EEF 0.862 0.329 2.621 0.009 0.649 0.649
.IM 0.533 0.285 1.870 0.061 0.983 0.983
Grouped by eco condition
lavaan 0.6-21 ended normally after 90 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 66
Number of observations per group:
EEF orientation 70
EEC orientation 72
Model Test User Model:
Standard Scaled
Test Statistic 106.729 104.107
Degrees of freedom 60 60
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.025
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
EEF orientation 42.202 42.202
EEC orientation 61.905 61.905
Model Test Baseline Model:
Test statistic 1052.013 807.509
Degrees of freedom 90 90
P-value 0.000 0.000
Scaling correction factor 1.303
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.951 0.939
Tucker-Lewis Index (TLI) 0.927 0.908
Robust Comparative Fit Index (CFI) 0.952
Robust Tucker-Lewis Index (TLI) 0.927
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1505.216 -1505.216
Scaling correction factor 1.520
for the MLR correction
Loglikelihood unrestricted model (H1) -1451.851 -1451.851
Scaling correction factor 1.284
for the MLR correction
Akaike (AIC) 3142.432 3142.432
Bayesian (BIC) 3337.516 3337.516
Sample-size adjusted Bayesian (SABIC) 3128.688 3128.688
Root Mean Square Error of Approximation:
RMSEA 0.105 0.102
90 Percent confidence interval - lower 0.071 0.068
90 Percent confidence interval - upper 0.137 0.134
P-value H_0: RMSEA <= 0.050 0.006 0.009
P-value H_0: RMSEA >= 0.080 0.896 0.868
Robust RMSEA 0.103
90 Percent confidence interval - lower 0.069
90 Percent confidence interval - upper 0.136
P-value H_0: Robust RMSEA <= 0.050 0.009
P-value H_0: Robust RMSEA >= 0.080 0.875
Standardized Root Mean Square Residual:
SRMR 0.067 0.067
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [EEF orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.861 0.679
EEC2 1.302 0.198 6.570 0.000 1.121 0.843
EEC3 1.316 0.168 7.834 0.000 1.134 0.901
EEF =~
EEF1 1.000 0.886 0.854
EEF2 1.132 0.157 7.221 0.000 1.004 0.888
EEF3 0.905 0.127 7.102 0.000 0.803 0.810
IM =~
IM1 1.000 0.936 0.859
IM2 1.029 0.132 7.770 0.000 0.963 0.938
IM3 0.724 0.246 2.943 0.003 0.678 0.581
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.617 0.119 5.180 0.000 0.651 0.651
ADT_high 0.280 0.197 1.418 0.156 0.316 0.155
EEC ~
IM 0.139 0.190 0.732 0.464 0.151 0.151
ADT_high 0.084 0.208 0.405 0.685 0.098 0.048
EEF 0.313 0.200 1.565 0.118 0.322 0.322
IM ~
ADT_high 0.680 0.290 2.349 0.019 0.727 0.356
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.506 0.320 10.948 0.000 3.506 2.765
.EEC2 3.443 0.451 7.638 0.000 3.443 2.588
.EEC3 3.562 0.433 8.229 0.000 3.562 2.831
.EEF1 4.352 0.404 10.765 0.000 4.352 4.192
.EEF2 4.276 0.426 10.039 0.000 4.276 3.784
.EEF3 4.587 0.364 12.610 0.000 4.587 4.627
.IM1 4.112 0.495 8.302 0.000 4.112 3.772
.IM2 4.609 0.476 9.690 0.000 4.609 4.487
.IM3 4.655 0.397 11.729 0.000 4.655 3.990
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.866 0.171 5.068 0.000 0.866 0.539
.EEC2 0.511 0.200 2.559 0.011 0.511 0.289
.EEC3 0.297 0.148 2.014 0.044 0.297 0.188
.EEF1 0.292 0.107 2.732 0.006 0.292 0.271
.EEF2 0.270 0.104 2.596 0.009 0.270 0.211
.EEF3 0.339 0.120 2.831 0.005 0.339 0.345
.IM1 0.313 0.101 3.105 0.002 0.313 0.263
.IM2 0.127 0.087 1.457 0.145 0.127 0.120
.IM3 0.902 0.506 1.781 0.075 0.902 0.663
.EEC 0.583 0.161 3.624 0.000 0.785 0.785
.EEF 0.378 0.179 2.111 0.035 0.480 0.480
.IM 0.765 0.240 3.189 0.001 0.873 0.873
Group 2 [EEC orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.954 0.766
EEC2 1.459 0.210 6.962 0.000 1.392 0.897
EEC3 1.471 0.182 8.102 0.000 1.403 0.980
EEF =~
EEF1 1.000 1.131 0.911
EEF2 0.982 0.094 10.471 0.000 1.110 0.935
EEF3 0.953 0.070 13.695 0.000 1.077 0.923
IM =~
IM1 1.000 0.831 0.788
IM2 0.822 0.114 7.235 0.000 0.683 0.844
IM3 0.847 0.150 5.652 0.000 0.704 0.908
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.753 0.170 4.417 0.000 0.553 0.553
ADT_high 0.363 0.240 1.515 0.130 0.321 0.161
EEC ~
IM 0.130 0.160 0.814 0.416 0.114 0.114
ADT_high 0.415 0.162 2.565 0.010 0.435 0.218
EEF 0.496 0.117 4.233 0.000 0.588 0.588
IM ~
ADT_high 0.196 0.214 0.916 0.360 0.236 0.118
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.529 0.330 10.702 0.000 3.529 2.834
.EEC2 3.064 0.515 5.953 0.000 3.064 1.974
.EEC3 3.038 0.514 5.913 0.000 3.038 2.122
.EEF1 4.609 0.445 10.349 0.000 4.609 3.714
.EEF2 4.831 0.428 11.287 0.000 4.831 4.069
.EEF3 4.936 0.426 11.599 0.000 4.936 4.231
.IM1 5.039 0.345 14.585 0.000 5.039 4.780
.IM2 5.647 0.288 19.587 0.000 5.647 6.981
.IM3 5.556 0.276 20.166 0.000 5.556 7.167
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.641 0.131 4.872 0.000 0.641 0.413
.EEC2 0.472 0.123 3.836 0.000 0.472 0.196
.EEC3 0.082 0.070 1.175 0.240 0.082 0.040
.EEF1 0.262 0.062 4.243 0.000 0.262 0.170
.EEF2 0.177 0.063 2.788 0.005 0.177 0.126
.EEF3 0.201 0.120 1.674 0.094 0.201 0.147
.IM1 0.421 0.217 1.939 0.052 0.421 0.378
.IM2 0.188 0.066 2.831 0.005 0.188 0.287
.IM3 0.106 0.057 1.865 0.062 0.106 0.176
.EEC 0.414 0.138 2.988 0.003 0.455 0.455
.EEF 0.827 0.271 3.056 0.002 0.647 0.647
.IM 0.681 0.187 3.632 0.000 0.986 0.986
GGplot
Reward
ADT multigroup analysis on dependent variables (reward)
Eco-condition
ADT multigroup analysis on dependent variables (eco-orientation)
EEC - only
IM
ADT with IVs
Moderated mediation of PBP with ADT on IM - H4
lavaan 0.6-21 ended normally after 41 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 26
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 129.773 129.133
Degrees of freedom 46 46
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.005
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1639.676 1151.316
Degrees of freedom 63 63
P-value 0.000 0.000
Scaling correction factor 1.424
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.947 0.924
Tucker-Lewis Index (TLI) 0.927 0.895
Robust Comparative Fit Index (CFI) 0.946
Robust Tucker-Lewis Index (TLI) 0.926
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2367.012 -2367.012
Scaling correction factor 2.207
for the MLR correction
Loglikelihood unrestricted model (H1) -2302.125 -2302.125
Scaling correction factor 1.439
for the MLR correction
Akaike (AIC) 4786.024 4786.024
Bayesian (BIC) 4873.539 4873.539
Sample-size adjusted Bayesian (SABIC) 4791.152 4791.152
Root Mean Square Error of Approximation:
RMSEA 0.092 0.092
90 Percent confidence interval - lower 0.074 0.073
90 Percent confidence interval - upper 0.111 0.111
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.867 0.861
Robust RMSEA 0.092
90 Percent confidence interval - lower 0.074
90 Percent confidence interval - upper 0.111
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.864
Standardized Root Mean Square Residual:
SRMR 0.080 0.080
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.973 0.740
EEC2 1.289 0.109 11.868 0.000 1.255 0.874
EEC3 1.329 0.093 14.345 0.000 1.293 0.946
EEF =~
EEF1 1.000 1.077 0.908
EEF2 1.048 0.052 19.977 0.000 1.129 0.934
EEF3 0.963 0.054 17.765 0.000 1.037 0.904
IM =~
IM1 1.000 0.968 0.833
IM2 0.969 0.172 5.627 0.000 0.938 0.872
IM3 0.973 0.197 4.948 0.000 0.942 0.810
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
Reward_PBP 0.237 0.223 1.063 0.288 0.245 0.123
ADT_high 0.660 0.243 2.710 0.007 0.681 0.341
PBP_ADT -0.303 0.272 -1.116 0.265 -0.313 -0.136
EEF ~
IM 0.711 0.077 9.196 0.000 0.639 0.639
Reward_PBP 0.146 0.123 1.186 0.236 0.135 0.068
EEC ~
IM 0.516 0.076 6.791 0.000 0.513 0.513
Reward_PBP 0.048 0.124 0.386 0.700 0.049 0.025
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.326 0.113 2.875 0.004 0.476 0.476
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.782 0.093 8.400 0.000 0.782 0.452
.EEC2 0.484 0.104 4.641 0.000 0.484 0.235
.EEC3 0.195 0.062 3.165 0.002 0.195 0.104
.EEF1 0.248 0.046 5.439 0.000 0.248 0.176
.EEF2 0.186 0.046 4.077 0.000 0.186 0.128
.EEF3 0.240 0.063 3.793 0.000 0.240 0.183
.IM1 0.414 0.175 2.370 0.018 0.414 0.307
.IM2 0.278 0.100 2.781 0.005 0.278 0.240
.IM3 0.464 0.247 1.883 0.060 0.464 0.343
.EEC 0.696 0.120 5.819 0.000 0.735 0.735
.EEF 0.676 0.168 4.031 0.000 0.583 0.583
.IM 0.865 0.181 4.789 0.000 0.923 0.923
TR
Continuous TR
On reward groups
lavaan 0.6-21 ended normally after 51 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 84
Number of observations per group:
Control 109
Performance-based reward 105
Model Test User Model:
Standard Scaled
Test Statistic 203.279 216.274
Degrees of freedom 96 96
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.940
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
Control 100.170 100.170
Performance-based reward 116.104 116.104
Model Test Baseline Model:
Test statistic 2335.169 1715.730
Degrees of freedom 132 132
P-value 0.000 0.000
Scaling correction factor 1.361
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.951 0.924
Tucker-Lewis Index (TLI) 0.933 0.896
Robust Comparative Fit Index (CFI) 0.948
Robust Tucker-Lewis Index (TLI) 0.928
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -3225.606 -3225.606
Scaling correction factor 1.717
for the MLR correction
Loglikelihood unrestricted model (H1) -3123.966 -3123.966
Scaling correction factor 1.303
for the MLR correction
Akaike (AIC) 6619.212 6619.212
Bayesian (BIC) 6901.954 6901.954
Sample-size adjusted Bayesian (SABIC) 6635.779 6635.779
Root Mean Square Error of Approximation:
RMSEA 0.102 0.108
90 Percent confidence interval - lower 0.083 0.088
90 Percent confidence interval - upper 0.122 0.128
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.968 0.989
Robust RMSEA 0.105
90 Percent confidence interval - lower 0.086
90 Percent confidence interval - upper 0.124
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.985
Standardized Root Mean Square Residual:
SRMR 0.073 0.073
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [Control]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.892 0.725
EEC2 1.467 0.150 9.782 0.000 1.309 0.890
EEC3 1.362 0.129 10.522 0.000 1.215 0.933
EEF =~
EEF1 1.000 1.003 0.895
EEF2 1.042 0.071 14.640 0.000 1.046 0.907
EEF3 1.019 0.050 20.517 0.000 1.022 0.921
IM =~
IM1 1.000 1.136 0.919
IM2 0.860 0.075 11.490 0.000 0.977 0.938
IM3 0.842 0.103 8.166 0.000 0.957 0.803
TR =~
TR1 1.000 1.239 0.876
TR2 1.149 0.080 14.339 0.000 1.424 0.939
TR3 1.067 0.084 12.645 0.000 1.322 0.888
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.538 0.082 6.567 0.000 0.609 0.609
TR 0.095 0.071 1.340 0.180 0.118 0.118
EEC ~
IM 0.378 0.088 4.314 0.000 0.481 0.481
TR 0.074 0.078 0.949 0.343 0.102 0.102
IM ~
TR 0.218 0.112 1.944 0.052 0.237 0.237
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.266 0.078 3.387 0.001 0.455 0.455
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.165 0.118 35.341 0.000 4.165 3.385
.EEC2 4.275 0.141 30.351 0.000 4.275 2.907
.EEC3 4.294 0.125 34.445 0.000 4.294 3.299
.EEF1 5.193 0.107 48.365 0.000 5.193 4.633
.EEF2 5.303 0.110 47.999 0.000 5.303 4.597
.EEF3 5.404 0.106 50.837 0.000 5.404 4.869
.IM1 5.156 0.118 43.574 0.000 5.156 4.174
.IM2 5.596 0.100 56.098 0.000 5.596 5.373
.IM3 5.431 0.114 47.591 0.000 5.431 4.558
.TR1 3.826 0.135 28.263 0.000 3.826 2.707
.TR2 3.743 0.145 25.763 0.000 3.743 2.468
.TR3 3.477 0.142 24.404 0.000 3.477 2.337
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.719 0.128 5.625 0.000 0.719 0.475
.EEC2 0.450 0.113 3.979 0.000 0.450 0.208
.EEC3 0.218 0.084 2.589 0.010 0.218 0.129
.EEF1 0.250 0.070 3.576 0.000 0.250 0.199
.EEF2 0.236 0.076 3.096 0.002 0.236 0.178
.EEF3 0.186 0.075 2.493 0.013 0.186 0.151
.IM1 0.236 0.070 3.354 0.001 0.236 0.155
.IM2 0.130 0.042 3.077 0.002 0.130 0.120
.IM3 0.504 0.321 1.570 0.116 0.504 0.355
.TR1 0.463 0.130 3.574 0.000 0.463 0.232
.TR2 0.274 0.111 2.469 0.014 0.274 0.119
.TR3 0.466 0.159 2.924 0.003 0.466 0.211
.EEC 0.584 0.135 4.332 0.000 0.735 0.735
.EEF 0.585 0.128 4.579 0.000 0.581 0.581
.IM 1.217 0.214 5.676 0.000 0.944 0.944
TR 1.534 0.237 6.477 0.000 1.000 1.000
R-Square:
Estimate
EEC1 0.525
EEC2 0.792
EEC3 0.871
EEF1 0.801
EEF2 0.822
EEF3 0.849
IM1 0.845
IM2 0.880
IM3 0.645
TR1 0.768
TR2 0.881
TR3 0.789
EEC 0.265
EEF 0.419
IM 0.056
Group 2 [Performance-based reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 1.038 0.746
EEC2 1.162 0.149 7.793 0.000 1.206 0.864
EEC3 1.324 0.138 9.623 0.000 1.374 0.963
EEF =~
EEF1 1.000 1.152 0.926
EEF2 1.034 0.076 13.661 0.000 1.192 0.954
EEF3 0.909 0.093 9.773 0.000 1.048 0.889
IM =~
IM1 1.000 0.737 0.681
IM2 1.287 0.509 2.530 0.011 0.949 0.857
IM3 1.294 0.548 2.364 0.018 0.954 0.844
TR =~
TR1 1.000 1.368 0.864
TR2 1.090 0.080 13.580 0.000 1.491 0.951
TR3 1.059 0.083 12.715 0.000 1.448 0.949
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.783 0.123 6.382 0.000 0.501 0.501
TR 0.220 0.116 1.904 0.057 0.261 0.261
EEC ~
IM 0.534 0.152 3.504 0.000 0.379 0.379
TR 0.272 0.086 3.150 0.002 0.359 0.359
IM ~
TR 0.112 0.108 1.035 0.301 0.207 0.207
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.352 0.169 2.083 0.037 0.454 0.454
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.333 0.136 31.909 0.000 4.333 3.114
.EEC2 4.314 0.136 31.668 0.000 4.314 3.090
.EEC3 4.429 0.139 31.808 0.000 4.429 3.104
.EEF1 5.371 0.121 44.242 0.000 5.371 4.318
.EEF2 5.562 0.122 45.624 0.000 5.562 4.452
.EEF3 5.562 0.115 48.357 0.000 5.562 4.719
.IM1 5.143 0.106 48.718 0.000 5.143 4.754
.IM2 5.733 0.108 53.099 0.000 5.733 5.182
.IM3 5.524 0.110 50.069 0.000 5.524 4.886
.TR1 3.762 0.154 24.355 0.000 3.762 2.377
.TR2 3.781 0.153 24.718 0.000 3.781 2.412
.TR3 3.476 0.149 23.358 0.000 3.476 2.279
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.859 0.138 6.217 0.000 0.859 0.444
.EEC2 0.495 0.157 3.161 0.002 0.495 0.254
.EEC3 0.147 0.093 1.584 0.113 0.147 0.072
.EEF1 0.220 0.054 4.045 0.000 0.220 0.142
.EEF2 0.140 0.052 2.702 0.007 0.140 0.090
.EEF3 0.291 0.100 2.911 0.004 0.291 0.209
.IM1 0.627 0.305 2.058 0.040 0.627 0.536
.IM2 0.324 0.122 2.660 0.008 0.324 0.265
.IM3 0.368 0.262 1.406 0.160 0.368 0.288
.TR1 0.634 0.164 3.864 0.000 0.634 0.253
.TR2 0.233 0.078 2.999 0.003 0.233 0.095
.TR3 0.229 0.084 2.734 0.006 0.229 0.099
.EEC 0.723 0.155 4.675 0.000 0.671 0.671
.EEF 0.832 0.296 2.814 0.005 0.626 0.626
.IM 0.520 0.269 1.933 0.053 0.957 0.957
TR 1.871 0.291 6.421 0.000 1.000 1.000
R-Square:
Estimate
EEC1 0.556
EEC2 0.746
EEC3 0.928
EEF1 0.858
EEF2 0.910
EEF3 0.791
IM1 0.464
IM2 0.735
IM3 0.712
TR1 0.747
TR2 0.905
TR3 0.901
EEC 0.329
EEF 0.374
IM 0.043
On eco groups
lavaan 0.6-21 ended normally after 49 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 129
Number of observations per group:
EEF orientation 70
Combination of EEF and EEC 72
EEC orientation 72
Model Test User Model:
Standard Scaled
Test Statistic 260.132 262.513
Degrees of freedom 141 141
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.991
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
EEF orientation 70.406 70.406
Combination of EEF and EEC 97.476 97.476
EEC orientation 94.631 94.631
Model Test Baseline Model:
Test statistic 2331.901 1848.415
Degrees of freedom 198 198
P-value 0.000 0.000
Scaling correction factor 1.262
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.944 0.926
Tucker-Lewis Index (TLI) 0.922 0.897
Robust Comparative Fit Index (CFI) 0.942
Robust Tucker-Lewis Index (TLI) 0.919
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2998.573 -2998.573
Scaling correction factor 1.526
for the MLR correction
Loglikelihood unrestricted model (H1) -2868.507 -2868.507
Scaling correction factor 1.247
for the MLR correction
Akaike (AIC) 6255.147 6255.147
Bayesian (BIC) 6689.358 6689.358
Sample-size adjusted Bayesian (SABIC) 6280.589 6280.589
Root Mean Square Error of Approximation:
RMSEA 0.109 0.110
90 Percent confidence interval - lower 0.088 0.089
90 Percent confidence interval - upper 0.129 0.131
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.987 0.989
Robust RMSEA 0.109
90 Percent confidence interval - lower 0.089
90 Percent confidence interval - upper 0.130
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.989
Standardized Root Mean Square Residual:
SRMR 0.078 0.078
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [EEF orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.864 0.681
EEC2 1.290 0.195 6.622 0.000 1.114 0.838
EEC3 1.319 0.170 7.751 0.000 1.139 0.906
EEF =~
EEF1 1.000 0.888 0.855
EEF2 1.129 0.160 7.061 0.000 1.003 0.887
EEF3 0.903 0.128 7.079 0.000 0.802 0.809
IM =~
IM1 1.000 0.961 0.881
IM2 0.978 0.142 6.901 0.000 0.940 0.915
IM3 0.693 0.260 2.664 0.008 0.665 0.570
ADT =~
ADT1 1.000 0.823 0.793
ADT2 1.220 0.169 7.233 0.000 1.003 0.914
ADT3 1.280 0.182 7.017 0.000 1.053 0.905
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.580 0.216 2.685 0.007 0.628 0.628
EEC 0.061 0.588 0.104 0.917 0.059 0.059
ADT 0.128 0.199 0.641 0.521 0.118 0.118
EEC ~
IM 0.263 0.146 1.803 0.071 0.292 0.292
ADT 0.211 0.155 1.367 0.172 0.201 0.201
IM ~
ADT 0.613 0.262 2.339 0.019 0.525 0.525
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.072 0.307 0.234 0.815 0.152 0.152
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.143 0.152 27.333 0.000 4.143 3.267
.EEC2 4.271 0.159 26.868 0.000 4.271 3.211
.EEC3 4.400 0.150 29.260 0.000 4.400 3.497
.EEF1 5.471 0.124 44.095 0.000 5.471 5.270
.EEF2 5.543 0.135 41.042 0.000 5.543 4.905
.EEF3 5.600 0.118 47.260 0.000 5.600 5.649
.IM1 5.200 0.130 39.906 0.000 5.200 4.770
.IM2 5.729 0.123 46.665 0.000 5.729 5.578
.IM3 5.443 0.139 39.034 0.000 5.443 4.665
.ADT1 5.457 0.124 44.001 0.000 5.457 5.259
.ADT2 5.371 0.131 40.941 0.000 5.371 4.893
.ADT3 5.300 0.139 38.124 0.000 5.300 4.557
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.862 0.170 5.062 0.000 0.862 0.536
.EEC2 0.527 0.201 2.618 0.009 0.527 0.298
.EEC3 0.285 0.145 1.968 0.049 0.285 0.180
.EEF1 0.289 0.105 2.748 0.006 0.289 0.268
.EEF2 0.271 0.111 2.448 0.014 0.271 0.212
.EEF3 0.339 0.119 2.850 0.004 0.339 0.345
.IM1 0.266 0.112 2.372 0.018 0.266 0.224
.IM2 0.171 0.098 1.757 0.079 0.171 0.163
.IM3 0.918 0.518 1.774 0.076 0.918 0.675
.ADT1 0.400 0.123 3.243 0.001 0.400 0.371
.ADT2 0.198 0.100 1.972 0.049 0.198 0.164
.ADT3 0.245 0.092 2.648 0.008 0.245 0.181
.EEC 0.607 0.165 3.681 0.000 0.812 0.812
.EEF 0.366 0.149 2.453 0.014 0.464 0.464
.IM 0.669 0.167 3.995 0.000 0.724 0.724
ADT 0.677 0.137 4.924 0.000 1.000 1.000
Group 2 [Combination of EEF and EEC]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 1.035 0.759
EEC2 1.135 0.186 6.119 0.000 1.175 0.868
EEC3 1.240 0.156 7.946 0.000 1.283 0.944
EEF =~
EEF1 1.000 1.140 0.940
EEF2 1.067 0.055 19.496 0.000 1.217 0.967
EEF3 0.991 0.099 9.968 0.000 1.130 0.938
IM =~
IM1 1.000 0.988 0.767
IM2 1.162 0.304 3.822 0.000 1.148 0.901
IM3 1.322 0.330 4.010 0.000 1.306 0.948
ADT =~
ADT1 1.000 0.985 0.956
ADT2 0.894 0.069 13.004 0.000 0.881 0.907
ADT3 0.984 0.085 11.591 0.000 0.970 0.831
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.439 0.132 3.317 0.001 0.380 0.380
EEC 0.234 0.248 0.947 0.344 0.213 0.213
ADT 0.386 0.147 2.633 0.008 0.334 0.334
EEC ~
IM 0.389 0.116 3.358 0.001 0.371 0.371
ADT 0.486 0.121 4.009 0.000 0.463 0.463
IM ~
ADT 0.248 0.222 1.118 0.263 0.247 0.247
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.128 0.138 0.930 0.352 0.221 0.221
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.028 0.161 25.057 0.000 4.028 2.953
.EEC2 4.028 0.160 25.247 0.000 4.028 2.975
.EEC3 4.111 0.160 25.656 0.000 4.111 3.024
.EEF1 5.000 0.143 34.966 0.000 5.000 4.121
.EEF2 5.167 0.148 34.841 0.000 5.167 4.106
.EEF3 5.181 0.142 36.461 0.000 5.181 4.297
.IM1 4.917 0.152 32.383 0.000 4.917 3.816
.IM2 5.375 0.150 35.797 0.000 5.375 4.219
.IM3 5.181 0.162 31.908 0.000 5.181 3.760
.ADT1 5.278 0.121 43.462 0.000 5.278 5.122
.ADT2 5.264 0.115 45.965 0.000 5.264 5.417
.ADT3 5.167 0.137 37.578 0.000 5.167 4.429
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.790 0.164 4.805 0.000 0.790 0.425
.EEC2 0.453 0.186 2.434 0.015 0.453 0.247
.EEC3 0.202 0.102 1.991 0.046 0.202 0.109
.EEF1 0.172 0.052 3.299 0.001 0.172 0.117
.EEF2 0.103 0.047 2.180 0.029 0.103 0.065
.EEF3 0.176 0.076 2.302 0.021 0.176 0.121
.IM1 0.684 0.337 2.028 0.043 0.684 0.412
.IM2 0.306 0.084 3.635 0.000 0.306 0.189
.IM3 0.192 0.102 1.874 0.061 0.192 0.101
.ADT1 0.091 0.052 1.746 0.081 0.091 0.085
.ADT2 0.168 0.069 2.426 0.015 0.168 0.178
.ADT3 0.421 0.212 1.985 0.047 0.421 0.309
.EEC 0.602 0.138 4.366 0.000 0.562 0.562
.EEF 0.563 0.129 4.369 0.000 0.433 0.433
.IM 0.916 0.305 3.003 0.003 0.939 0.939
ADT 0.971 0.269 3.608 0.000 1.000 1.000
Group 3 [EEC orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.953 0.765
EEC2 1.459 0.209 6.965 0.000 1.390 0.896
EEC3 1.474 0.182 8.109 0.000 1.405 0.981
EEF =~
EEF1 1.000 1.130 0.911
EEF2 0.983 0.094 10.402 0.000 1.111 0.936
EEF3 0.953 0.069 13.751 0.000 1.077 0.923
IM =~
IM1 1.000 0.832 0.789
IM2 0.823 0.113 7.296 0.000 0.684 0.846
IM3 0.844 0.146 5.781 0.000 0.702 0.906
ADT =~
ADT1 1.000 0.923 0.878
ADT2 1.062 0.116 9.165 0.000 0.980 0.894
ADT3 1.231 0.120 10.222 0.000 1.137 0.910
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.484 1.058 0.457 0.648 0.356 0.356
EEC 0.543 1.946 0.279 0.780 0.458 0.458
ADT 0.079 0.681 0.116 0.908 0.064 0.064
EEC ~
IM 0.549 0.133 4.125 0.000 0.479 0.479
ADT 0.345 0.112 3.077 0.002 0.334 0.334
IM ~
ADT -0.013 0.126 -0.106 0.916 -0.015 -0.015
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.057 1.177 0.048 0.962 0.098 0.098
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 4.569 0.147 31.136 0.000 4.569 3.669
.EEC2 4.583 0.183 25.053 0.000 4.583 2.953
.EEC3 4.569 0.169 27.075 0.000 4.569 3.191
.EEF1 5.375 0.146 36.753 0.000 5.375 4.331
.EEF2 5.583 0.140 39.902 0.000 5.583 4.702
.EEF3 5.667 0.137 41.214 0.000 5.667 4.857
.IM1 5.333 0.124 42.933 0.000 5.333 5.060
.IM2 5.889 0.095 61.774 0.000 5.889 7.280
.IM3 5.806 0.091 63.540 0.000 5.806 7.488
.ADT1 5.431 0.124 43.810 0.000 5.431 5.163
.ADT2 5.361 0.129 41.476 0.000 5.361 4.888
.ADT3 5.278 0.147 35.836 0.000 5.278 4.223
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.642 0.133 4.838 0.000 0.642 0.414
.EEC2 0.476 0.124 3.829 0.000 0.476 0.198
.EEC3 0.076 0.071 1.073 0.283 0.076 0.037
.EEF1 0.263 0.063 4.190 0.000 0.263 0.171
.EEF2 0.176 0.062 2.823 0.005 0.176 0.125
.EEF3 0.201 0.120 1.681 0.093 0.201 0.148
.IM1 0.419 0.214 1.960 0.050 0.419 0.377
.IM2 0.186 0.065 2.862 0.004 0.186 0.285
.IM3 0.108 0.056 1.941 0.052 0.108 0.179
.ADT1 0.253 0.090 2.828 0.005 0.253 0.229
.ADT2 0.242 0.094 2.578 0.010 0.242 0.201
.ADT3 0.269 0.103 2.608 0.009 0.269 0.172
.EEC 0.603 0.182 3.321 0.001 0.664 0.664
.EEF 0.560 0.276 2.026 0.043 0.438 0.438
.IM 0.692 0.193 3.593 0.000 1.000 1.000
ADT 0.853 0.178 4.791 0.000 1.000 1.000
GG plot
`geom_smooth()` using formula = 'y ~ x'
`geom_smooth()` using formula = 'y ~ x'
TR as categorical variable
SEM
Grouped by reward
Note: High trust is defined as answering above 5 on the scale
lavaan 0.6-21 ended normally after 87 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 66
Number of observations per group:
Control 73
Performance-based reward 69
Model Test User Model:
Standard Scaled
Test Statistic 116.119 132.195
Degrees of freedom 60 60
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.878
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
Control 65.749 65.749
Performance-based reward 66.446 66.446
Model Test Baseline Model:
Test statistic 1014.396 750.037
Degrees of freedom 90 90
P-value 0.000 0.000
Scaling correction factor 1.352
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.939 0.891
Tucker-Lewis Index (TLI) 0.909 0.836
Robust Comparative Fit Index (CFI) 0.929
Robust Tucker-Lewis Index (TLI) 0.893
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1534.447 -1534.447
Scaling correction factor 1.778
for the MLR correction
Loglikelihood unrestricted model (H1) -1476.388 -1476.388
Scaling correction factor 1.349
for the MLR correction
Akaike (AIC) 3200.895 3200.895
Bayesian (BIC) 3395.979 3395.979
Sample-size adjusted Bayesian (SABIC) 3187.151 3187.151
Root Mean Square Error of Approximation:
RMSEA 0.115 0.130
90 Percent confidence interval - lower 0.083 0.098
90 Percent confidence interval - upper 0.146 0.162
P-value H_0: RMSEA <= 0.050 0.001 0.000
P-value H_0: RMSEA >= 0.080 0.963 0.994
Robust RMSEA 0.122
90 Percent confidence interval - lower 0.094
90 Percent confidence interval - upper 0.150
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.992
Standardized Root Mean Square Residual:
SRMR 0.069 0.069
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [Control]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.955 0.766
EEC2 1.437 0.164 8.744 0.000 1.373 0.878
EEC3 1.372 0.141 9.751 0.000 1.311 0.957
EEF =~
EEF1 1.000 0.994 0.879
EEF2 1.018 0.104 9.828 0.000 1.012 0.884
EEF3 0.996 0.066 15.055 0.000 0.990 0.900
IM =~
IM1 1.000 0.964 0.851
IM2 1.002 0.091 11.034 0.000 0.966 0.985
IM3 0.824 0.154 5.355 0.000 0.794 0.730
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.624 0.120 5.207 0.000 0.605 0.605
TR_high 0.538 0.244 2.203 0.028 0.541 0.200
EEC ~
IM 0.026 0.166 0.159 0.874 0.027 0.027
TR_high 0.292 0.241 1.210 0.226 0.306 0.113
EEF 0.540 0.158 3.415 0.001 0.562 0.562
IM ~
TR_high -0.077 0.268 -0.287 0.774 -0.080 -0.030
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.601 0.374 9.637 0.000 3.601 2.887
.EEC2 3.346 0.533 6.274 0.000 3.346 2.140
.EEC3 3.484 0.489 7.122 0.000 3.484 2.543
.EEF1 4.731 0.373 12.671 0.000 4.731 4.184
.EEF2 4.831 0.369 13.092 0.000 4.831 4.220
.EEF3 4.926 0.365 13.502 0.000 4.926 4.480
.IM1 5.336 0.358 14.913 0.000 5.336 4.714
.IM2 5.761 0.356 16.191 0.000 5.761 5.879
.IM3 5.581 0.298 18.700 0.000 5.581 5.134
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.644 0.160 4.029 0.000 0.644 0.414
.EEC2 0.561 0.166 3.384 0.001 0.561 0.229
.EEC3 0.159 0.095 1.671 0.095 0.159 0.085
.EEF1 0.291 0.101 2.881 0.004 0.291 0.227
.EEF2 0.287 0.107 2.673 0.008 0.287 0.219
.EEF3 0.229 0.105 2.192 0.028 0.229 0.190
.IM1 0.353 0.092 3.844 0.000 0.353 0.276
.IM2 0.028 0.050 0.553 0.580 0.028 0.029
.IM3 0.551 0.440 1.253 0.210 0.551 0.466
.EEC 0.574 0.158 3.643 0.000 0.629 0.629
.EEF 0.594 0.190 3.126 0.002 0.601 0.601
.IM 0.928 0.290 3.200 0.001 0.999 0.999
Group 2 [Performance-based reward]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.869 0.672
EEC2 1.293 0.250 5.166 0.000 1.123 0.857
EEC3 1.447 0.244 5.936 0.000 1.257 0.951
EEF =~
EEF1 1.000 1.032 0.898
EEF2 1.046 0.152 6.867 0.000 1.079 0.936
EEF3 0.860 0.118 7.269 0.000 0.888 0.847
IM =~
IM1 1.000 0.926 0.919
IM2 0.613 0.259 2.367 0.018 0.568 0.675
IM3 0.513 0.239 2.142 0.032 0.475 0.533
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.723 0.156 4.645 0.000 0.649 0.649
TR_high 0.134 0.262 0.512 0.609 0.130 0.046
EEC ~
IM 0.184 0.169 1.086 0.278 0.196 0.196
TR_high 0.468 0.288 1.627 0.104 0.539 0.190
EEF 0.329 0.147 2.229 0.026 0.391 0.391
IM ~
TR_high 0.803 0.299 2.681 0.007 0.866 0.305
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.504 0.331 10.575 0.000 3.504 2.712
.EEC2 3.335 0.400 8.333 0.000 3.335 2.543
.EEC3 3.200 0.436 7.343 0.000 3.200 2.422
.EEF1 4.732 0.413 11.448 0.000 4.732 4.119
.EEF2 4.869 0.409 11.911 0.000 4.869 4.222
.EEF3 5.079 0.400 12.691 0.000 5.079 4.848
.IM1 4.371 0.391 11.184 0.000 4.371 4.333
.IM2 5.393 0.306 17.614 0.000 5.393 6.409
.IM3 5.282 0.211 25.023 0.000 5.282 5.927
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.915 0.163 5.607 0.000 0.915 0.548
.EEC2 0.458 0.171 2.674 0.007 0.458 0.266
.EEC3 0.166 0.135 1.227 0.220 0.166 0.095
.EEF1 0.255 0.074 3.463 0.001 0.255 0.193
.EEF2 0.165 0.081 2.042 0.041 0.165 0.124
.EEF3 0.310 0.133 2.338 0.019 0.310 0.282
.IM1 0.159 0.169 0.943 0.346 0.159 0.156
.IM2 0.386 0.179 2.155 0.031 0.386 0.545
.IM3 0.569 0.305 1.865 0.062 0.569 0.716
.EEC 0.462 0.161 2.876 0.004 0.613 0.613
.EEF 0.595 0.222 2.679 0.007 0.559 0.559
.IM 0.779 0.297 2.625 0.009 0.907 0.907
Grouped by eco condition
lavaan 0.6-21 ended normally after 95 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 66
Number of observations per group:
EEF orientation 70
EEC orientation 72
Model Test User Model:
Standard Scaled
Test Statistic 110.974 106.612
Degrees of freedom 60 60
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.041
Yuan-Bentler correction (Mplus variant)
Test statistic for each group:
EEF orientation 47.760 47.760
EEC orientation 58.853 58.853
Model Test Baseline Model:
Test statistic 1046.682 808.080
Degrees of freedom 90 90
P-value 0.000 0.000
Scaling correction factor 1.295
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.947 0.935
Tucker-Lewis Index (TLI) 0.920 0.903
Robust Comparative Fit Index (CFI) 0.948
Robust Tucker-Lewis Index (TLI) 0.922
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1510.004 -1510.004
Scaling correction factor 1.495
for the MLR correction
Loglikelihood unrestricted model (H1) -1454.517 -1454.517
Scaling correction factor 1.279
for the MLR correction
Akaike (AIC) 3152.008 3152.008
Bayesian (BIC) 3347.092 3347.092
Sample-size adjusted Bayesian (SABIC) 3138.264 3138.264
Root Mean Square Error of Approximation:
RMSEA 0.109 0.105
90 Percent confidence interval - lower 0.077 0.072
90 Percent confidence interval - upper 0.141 0.136
P-value H_0: RMSEA <= 0.050 0.003 0.005
P-value H_0: RMSEA >= 0.080 0.934 0.899
Robust RMSEA 0.107
90 Percent confidence interval - lower 0.073
90 Percent confidence interval - upper 0.139
P-value H_0: Robust RMSEA <= 0.050 0.005
P-value H_0: Robust RMSEA >= 0.080 0.907
Standardized Root Mean Square Residual:
SRMR 0.069 0.069
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Group 1 [EEF orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.868 0.684
EEC2 1.283 0.196 6.555 0.000 1.113 0.837
EEC3 1.313 0.172 7.640 0.000 1.139 0.905
EEF =~
EEF1 1.000 0.878 0.846
EEF2 1.152 0.158 7.300 0.000 1.012 0.895
EEF3 0.911 0.126 7.238 0.000 0.801 0.808
IM =~
IM1 1.000 0.922 0.846
IM2 1.060 0.123 8.643 0.000 0.977 0.951
IM3 0.739 0.233 3.171 0.002 0.682 0.584
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.664 0.125 5.322 0.000 0.696 0.696
TR_high 0.103 0.239 0.431 0.667 0.117 0.044
EEC ~
IM 0.130 0.185 0.705 0.481 0.138 0.138
TR_high 0.322 0.272 1.181 0.238 0.371 0.140
EEF 0.330 0.191 1.732 0.083 0.334 0.334
IM ~
TR_high 0.268 0.298 0.899 0.369 0.290 0.109
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.617 0.353 10.240 0.000 3.617 2.852
.EEC2 3.597 0.431 8.352 0.000 3.597 2.704
.EEC3 3.710 0.431 8.611 0.000 3.710 2.949
.EEF1 5.143 0.360 14.294 0.000 5.143 4.954
.EEF2 5.165 0.402 12.853 0.000 5.165 4.571
.EEF3 5.301 0.346 15.300 0.000 5.301 5.347
.IM1 4.886 0.377 12.944 0.000 4.886 4.482
.IM2 5.396 0.383 14.099 0.000 5.396 5.254
.IM3 5.211 0.298 17.466 0.000 5.211 4.467
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.855 0.172 4.966 0.000 0.855 0.532
.EEC2 0.531 0.204 2.599 0.009 0.531 0.300
.EEC3 0.286 0.151 1.892 0.058 0.286 0.181
.EEF1 0.306 0.109 2.806 0.005 0.306 0.284
.EEF2 0.253 0.104 2.435 0.015 0.253 0.198
.EEF3 0.342 0.123 2.774 0.006 0.342 0.348
.IM1 0.339 0.093 3.652 0.000 0.339 0.285
.IM2 0.100 0.075 1.335 0.182 0.100 0.095
.IM3 0.896 0.495 1.811 0.070 0.896 0.659
.EEC 0.579 0.153 3.776 0.000 0.769 0.769
.EEF 0.391 0.181 2.158 0.031 0.506 0.506
.IM 0.840 0.290 2.896 0.004 0.988 0.988
Group 2 [EEC orientation]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.956 0.767
EEC2 1.455 0.208 7.012 0.000 1.391 0.896
EEC3 1.469 0.182 8.054 0.000 1.404 0.980
EEF =~
EEF1 1.000 1.131 0.911
EEF2 0.982 0.094 10.493 0.000 1.110 0.935
EEF3 0.953 0.069 13.766 0.000 1.077 0.923
IM =~
IM1 1.000 0.831 0.788
IM2 0.822 0.114 7.212 0.000 0.683 0.844
IM3 0.847 0.150 5.642 0.000 0.704 0.908
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF ~
IM 0.745 0.166 4.475 0.000 0.547 0.547
TR_high 0.680 0.232 2.930 0.003 0.601 0.208
EEC ~
IM 0.137 0.165 0.830 0.406 0.119 0.119
TR_high 0.486 0.210 2.315 0.021 0.508 0.176
EEF 0.495 0.118 4.180 0.000 0.585 0.585
IM ~
TR_high 0.287 0.293 0.979 0.327 0.345 0.119
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 3.468 0.340 10.214 0.000 3.468 2.785
.EEC2 2.981 0.497 6.000 0.000 2.981 1.920
.EEC3 2.952 0.467 6.323 0.000 2.952 2.061
.EEF1 4.358 0.393 11.097 0.000 4.358 3.511
.EEF2 4.584 0.373 12.281 0.000 4.584 3.861
.EEF3 4.697 0.382 12.290 0.000 4.697 4.026
.IM1 5.007 0.364 13.756 0.000 5.007 4.750
.IM2 5.620 0.295 19.045 0.000 5.620 6.948
.IM3 5.529 0.286 19.337 0.000 5.529 7.131
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.638 0.133 4.776 0.000 0.638 0.411
.EEC2 0.475 0.123 3.861 0.000 0.475 0.197
.EEC3 0.080 0.067 1.199 0.231 0.080 0.039
.EEF1 0.262 0.062 4.230 0.000 0.262 0.170
.EEF2 0.177 0.063 2.794 0.005 0.177 0.126
.EEF3 0.200 0.119 1.681 0.093 0.200 0.147
.IM1 0.421 0.216 1.945 0.052 0.421 0.379
.IM2 0.188 0.067 2.829 0.005 0.188 0.288
.IM3 0.105 0.057 1.849 0.064 0.105 0.175
.EEC 0.430 0.137 3.140 0.002 0.471 0.471
.EEF 0.805 0.268 3.007 0.003 0.630 0.630
.IM 0.680 0.187 3.646 0.000 0.986 0.986
GGplot
Reward
Eco-condition
EEF
EEC
Moderators on IM
ADT
The effect of ADT on IM in each condition
TR
The effect of TR on IM in each condition
TR with IVs
Moderated mediation of PBP with TR on IM - H5
lavaan 0.6-21 ended normally after 26 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 9
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 16.649 16.878
Degrees of freedom 6 6
P-value (Chi-square) 0.011 0.010
Scaling correction factor 0.986
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 363.768 152.233
Degrees of freedom 12 12
P-value 0.000 0.000
Scaling correction factor 2.390
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.970 0.922
Tucker-Lewis Index (TLI) 0.939 0.845
Robust Comparative Fit Index (CFI) 0.968
Robust Tucker-Lewis Index (TLI) 0.936
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -817.597 -817.597
Scaling correction factor 3.229
for the MLR correction
Loglikelihood unrestricted model (H1) -809.273 -809.273
Scaling correction factor 2.332
for the MLR correction
Akaike (AIC) 1653.195 1653.195
Bayesian (BIC) 1683.488 1683.488
Sample-size adjusted Bayesian (SABIC) 1654.970 1654.970
Root Mean Square Error of Approximation:
RMSEA 0.091 0.092
90 Percent confidence interval - lower 0.040 0.041
90 Percent confidence interval - upper 0.144 0.146
P-value H_0: RMSEA <= 0.050 0.083 0.080
P-value H_0: RMSEA >= 0.080 0.684 0.694
Robust RMSEA 0.091
90 Percent confidence interval - lower 0.041
90 Percent confidence interval - upper 0.144
P-value H_0: Robust RMSEA <= 0.050 0.080
P-value H_0: Robust RMSEA >= 0.080 0.689
Standardized Root Mean Square Residual:
SRMR 0.044 0.044
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM =~
IM1 1.000 0.891 0.766
IM2 1.123 0.163 6.874 0.000 1.001 0.930
IM3 1.070 0.162 6.625 0.000 0.954 0.820
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
Reward_PBP 0.115 0.137 0.842 0.400 0.129 0.065
TR_high 0.190 0.227 0.836 0.403 0.213 0.074
PBP_TR -0.163 0.361 -0.450 0.652 -0.182 -0.048
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM1 0.557 0.157 3.554 0.000 0.557 0.413
.IM2 0.156 0.050 3.150 0.002 0.156 0.135
.IM3 0.443 0.201 2.206 0.027 0.443 0.327
.IM 0.790 0.185 4.273 0.000 0.995 0.995
Moderated mediation of PBP x eco_ori with TR on IM - H6
lavaan 0.6-21 ended normally after 65 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 25
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 238.865 244.280
Degrees of freedom 74 74
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.978
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1661.572 1360.606
Degrees of freedom 90 90
P-value 0.000 0.000
Scaling correction factor 1.221
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.895 0.866
Tucker-Lewis Index (TLI) 0.872 0.837
Robust Comparative Fit Index (CFI) 0.893
Robust Tucker-Lewis Index (TLI) 0.869
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2410.610 -2410.610
Scaling correction factor 2.057
for the MLR correction
Loglikelihood unrestricted model (H1) -2291.178 -2291.178
Scaling correction factor 1.250
for the MLR correction
Akaike (AIC) 4871.220 4871.220
Bayesian (BIC) 4955.369 4955.369
Sample-size adjusted Bayesian (SABIC) 4876.151 4876.151
Root Mean Square Error of Approximation:
RMSEA 0.102 0.104
90 Percent confidence interval - lower 0.088 0.089
90 Percent confidence interval - upper 0.117 0.118
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 0.994 0.996
Robust RMSEA 0.103
90 Percent confidence interval - lower 0.088
90 Percent confidence interval - upper 0.117
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.995
Standardized Root Mean Square Residual:
SRMR 0.194 0.194
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.968 0.736
EEC2 1.290 0.107 11.999 0.000 1.248 0.870
EEC3 1.345 0.094 14.376 0.000 1.302 0.953
EEF =~
EEF1 1.000 1.086 0.916
EEF2 1.033 0.052 19.874 0.000 1.122 0.929
EEF3 0.953 0.056 17.139 0.000 1.035 0.903
IM =~
IM1 1.000 0.885 0.761
IM2 1.141 0.185 6.163 0.000 1.010 0.938
IM3 1.070 0.162 6.616 0.000 0.947 0.814
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
TR_high -0.094 0.226 -0.418 0.676 -0.107 -0.037
reward1_ec1_TR 0.909 0.343 2.652 0.008 1.027 0.139
reward0_ec2_TR 0.285 0.438 0.650 0.516 0.322 0.044
reward1_ec2_TR 0.618 0.280 2.207 0.027 0.699 0.115
reward0_ec3_TR 0.962 0.417 2.306 0.021 1.087 0.105
reward1_ec3_TR -0.758 0.505 -1.503 0.133 -0.857 -0.141
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC ~~
EEF 0.671 0.120 5.580 0.000 0.639 0.639
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.792 0.093 8.518 0.000 0.792 0.458
.EEC2 0.500 0.104 4.819 0.000 0.500 0.243
.EEC3 0.172 0.059 2.925 0.003 0.172 0.092
.EEF1 0.228 0.045 5.071 0.000 0.228 0.162
.EEF2 0.201 0.050 4.024 0.000 0.201 0.138
.EEF3 0.243 0.064 3.802 0.000 0.243 0.185
.IM1 0.569 0.166 3.426 0.001 0.569 0.421
.IM2 0.139 0.060 2.296 0.022 0.139 0.120
.IM3 0.456 0.210 2.167 0.030 0.456 0.337
EEC 0.937 0.147 6.361 0.000 1.000 1.000
EEF 1.180 0.185 6.392 0.000 1.000 1.000
.IM 0.734 0.204 3.599 0.000 0.938 0.938
Differential strength of trust on dependent variables - H7
$stat
[1] 0.1886436
$df
[1] 1
$p.value
[1] 0.664048
$se
[1] "robust.huber.white"
Structral model based on individual items
Complete theoretical model with dummy moderators and partial mediation
lavaan 0.6-21 ended normally after 115 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 52
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 207.274 218.981
Degrees of freedom 146 146
P-value (Chi-square) 0.001 0.000
Scaling correction factor 0.947
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1771.294 1633.267
Degrees of freedom 189 189
P-value 0.000 0.000
Scaling correction factor 1.085
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.961 0.949
Tucker-Lewis Index (TLI) 0.950 0.935
Robust Comparative Fit Index (CFI) 0.956
Robust Tucker-Lewis Index (TLI) 0.943
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2339.953 -2339.953
Scaling correction factor 1.551
for the MLR correction
Loglikelihood unrestricted model (H1) -2236.316 -2236.316
Scaling correction factor 1.105
for the MLR correction
Akaike (AIC) 4783.907 4783.907
Bayesian (BIC) 4958.937 4958.937
Sample-size adjusted Bayesian (SABIC) 4794.162 4794.162
Root Mean Square Error of Approximation:
RMSEA 0.044 0.048
90 Percent confidence interval - lower 0.029 0.034
90 Percent confidence interval - upper 0.058 0.061
P-value H_0: RMSEA <= 0.050 0.748 0.567
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.047
90 Percent confidence interval - lower 0.034
90 Percent confidence interval - upper 0.059
P-value H_0: Robust RMSEA <= 0.050 0.638
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.036 0.036
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.975 0.742
EEC2 1.289 0.108 11.927 0.000 1.257 0.876
EEC3 1.322 0.092 14.310 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.079 0.909
EEF2 1.044 0.052 20.069 0.000 1.126 0.932
EEF3 0.962 0.054 17.743 0.000 1.038 0.905
IM =~
IM1 1.000 0.937 0.806
IM2 1.027 0.166 6.171 0.000 0.963 0.895
IM3 1.023 0.180 5.694 0.000 0.959 0.825
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.130 0.400 0.325 0.745 0.139 0.050
reward0_eco2 0.403 0.392 1.027 0.304 0.430 0.161
reward1_eco2 0.582 0.339 1.716 0.086 0.621 0.232
reward0_eco3 -0.198 0.397 -0.498 0.618 -0.211 -0.079
reward1_eco3 -0.033 0.435 -0.075 0.940 -0.035 -0.013
ADT_high_num 0.491 0.335 1.464 0.143 0.524 0.262
TR_high_num -0.121 0.281 -0.429 0.668 -0.129 -0.045
reward1_c1_ADT 0.082 0.442 0.186 0.852 0.088 0.027
reward0_c2_ADT -0.256 0.449 -0.571 0.568 -0.274 -0.083
reward1_c2_ADT -0.484 0.418 -1.157 0.247 -0.516 -0.128
reward0_c3_ADT 0.314 0.483 0.651 0.515 0.335 0.083
reward1_c3_ADT -0.160 0.512 -0.313 0.754 -0.171 -0.048
reward1_ec1_TR 0.527 0.470 1.121 0.262 0.562 0.076
reward0_ec2_TR 0.117 0.542 0.216 0.829 0.125 0.017
reward1_ec2_TR 0.470 0.404 1.164 0.245 0.501 0.083
reward0_ec3_TR 0.866 0.505 1.714 0.086 0.924 0.089
reward1_ec3_TR -0.600 0.598 -1.003 0.316 -0.641 -0.106
EEF ~
IM 0.642 0.075 8.564 0.000 0.558 0.558
reward1_eco1 0.107 0.182 0.588 0.557 0.099 0.036
reward0_eco2 -0.147 0.195 -0.755 0.450 -0.136 -0.051
reward1_eco2 0.098 0.186 0.528 0.597 0.091 0.034
reward0_eco3 -0.121 0.171 -0.706 0.480 -0.112 -0.042
reward1_eco3 -0.055 0.194 -0.281 0.779 -0.051 -0.019
ADT_high_num 0.357 0.138 2.592 0.010 0.331 0.165
TR_high_num 0.406 0.177 2.290 0.022 0.377 0.131
EEC ~
IM 0.426 0.077 5.531 0.000 0.410 0.410
reward1_eco1 0.179 0.207 0.861 0.389 0.183 0.066
reward0_eco2 0.190 0.215 0.884 0.377 0.195 0.073
reward1_eco2 0.292 0.198 1.478 0.139 0.300 0.112
reward0_eco3 0.192 0.182 1.056 0.291 0.197 0.074
reward1_eco3 0.025 0.200 0.126 0.900 0.026 0.010
ADT_high_num 0.391 0.134 2.912 0.004 0.401 0.200
TR_high_num 0.559 0.180 3.102 0.002 0.573 0.199
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.285 0.087 3.269 0.001 0.447 0.447
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.778 0.093 8.377 0.000 0.778 0.450
.EEC2 0.478 0.102 4.679 0.000 0.478 0.232
.EEC3 0.204 0.063 3.238 0.001 0.204 0.109
.EEF1 0.244 0.046 5.345 0.000 0.244 0.173
.EEF2 0.192 0.046 4.143 0.000 0.192 0.131
.EEF3 0.238 0.063 3.791 0.000 0.238 0.181
.IM1 0.473 0.170 2.779 0.005 0.473 0.350
.IM2 0.231 0.061 3.814 0.000 0.231 0.200
.IM3 0.432 0.206 2.103 0.035 0.432 0.320
.EEC 0.625 0.097 6.416 0.000 0.657 0.657
.EEF 0.649 0.144 4.500 0.000 0.558 0.558
.IM 0.743 0.186 3.993 0.000 0.846 0.846
R-Square:
Estimate
EEC1 0.550
EEC2 0.768
EEC3 0.891
EEF1 0.827
EEF2 0.869
EEF3 0.819
IM1 0.650
IM2 0.800
IM3 0.680
EEC 0.343
EEF 0.442
IM 0.154
Control fit
With control
Entire model with control
lavaan 0.6-21 ended normally after 92 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 55
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 210.943 219.567
Degrees of freedom 152 152
P-value (Chi-square) 0.001 0.000
Scaling correction factor 0.961
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1831.915 1680.083
Degrees of freedom 198 198
P-value 0.000 0.000
Scaling correction factor 1.090
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.964 0.954
Tucker-Lewis Index (TLI) 0.953 0.941
Robust Comparative Fit Index (CFI) 0.960
Robust Tucker-Lewis Index (TLI) 0.948
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2311.477 -2311.477
Scaling correction factor 1.523
for the MLR correction
Loglikelihood unrestricted model (H1) -2206.006 -2206.006
Scaling correction factor 1.110
for the MLR correction
Akaike (AIC) 4732.955 4732.955
Bayesian (BIC) 4918.083 4918.083
Sample-size adjusted Bayesian (SABIC) 4743.802 4743.802
Root Mean Square Error of Approximation:
RMSEA 0.043 0.046
90 Percent confidence interval - lower 0.028 0.031
90 Percent confidence interval - upper 0.056 0.059
P-value H_0: RMSEA <= 0.050 0.812 0.696
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.045
90 Percent confidence interval - lower 0.031
90 Percent confidence interval - upper 0.057
P-value H_0: Robust RMSEA <= 0.050 0.744
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.035 0.035
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.975 0.742
EEC2 1.289 0.108 11.951 0.000 1.257 0.876
EEC3 1.322 0.092 14.318 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.081 0.911
EEF2 1.041 0.051 20.547 0.000 1.125 0.931
EEF3 0.960 0.054 17.691 0.000 1.037 0.905
IM =~
IM1 1.000 0.938 0.807
IM2 1.022 0.158 6.469 0.000 0.959 0.891
IM3 1.026 0.174 5.889 0.000 0.962 0.828
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.089 0.365 0.243 0.808 0.095 0.034
reward0_eco2 0.330 0.361 0.914 0.361 0.351 0.131
reward1_eco2 0.639 0.295 2.168 0.030 0.681 0.255
reward0_eco3 -0.147 0.364 -0.404 0.686 -0.157 -0.059
reward1_eco3 0.082 0.354 0.233 0.816 0.088 0.033
reward1_c1_ADT 0.407 0.405 1.005 0.315 0.434 0.132
reward0_c2_ADT -0.009 0.392 -0.024 0.981 -0.010 -0.003
reward1_c2_ADT -0.470 0.358 -1.312 0.189 -0.501 -0.124
reward0_c3_ADT 0.633 0.415 1.527 0.127 0.675 0.167
reward1_c3_ADT -0.079 0.415 -0.191 0.849 -0.084 -0.023
reward1_ec1_TR 0.024 0.444 0.054 0.957 0.025 0.003
reward0_ec2_TR -0.017 0.448 -0.038 0.969 -0.018 -0.002
reward1_ec2_TR 0.355 0.320 1.111 0.267 0.379 0.062
reward0_ec3_TR 0.287 0.435 0.660 0.509 0.306 0.029
reward1_ec3_TR -0.681 0.581 -1.174 0.240 -0.726 -0.120
PEB_yes 0.985 0.214 4.601 0.000 1.050 0.447
ADT_high_num 0.325 0.275 1.183 0.237 0.347 0.173
TR_high_num 0.043 0.220 0.195 0.845 0.046 0.016
EEF ~
IM 0.555 0.083 6.671 0.000 0.482 0.482
reward1_eco1 0.163 0.187 0.870 0.384 0.150 0.054
reward0_eco2 -0.114 0.188 -0.604 0.546 -0.105 -0.039
reward1_eco2 0.161 0.189 0.852 0.394 0.149 0.056
reward0_eco3 -0.068 0.171 -0.399 0.690 -0.063 -0.024
reward1_eco3 -0.017 0.195 -0.087 0.931 -0.016 -0.006
PEB_yes 0.406 0.199 2.042 0.041 0.376 0.160
ADT_high_num 0.391 0.135 2.886 0.004 0.362 0.181
TR_high_num 0.391 0.163 2.408 0.016 0.362 0.126
EEC ~
IM 0.375 0.087 4.302 0.000 0.361 0.361
reward1_eco1 0.211 0.209 1.009 0.313 0.216 0.078
reward0_eco2 0.210 0.218 0.967 0.334 0.216 0.081
reward1_eco2 0.329 0.202 1.626 0.104 0.337 0.126
reward0_eco3 0.223 0.179 1.241 0.214 0.228 0.085
reward1_eco3 0.048 0.199 0.240 0.810 0.049 0.018
PEB_yes 0.235 0.168 1.401 0.161 0.241 0.103
ADT_high_num 0.410 0.134 3.054 0.002 0.420 0.210
TR_high_num 0.549 0.177 3.098 0.002 0.564 0.196
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.271 0.083 3.258 0.001 0.435 0.435
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.778 0.093 8.390 0.000 0.778 0.450
.EEC2 0.479 0.102 4.709 0.000 0.479 0.233
.EEC3 0.203 0.063 3.221 0.001 0.203 0.109
.EEF1 0.239 0.045 5.274 0.000 0.239 0.170
.EEF2 0.195 0.045 4.312 0.000 0.195 0.133
.EEF3 0.239 0.062 3.824 0.000 0.239 0.182
.IM1 0.471 0.164 2.868 0.004 0.471 0.348
.IM2 0.239 0.058 4.136 0.000 0.239 0.206
.IM3 0.426 0.204 2.089 0.037 0.426 0.315
.EEC 0.617 0.095 6.518 0.000 0.649 0.649
.EEF 0.627 0.137 4.569 0.000 0.537 0.537
.IM 0.577 0.126 4.566 0.000 0.656 0.656
R-Square:
Estimate
EEC1 0.550
EEC2 0.767
EEC3 0.891
EEF1 0.830
EEF2 0.867
EEF3 0.818
IM1 0.652
IM2 0.794
IM3 0.685
EEC 0.351
EEF 0.463
IM 0.344
Entire model with control with EEF --> EEC
lavaan 0.6-21 ended normally after 89 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 51
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 243.470 255.179
Degrees of freedom 156 156
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.954
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1831.915 1680.083
Degrees of freedom 198 198
P-value 0.000 0.000
Scaling correction factor 1.090
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.946 0.933
Tucker-Lewis Index (TLI) 0.932 0.915
Robust Comparative Fit Index (CFI) 0.941
Robust Tucker-Lewis Index (TLI) 0.926
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2327.741 -2327.741
Scaling correction factor 1.587
for the MLR correction
Loglikelihood unrestricted model (H1) -2206.006 -2206.006
Scaling correction factor 1.110
for the MLR correction
Akaike (AIC) 4757.482 4757.482
Bayesian (BIC) 4929.147 4929.147
Sample-size adjusted Bayesian (SABIC) 4767.540 4767.540
Root Mean Square Error of Approximation:
RMSEA 0.051 0.055
90 Percent confidence interval - lower 0.038 0.042
90 Percent confidence interval - upper 0.063 0.067
P-value H_0: RMSEA <= 0.050 0.425 0.266
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.053
90 Percent confidence interval - lower 0.041
90 Percent confidence interval - upper 0.065
P-value H_0: Robust RMSEA <= 0.050 0.315
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.055 0.055
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.847 0.000 1.257 0.876
EEC3 1.324 0.093 14.305 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.079 0.910
EEF2 1.044 0.051 20.480 0.000 1.127 0.933
EEF3 0.960 0.054 17.744 0.000 1.036 0.904
IM =~
IM1 1.000 0.957 0.824
IM2 0.985 0.167 5.888 0.000 0.943 0.876
IM3 0.994 0.188 5.292 0.000 0.951 0.818
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.089 0.372 0.239 0.811 0.093 0.034
reward0_eco2 0.339 0.368 0.922 0.357 0.354 0.132
reward1_eco2 0.658 0.297 2.215 0.027 0.688 0.257
reward0_eco3 -0.126 0.371 -0.340 0.734 -0.132 -0.049
reward1_eco3 0.080 0.359 0.222 0.825 0.083 0.031
ADT_high_num 0.390 0.290 1.343 0.179 0.407 0.203
TR_high_num 0.102 0.228 0.450 0.653 0.107 0.037
reward1_c1_ADT 0.405 0.410 0.989 0.323 0.423 0.129
reward0_c2_ADT -0.012 0.400 -0.029 0.976 -0.012 -0.004
reward1_c2_ADT -0.486 0.367 -1.324 0.185 -0.507 -0.125
reward0_c3_ADT 0.624 0.421 1.481 0.139 0.651 0.161
reward1_c3_ADT -0.080 0.416 -0.191 0.848 -0.083 -0.023
reward1_ec1_TR 0.015 0.453 0.034 0.973 0.016 0.002
reward0_ec2_TR -0.006 0.460 -0.013 0.989 -0.006 -0.001
reward1_ec2_TR 0.364 0.328 1.110 0.267 0.380 0.063
reward0_ec3_TR 0.304 0.440 0.691 0.490 0.318 0.031
reward1_ec3_TR -0.651 0.583 -1.116 0.265 -0.680 -0.112
PEB_yes 1.014 0.220 4.616 0.000 1.059 0.451
EEF ~
IM 0.643 0.096 6.672 0.000 0.571 0.571
reward1_eco1 0.140 0.189 0.740 0.459 0.130 0.047
reward0_eco2 -0.161 0.198 -0.813 0.416 -0.149 -0.056
reward1_eco2 0.042 0.198 0.210 0.834 0.039 0.014
reward0_eco3 -0.192 0.179 -1.077 0.282 -0.178 -0.067
reward1_eco3 -0.038 0.208 -0.184 0.854 -0.035 -0.013
PEB_yes 0.315 0.236 1.336 0.181 0.292 0.124
EEC ~
IM 0.154 0.106 1.458 0.145 0.151 0.151
reward1_eco1 0.104 0.207 0.502 0.615 0.107 0.039
reward0_eco2 0.225 0.199 1.129 0.259 0.231 0.086
reward1_eco2 0.174 0.193 0.903 0.366 0.179 0.067
reward0_eco3 0.165 0.177 0.930 0.352 0.169 0.063
reward1_eco3 0.035 0.202 0.176 0.861 0.036 0.014
PEB_yes -0.009 0.151 -0.059 0.953 -0.009 -0.004
EEF 0.493 0.084 5.860 0.000 0.546 0.546
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.412 0.000 0.780 0.451
.EEC2 0.477 0.104 4.599 0.000 0.477 0.232
.EEC3 0.204 0.062 3.289 0.001 0.204 0.109
.EEF1 0.242 0.046 5.314 0.000 0.242 0.172
.EEF2 0.190 0.045 4.266 0.000 0.190 0.130
.EEF3 0.241 0.063 3.830 0.000 0.241 0.183
.IM1 0.435 0.172 2.527 0.011 0.435 0.322
.IM2 0.269 0.082 3.275 0.001 0.269 0.232
.IM3 0.447 0.228 1.964 0.049 0.447 0.331
.EEC 0.532 0.084 6.370 0.000 0.561 0.561
.EEF 0.666 0.162 4.110 0.000 0.572 0.572
.IM 0.586 0.125 4.695 0.000 0.639 0.639
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.828
EEF2 0.870
EEF3 0.817
IM1 0.678
IM2 0.768
IM3 0.669
EEC 0.439
EEF 0.428
IM 0.361
Without PEB control
Complete theoretical model with dummy moderators and partial mediation
lavaan 0.6-21 ended normally after 105 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 48
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 237.626 252.700
Degrees of freedom 150 150
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.940
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1771.294 1633.267
Degrees of freedom 189 189
P-value 0.000 0.000
Scaling correction factor 1.085
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.945 0.929
Tucker-Lewis Index (TLI) 0.930 0.910
Robust Comparative Fit Index (CFI) 0.938
Robust Tucker-Lewis Index (TLI) 0.922
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2355.129 -2355.129
Scaling correction factor 1.621
for the MLR correction
Loglikelihood unrestricted model (H1) -2236.316 -2236.316
Scaling correction factor 1.105
for the MLR correction
Akaike (AIC) 4806.259 4806.259
Bayesian (BIC) 4967.826 4967.826
Sample-size adjusted Bayesian (SABIC) 4815.726 4815.726
Root Mean Square Error of Approximation:
RMSEA 0.052 0.057
90 Percent confidence interval - lower 0.039 0.044
90 Percent confidence interval - upper 0.065 0.069
P-value H_0: RMSEA <= 0.050 0.372 0.189
P-value H_0: RMSEA >= 0.080 0.000 0.001
Robust RMSEA 0.055
90 Percent confidence interval - lower 0.043
90 Percent confidence interval - upper 0.066
P-value H_0: Robust RMSEA <= 0.050 0.241
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.056 0.056
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.843 0.000 1.257 0.876
EEC3 1.324 0.093 14.306 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.051 0.000 1.128 0.933
EEF3 0.962 0.054 17.777 0.000 1.037 0.904
IM =~
IM1 1.000 0.955 0.822
IM2 0.992 0.178 5.589 0.000 0.948 0.881
IM3 0.994 0.196 5.066 0.000 0.949 0.816
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.130 0.406 0.321 0.748 0.136 0.049
reward0_eco2 0.415 0.398 1.042 0.297 0.434 0.162
reward1_eco2 0.600 0.342 1.755 0.079 0.628 0.235
reward0_eco3 -0.179 0.404 -0.444 0.657 -0.188 -0.070
reward1_eco3 -0.037 0.442 -0.084 0.933 -0.039 -0.015
ADT_high_num 0.557 0.352 1.582 0.114 0.583 0.291
TR_high_num -0.062 0.287 -0.217 0.828 -0.065 -0.023
reward1_c1_ADT 0.074 0.448 0.166 0.868 0.078 0.024
reward0_c2_ADT -0.265 0.458 -0.579 0.562 -0.277 -0.084
reward1_c2_ADT -0.500 0.428 -1.169 0.243 -0.523 -0.129
reward0_c3_ADT 0.300 0.494 0.607 0.544 0.314 0.078
reward1_c3_ADT -0.165 0.517 -0.319 0.750 -0.172 -0.048
reward1_ec1_TR 0.530 0.482 1.099 0.272 0.555 0.075
reward0_ec2_TR 0.129 0.554 0.234 0.815 0.135 0.018
reward1_ec2_TR 0.481 0.415 1.158 0.247 0.503 0.083
reward0_ec3_TR 0.895 0.517 1.733 0.083 0.937 0.090
reward1_ec3_TR -0.572 0.606 -0.944 0.345 -0.598 -0.099
EEF ~
IM 0.463 0.088 5.238 0.000 0.410 0.410
reward1_eco1 0.021 0.190 0.111 0.912 0.020 0.007
reward0_eco2 -0.252 0.184 -1.369 0.171 -0.234 -0.088
reward1_eco2 -0.086 0.181 -0.474 0.635 -0.080 -0.030
reward0_eco3 -0.256 0.171 -1.502 0.133 -0.238 -0.089
reward1_eco3 -0.069 0.186 -0.371 0.711 -0.064 -0.024
EEC 0.484 0.126 3.848 0.000 0.437 0.437
EEC ~
IM 0.499 0.078 6.403 0.000 0.489 0.489
reward1_eco1 0.152 0.206 0.739 0.460 0.156 0.056
reward0_eco2 0.133 0.221 0.604 0.546 0.137 0.051
reward1_eco2 0.175 0.214 0.821 0.412 0.180 0.067
reward0_eco3 0.051 0.185 0.277 0.782 0.053 0.020
reward1_eco3 0.002 0.222 0.008 0.994 0.002 0.001
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.412 0.000 0.780 0.451
.EEC2 0.477 0.104 4.591 0.000 0.477 0.232
.EEC3 0.204 0.062 3.303 0.001 0.204 0.109
.EEF1 0.246 0.046 5.370 0.000 0.246 0.174
.EEF2 0.188 0.046 4.120 0.000 0.188 0.129
.EEF3 0.240 0.063 3.803 0.000 0.240 0.183
.IM1 0.439 0.182 2.415 0.016 0.439 0.324
.IM2 0.259 0.084 3.084 0.002 0.259 0.224
.IM3 0.451 0.229 1.970 0.049 0.451 0.333
.EEC 0.701 0.120 5.835 0.000 0.739 0.739
.EEF 0.520 0.095 5.454 0.000 0.448 0.448
.IM 0.761 0.189 4.021 0.000 0.834 0.834
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.676
IM2 0.776
IM3 0.667
EEC 0.261
EEF 0.552
IM 0.166
Comparing baseline model fits with and without PEB control
Baseline model without PEB as control
aic bic srmr rmsea cfi tli
4806.259 4967.826 0.056 0.052 0.945 0.930
Baseline model with PEB as control
aic bic srmr rmsea cfi tli
4732.955 4918.083 0.035 0.043 0.964 0.953
Derived model (only interactions on IM)
lavaan 0.6-21 ended normally after 89 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 55
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 210.943 219.567
Degrees of freedom 152 152
P-value (Chi-square) 0.001 0.000
Scaling correction factor 0.961
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1831.915 1680.083
Degrees of freedom 198 198
P-value 0.000 0.000
Scaling correction factor 1.090
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.964 0.954
Tucker-Lewis Index (TLI) 0.953 0.941
Robust Comparative Fit Index (CFI) 0.960
Robust Tucker-Lewis Index (TLI) 0.948
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2311.477 -2311.477
Scaling correction factor 1.523
for the MLR correction
Loglikelihood unrestricted model (H1) -2206.006 -2206.006
Scaling correction factor 1.110
for the MLR correction
Akaike (AIC) 4732.955 4732.955
Bayesian (BIC) 4918.083 4918.083
Sample-size adjusted Bayesian (SABIC) 4743.802 4743.802
Root Mean Square Error of Approximation:
RMSEA 0.043 0.046
90 Percent confidence interval - lower 0.028 0.031
90 Percent confidence interval - upper 0.056 0.059
P-value H_0: RMSEA <= 0.050 0.812 0.696
P-value H_0: RMSEA >= 0.080 0.000 0.000
Robust RMSEA 0.045
90 Percent confidence interval - lower 0.031
90 Percent confidence interval - upper 0.057
P-value H_0: Robust RMSEA <= 0.050 0.744
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.035 0.035
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.975 0.742
EEC2 1.289 0.108 11.951 0.000 1.257 0.876
EEC3 1.322 0.092 14.318 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.081 0.911
EEF2 1.041 0.051 20.547 0.000 1.125 0.931
EEF3 0.960 0.054 17.691 0.000 1.037 0.905
IM =~
IM1 1.000 0.938 0.807
IM2 1.022 0.158 6.469 0.000 0.959 0.891
IM3 1.026 0.174 5.889 0.000 0.962 0.828
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.089 0.365 0.243 0.808 0.095 0.034
reward0_eco2 0.330 0.361 0.914 0.361 0.351 0.131
reward1_eco2 0.639 0.295 2.168 0.030 0.681 0.255
reward0_eco3 -0.147 0.364 -0.404 0.686 -0.157 -0.059
reward1_eco3 0.082 0.354 0.233 0.816 0.088 0.033
reward1_c1_ADT 0.407 0.405 1.005 0.315 0.434 0.132
reward0_c2_ADT -0.009 0.392 -0.023 0.981 -0.010 -0.003
reward1_c2_ADT -0.470 0.358 -1.312 0.189 -0.501 -0.124
reward0_c3_ADT 0.633 0.415 1.527 0.127 0.675 0.167
reward1_c3_ADT -0.079 0.415 -0.191 0.849 -0.084 -0.023
reward1_ec1_TR 0.024 0.444 0.054 0.957 0.025 0.003
reward0_ec2_TR -0.017 0.448 -0.038 0.969 -0.018 -0.002
reward1_ec2_TR 0.355 0.320 1.111 0.267 0.379 0.062
reward0_ec3_TR 0.287 0.435 0.660 0.509 0.306 0.029
reward1_ec3_TR -0.681 0.581 -1.174 0.240 -0.726 -0.120
PEB_yes 0.985 0.214 4.601 0.000 1.050 0.447
ADT_high_num 0.325 0.275 1.183 0.237 0.347 0.173
TR_high_num 0.043 0.220 0.195 0.845 0.046 0.016
EEF ~
IM 0.390 0.090 4.341 0.000 0.339 0.339
EEC 0.439 0.115 3.818 0.000 0.396 0.396
reward1_eco1 0.070 0.193 0.363 0.716 0.065 0.023
reward0_eco2 -0.206 0.176 -1.169 0.242 -0.190 -0.071
reward1_eco2 0.017 0.182 0.092 0.926 0.016 0.006
reward0_eco3 -0.166 0.171 -0.973 0.330 -0.154 -0.057
reward1_eco3 -0.038 0.188 -0.202 0.840 -0.035 -0.013
PEB_yes 0.303 0.169 1.791 0.073 0.280 0.120
ADT_high_num 0.211 0.119 1.769 0.077 0.195 0.098
TR_high_num 0.150 0.140 1.076 0.282 0.139 0.048
EEC ~
IM 0.375 0.087 4.302 0.000 0.361 0.361
reward1_eco1 0.211 0.209 1.009 0.313 0.216 0.078
reward0_eco2 0.210 0.218 0.967 0.334 0.216 0.081
reward1_eco2 0.329 0.202 1.626 0.104 0.337 0.126
reward0_eco3 0.223 0.179 1.241 0.214 0.228 0.085
reward1_eco3 0.048 0.199 0.240 0.810 0.049 0.018
PEB_yes 0.235 0.168 1.401 0.161 0.241 0.103
ADT_high_num 0.410 0.134 3.054 0.002 0.420 0.210
TR_high_num 0.549 0.177 3.098 0.002 0.564 0.196
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.778 0.093 8.390 0.000 0.778 0.450
.EEC2 0.479 0.102 4.709 0.000 0.479 0.233
.EEC3 0.203 0.063 3.221 0.001 0.203 0.109
.EEF1 0.239 0.045 5.274 0.000 0.239 0.170
.EEF2 0.195 0.045 4.312 0.000 0.195 0.133
.EEF3 0.239 0.062 3.824 0.000 0.239 0.182
.IM1 0.471 0.164 2.868 0.004 0.471 0.348
.IM2 0.239 0.058 4.136 0.000 0.239 0.206
.IM3 0.426 0.204 2.089 0.037 0.426 0.315
.EEC 0.617 0.095 6.518 0.000 0.649 0.649
.EEF 0.508 0.089 5.701 0.000 0.435 0.435
.IM 0.577 0.126 4.566 0.000 0.656 0.656
R-Square:
Estimate
EEC1 0.550
EEC2 0.767
EEC3 0.891
EEF1 0.830
EEF2 0.867
EEF3 0.818
IM1 0.652
IM2 0.794
IM3 0.685
EEC 0.351
EEF 0.565
IM 0.344
lhs rhs op est se z
1 ADT_high_num ADT_high_num ~~ 0.2498034763 0.00000000 NA
2 ADT_high_num TR_high_num ~~ 0.0587824264 0.00000000 NA
3 EEC ADT_high_num ~ 0.4099660395 0.13423920 3.05399647
4 EEC EEC ~~ 0.6169227387 0.09465192 6.51780505
5 EEC EEC1 =~ 1.0000000000 0.00000000 NA
6 EEC EEC2 =~ 1.2888479465 0.10784217 11.95124283
7 EEC EEC3 =~ 1.3224070038 0.09235868 14.31816701
8 EEC IM ~ 0.3749306014 0.08714615 4.30231954
9 EEC PEB_yes ~ 0.2354385849 0.16805668 1.40094746
10 EEC reward0_eco2 ~ 0.2103582880 0.21752250 0.96706451
11 EEC reward0_eco3 ~ 0.2225564180 0.17927508 1.24142420
12 EEC reward1_eco1 ~ 0.2108686713 0.20901841 1.00885212
13 EEC reward1_eco2 ~ 0.3289448830 0.20233495 1.62574426
14 EEC reward1_eco3 ~ 0.0477876526 0.19922253 0.23987072
15 EEC TR_high_num ~ 0.5494195395 0.17732675 3.09834553
16 EEC1 EEC1 ~~ 0.7777674502 0.09270177 8.38999604
17 EEC2 EEC2 ~~ 0.4791002677 0.10174836 4.70867808
18 EEC3 EEC3 ~~ 0.2034657356 0.06317101 3.22087200
19 EEF ADT_high_num ~ 0.2108501656 0.11917941 1.76918283
20 EEF EEC ~ 0.4388572214 0.11494705 3.81790769
21 EEF EEF ~~ 0.5079978615 0.08910827 5.70090611
22 EEF EEF1 =~ 1.0000000000 0.00000000 NA
23 EEF EEF2 =~ 1.0408492719 0.05065593 20.54743366
24 EEF EEF3 =~ 0.9599268899 0.05426161 17.69071966
25 EEF IM ~ 0.3904261781 0.08993994 4.34096549
26 EEF PEB_yes ~ 0.3031422036 0.16922914 1.79131212
27 EEF reward0_eco2 ~ -0.2058194520 0.17605607 -1.16905627
28 EEF reward0_eco3 ~ -0.1660349201 0.17059946 -0.97324412
29 EEF reward1_eco1 ~ 0.0701093116 0.19304660 0.36317300
30 EEF reward1_eco2 ~ 0.0167726231 0.18166424 0.09232760
31 EEF reward1_eco3 ~ -0.0379111446 0.18764438 -0.20203720
32 EEF TR_high_num ~ 0.1503196890 0.13976646 1.07550615
33 EEF1 EEF1 ~~ 0.2393823162 0.04538776 5.27415975
34 EEF2 EEF2 ~~ 0.1946787827 0.04514821 4.31199314
35 EEF3 EEF3 ~~ 0.2388164149 0.06244513 3.82442008
36 IM ADT_high_num ~ 0.3253097884 0.27508360 1.18258520
37 IM IM ~~ 0.5773515452 0.12643470 4.56640101
38 IM IM1 =~ 1.0000000000 0.00000000 NA
39 IM IM2 =~ 1.0216009851 0.15793073 6.46866482
40 IM IM3 =~ 1.0255724901 0.17413775 5.88943245
41 IM PEB_yes ~ 0.9850171573 0.21408823 4.60098696
42 IM reward0_eco2 ~ 0.3297655214 0.36095813 0.91358386
43 IM reward0_eco2_ADT ~ -0.0091979258 0.39205256 -0.02346095
44 IM reward0_eco2_TR ~ -0.0171985702 0.44790809 -0.03839754
45 IM reward0_eco3 ~ -0.1471425724 0.36382331 -0.40443416
46 IM reward0_eco3_ADT ~ 0.6330963761 0.41467046 1.52674579
47 IM reward0_eco3_TR ~ 0.2873735333 0.43516521 0.66037801
48 IM reward1_eco1 ~ 0.0888859591 0.36546126 0.24321582
49 IM reward1_eco1_ADT ~ 0.4074576555 0.40533275 1.00524238
50 IM reward1_eco1_TR ~ 0.0238083123 0.44401522 0.05362049
51 IM reward1_eco2 ~ 0.6393298107 0.29483398 2.16844006
52 IM reward1_eco2_ADT ~ -0.4700751342 0.35825665 -1.31211837
53 IM reward1_eco2_TR ~ 0.3552365095 0.31970194 1.11114907
54 IM reward1_eco3 ~ 0.0824400408 0.35440989 0.23261214
55 IM reward1_eco3_ADT ~ -0.0792095507 0.41519017 -0.19077896
56 IM reward1_eco3_TR ~ -0.6814329196 0.58055401 -1.17376318
57 IM TR_high_num ~ 0.0429624582 0.22025114 0.19506123
58 IM1 IM1 ~~ 0.4709202979 0.16421214 2.86775562
59 IM2 IM2 ~~ 0.2388265815 0.05774884 4.13560829
60 IM3 IM3 ~~ 0.4260948940 0.20393948 2.08932031
61 PEB_yes ADT_high_num ~~ 0.0056773517 0.00000000 NA
62 PEB_yes PEB_yes ~~ 0.1815224037 0.00000000 NA
63 PEB_yes TR_high_num ~~ 0.0053716482 0.00000000 NA
64 reward0_eco2 ADT_high_num ~~ 0.0163333042 0.00000000 NA
65 reward0_eco2 PEB_yes ~~ 0.0073805573 0.00000000 NA
66 reward0_eco2 reward0_eco2 ~~ 0.1399248843 0.00000000 NA
67 reward0_eco2 reward0_eco2_ADT ~~ 0.0855096515 0.00000000 NA
68 reward0_eco2 reward0_eco2_TR ~~ 0.0155472094 0.00000000 NA
69 reward0_eco2 reward0_eco3 ~~ -0.0282994148 0.00000000 NA
70 reward0_eco2 reward0_eco3_ADT ~~ -0.0110053280 0.00000000 NA
71 reward0_eco2 reward0_eco3_TR ~~ -0.0015721897 0.00000000 NA
72 reward0_eco2 reward1_eco1_ADT ~~ -0.0172940868 0.00000000 NA
73 reward0_eco2 reward1_eco1_TR ~~ -0.0031443794 0.00000000 NA
74 reward0_eco2 reward1_eco2 ~~ -0.0282994148 0.00000000 NA
75 reward0_eco2 reward1_eco2_ADT ~~ -0.0110053280 0.00000000 NA
76 reward0_eco2 reward1_eco2_TR ~~ -0.0047165691 0.00000000 NA
77 reward0_eco2 reward1_eco3 ~~ -0.0282994148 0.00000000 NA
78 reward0_eco2 reward1_eco3_ADT ~~ -0.0141497074 0.00000000 NA
79 reward0_eco2 reward1_eco3_TR ~~ -0.0047165691 0.00000000 NA
80 reward0_eco2 TR_high_num ~~ -0.0048912569 0.00000000 NA
81 reward0_eco2_ADT ADT_high_num ~~ 0.0499606953 0.00000000 NA
82 reward0_eco2_ADT PEB_yes ~~ 0.0011354703 0.00000000 NA
83 reward0_eco2_ADT reward0_eco2_ADT ~~ 0.0922351297 0.00000000 NA
84 reward0_eco2_ADT reward0_eco2_TR ~~ 0.0167700236 0.00000000 NA
85 reward0_eco2_ADT reward0_eco3_ADT ~~ -0.0067254782 0.00000000 NA
86 reward0_eco2_ADT reward0_eco3_TR ~~ -0.0009607826 0.00000000 NA
87 reward0_eco2_ADT reward1_eco1_TR ~~ -0.0019215652 0.00000000 NA
88 reward0_eco2_ADT reward1_eco2_ADT ~~ -0.0067254782 0.00000000 NA
89 reward0_eco2_ADT reward1_eco2_TR ~~ -0.0028823478 0.00000000 NA
90 reward0_eco2_ADT reward1_eco3_ADT ~~ -0.0086470434 0.00000000 NA
91 reward0_eco2_ADT reward1_eco3_TR ~~ -0.0028823478 0.00000000 NA
92 reward0_eco2_ADT TR_high_num ~~ 0.0042798498 0.00000000 NA
93 reward0_eco2_TR ADT_high_num ~~ 0.0090837628 0.00000000 NA
94 reward0_eco2_TR PEB_yes ~~ -0.0002183597 0.00000000 NA
95 reward0_eco2_TR reward0_eco2_TR ~~ 0.0183422133 0.00000000 NA
96 reward0_eco2_TR reward0_eco3_TR ~~ -0.0001746877 0.00000000 NA
97 reward0_eco2_TR reward1_eco2_TR ~~ -0.0005240632 0.00000000 NA
98 reward0_eco2_TR reward1_eco3_TR ~~ -0.0005240632 0.00000000 NA
99 reward0_eco2_TR TR_high_num ~~ 0.0160712726 0.00000000 NA
100 reward0_eco3 ADT_high_num ~~ -0.0210498734 0.00000000 NA
101 reward0_eco3 PEB_yes ~~ -0.0113110315 0.00000000 NA
102 reward0_eco3 reward0_eco2_ADT ~~ -0.0172940868 0.00000000 NA
103 reward0_eco3 reward0_eco2_TR ~~ -0.0031443794 0.00000000 NA
104 reward0_eco3 reward0_eco3 ~~ 0.1399248843 0.00000000 NA
105 reward0_eco3 reward0_eco3_ADT ~~ 0.0544152328 0.00000000 NA
106 reward0_eco3 reward0_eco3_TR ~~ 0.0077736047 0.00000000 NA
107 reward0_eco3 reward1_eco1_ADT ~~ -0.0172940868 0.00000000 NA
108 reward0_eco3 reward1_eco1_TR ~~ -0.0031443794 0.00000000 NA
109 reward0_eco3 reward1_eco2_ADT ~~ -0.0110053280 0.00000000 NA
110 reward0_eco3 reward1_eco2_TR ~~ -0.0047165691 0.00000000 NA
111 reward0_eco3 reward1_eco3 ~~ -0.0282994148 0.00000000 NA
112 reward0_eco3 reward1_eco3_ADT ~~ -0.0141497074 0.00000000 NA
113 reward0_eco3 reward1_eco3_TR ~~ -0.0047165691 0.00000000 NA
114 reward0_eco3 TR_high_num ~~ -0.0142370513 0.00000000 NA
115 reward0_eco3_ADT ADT_high_num ~~ 0.0317931697 0.00000000 NA
116 reward0_eco3_ADT PEB_yes ~~ -0.0077736047 0.00000000 NA
117 reward0_eco3_ADT reward0_eco2_TR ~~ -0.0012228142 0.00000000 NA
118 reward0_eco3_ADT reward0_eco3_ADT ~~ 0.0611407110 0.00000000 NA
119 reward0_eco3_ADT reward0_eco3_TR ~~ 0.0087343873 0.00000000 NA
120 reward0_eco3_ADT reward1_eco1_TR ~~ -0.0012228142 0.00000000 NA
121 reward0_eco3_ADT reward1_eco2_TR ~~ -0.0018342213 0.00000000 NA
122 reward0_eco3_ADT reward1_eco3_ADT ~~ -0.0055026640 0.00000000 NA
123 reward0_eco3_ADT reward1_eco3_TR ~~ -0.0018342213 0.00000000 NA
124 reward0_eco3_ADT TR_high_num ~~ 0.0001746877 0.00000000 NA
125 reward0_eco3_TR ADT_high_num ~~ 0.0045418814 0.00000000 NA
126 reward0_eco3_TR PEB_yes ~~ 0.0022272688 0.00000000 NA
127 reward0_eco3_TR reward0_eco3_TR ~~ 0.0092584505 0.00000000 NA
128 reward0_eco3_TR reward1_eco3_TR ~~ -0.0002620316 0.00000000 NA
129 reward0_eco3_TR TR_high_num ~~ 0.0080356363 0.00000000 NA
130 reward1_eco1 ADT_high_num ~~ 0.0235391737 0.00000000 NA
131 reward1_eco1 PEB_yes ~~ -0.0006332431 0.00000000 NA
132 reward1_eco1 reward0_eco2 ~~ -0.0259411302 0.00000000 NA
133 reward1_eco1 reward0_eco2_ADT ~~ -0.0158529129 0.00000000 NA
134 reward1_eco1 reward0_eco2_TR ~~ -0.0028823478 0.00000000 NA
135 reward1_eco1 reward0_eco3 ~~ -0.0259411302 0.00000000 NA
136 reward1_eco1 reward0_eco3_ADT ~~ -0.0100882173 0.00000000 NA
137 reward1_eco1 reward0_eco3_TR ~~ -0.0014411739 0.00000000 NA
138 reward1_eco1 reward1_eco1 ~~ 0.1304262381 0.00000000 NA
139 reward1_eco1 reward1_eco1_ADT ~~ 0.0869508254 0.00000000 NA
140 reward1_eco1 reward1_eco1_TR ~~ 0.0158092410 0.00000000 NA
141 reward1_eco1 reward1_eco2 ~~ -0.0259411302 0.00000000 NA
142 reward1_eco1 reward1_eco2_ADT ~~ -0.0100882173 0.00000000 NA
143 reward1_eco1 reward1_eco2_TR ~~ -0.0043235217 0.00000000 NA
144 reward1_eco1 reward1_eco3 ~~ -0.0259411302 0.00000000 NA
145 reward1_eco1 reward1_eco3_ADT ~~ -0.0129705651 0.00000000 NA
146 reward1_eco1 reward1_eco3_TR ~~ -0.0043235217 0.00000000 NA
147 reward1_eco1 TR_high_num ~~ -0.0029260197 0.00000000 NA
148 reward1_eco1_ADT ADT_high_num ~~ 0.0499606953 0.00000000 NA
149 reward1_eco1_ADT PEB_yes ~~ -0.0035374268 0.00000000 NA
150 reward1_eco1_ADT reward0_eco2_ADT ~~ -0.0105686086 0.00000000 NA
151 reward1_eco1_ADT reward0_eco2_TR ~~ -0.0019215652 0.00000000 NA
152 reward1_eco1_ADT reward0_eco3_ADT ~~ -0.0067254782 0.00000000 NA
153 reward1_eco1_ADT reward0_eco3_TR ~~ -0.0009607826 0.00000000 NA
154 reward1_eco1_ADT reward1_eco1_ADT ~~ 0.0922351297 0.00000000 NA
155 reward1_eco1_ADT reward1_eco1_TR ~~ 0.0167700236 0.00000000 NA
156 reward1_eco1_ADT reward1_eco2_ADT ~~ -0.0067254782 0.00000000 NA
157 reward1_eco1_ADT reward1_eco2_TR ~~ -0.0028823478 0.00000000 NA
158 reward1_eco1_ADT reward1_eco3_ADT ~~ -0.0086470434 0.00000000 NA
159 reward1_eco1_ADT reward1_eco3_TR ~~ -0.0028823478 0.00000000 NA
160 reward1_eco1_ADT TR_high_num ~~ 0.0042798498 0.00000000 NA
161 reward1_eco1_TR ADT_high_num ~~ 0.0090837628 0.00000000 NA
162 reward1_eco1_TR PEB_yes ~~ 0.0044545375 0.00000000 NA
163 reward1_eco1_TR reward0_eco2_TR ~~ -0.0003493755 0.00000000 NA
164 reward1_eco1_TR reward0_eco3_TR ~~ -0.0001746877 0.00000000 NA
165 reward1_eco1_TR reward1_eco1_TR ~~ 0.0183422133 0.00000000 NA
166 reward1_eco1_TR reward1_eco2_TR ~~ -0.0005240632 0.00000000 NA
167 reward1_eco1_TR reward1_eco3_TR ~~ -0.0005240632 0.00000000 NA
168 reward1_eco1_TR TR_high_num ~~ 0.0160712726 0.00000000 NA
169 reward1_eco2 ADT_high_num ~~ -0.0210498734 0.00000000 NA
170 reward1_eco2 PEB_yes ~~ 0.0027076601 0.00000000 NA
171 reward1_eco2 reward0_eco2_ADT ~~ -0.0172940868 0.00000000 NA
172 reward1_eco2 reward0_eco2_TR ~~ -0.0031443794 0.00000000 NA
173 reward1_eco2 reward0_eco3 ~~ -0.0282994148 0.00000000 NA
174 reward1_eco2 reward0_eco3_ADT ~~ -0.0110053280 0.00000000 NA
175 reward1_eco2 reward0_eco3_TR ~~ -0.0015721897 0.00000000 NA
176 reward1_eco2 reward1_eco1_ADT ~~ -0.0172940868 0.00000000 NA
177 reward1_eco2 reward1_eco1_TR ~~ -0.0031443794 0.00000000 NA
178 reward1_eco2 reward1_eco2 ~~ 0.1399248843 0.00000000 NA
179 reward1_eco2 reward1_eco2_ADT ~~ 0.0544152328 0.00000000 NA
180 reward1_eco2 reward1_eco2_TR ~~ 0.0233208140 0.00000000 NA
181 reward1_eco2 reward1_eco3 ~~ -0.0282994148 0.00000000 NA
182 reward1_eco2 reward1_eco3_ADT ~~ -0.0141497074 0.00000000 NA
183 reward1_eco2 reward1_eco3_TR ~~ -0.0047165691 0.00000000 NA
184 reward1_eco2 TR_high_num ~~ 0.0044545375 0.00000000 NA
185 reward1_eco2_ADT ADT_high_num ~~ 0.0317931697 0.00000000 NA
186 reward1_eco2_ADT PEB_yes ~~ 0.0062450869 0.00000000 NA
187 reward1_eco2_ADT reward0_eco2_TR ~~ -0.0012228142 0.00000000 NA
188 reward1_eco2_ADT reward0_eco3_ADT ~~ -0.0042798498 0.00000000 NA
189 reward1_eco2_ADT reward0_eco3_TR ~~ -0.0006114071 0.00000000 NA
190 reward1_eco2_ADT reward1_eco1_TR ~~ -0.0012228142 0.00000000 NA
191 reward1_eco2_ADT reward1_eco2_ADT ~~ 0.0611407110 0.00000000 NA
192 reward1_eco2_ADT reward1_eco2_TR ~~ 0.0262031618 0.00000000 NA
193 reward1_eco2_ADT reward1_eco3_ADT ~~ -0.0055026640 0.00000000 NA
194 reward1_eco2_ADT reward1_eco3_TR ~~ -0.0018342213 0.00000000 NA
195 reward1_eco2_ADT TR_high_num ~~ 0.0188662765 0.00000000 NA
196 reward1_eco2_TR ADT_high_num ~~ 0.0136256442 0.00000000 NA
197 reward1_eco2_TR PEB_yes ~~ 0.0020089091 0.00000000 NA
198 reward1_eco2_TR reward0_eco3_TR ~~ -0.0002620316 0.00000000 NA
199 reward1_eco2_TR reward1_eco2_TR ~~ 0.0272512883 0.00000000 NA
200 reward1_eco2_TR reward1_eco3_TR ~~ -0.0007860949 0.00000000 NA
201 reward1_eco2_TR TR_high_num ~~ 0.0241069089 0.00000000 NA
202 reward1_eco3 ADT_high_num ~~ -0.0023582846 0.00000000 NA
203 reward1_eco3 PEB_yes ~~ -0.0113110315 0.00000000 NA
204 reward1_eco3 reward0_eco2_ADT ~~ -0.0172940868 0.00000000 NA
205 reward1_eco3 reward0_eco2_TR ~~ -0.0031443794 0.00000000 NA
206 reward1_eco3 reward0_eco3_ADT ~~ -0.0110053280 0.00000000 NA
207 reward1_eco3 reward0_eco3_TR ~~ -0.0015721897 0.00000000 NA
208 reward1_eco3 reward1_eco1_ADT ~~ -0.0172940868 0.00000000 NA
209 reward1_eco3 reward1_eco1_TR ~~ -0.0031443794 0.00000000 NA
210 reward1_eco3 reward1_eco2_ADT ~~ -0.0110053280 0.00000000 NA
211 reward1_eco3 reward1_eco2_TR ~~ -0.0047165691 0.00000000 NA
212 reward1_eco3 reward1_eco3 ~~ 0.1399248843 0.00000000 NA
213 reward1_eco3 reward1_eco3_ADT ~~ 0.0699624421 0.00000000 NA
214 reward1_eco3 reward1_eco3_TR ~~ 0.0233208140 0.00000000 NA
215 reward1_eco3 TR_high_num ~~ 0.0044545375 0.00000000 NA
216 reward1_eco3_ADT ADT_high_num ~~ 0.0408769325 0.00000000 NA
217 reward1_eco3_ADT PEB_yes ~~ -0.0033190672 0.00000000 NA
218 reward1_eco3_ADT reward0_eco2_TR ~~ -0.0015721897 0.00000000 NA
219 reward1_eco3_ADT reward0_eco3_TR ~~ -0.0007860949 0.00000000 NA
220 reward1_eco3_ADT reward1_eco1_TR ~~ -0.0015721897 0.00000000 NA
221 reward1_eco3_ADT reward1_eco2_TR ~~ -0.0023582846 0.00000000 NA
222 reward1_eco3_ADT reward1_eco3_ADT ~~ 0.0770372958 0.00000000 NA
223 reward1_eco3_ADT reward1_eco3_TR ~~ 0.0256790986 0.00000000 NA
224 reward1_eco3_ADT TR_high_num ~~ 0.0162459603 0.00000000 NA
225 reward1_eco3_TR ADT_high_num ~~ 0.0136256442 0.00000000 NA
226 reward1_eco3_TR PEB_yes ~~ -0.0026639881 0.00000000 NA
227 reward1_eco3_TR reward1_eco3_TR ~~ 0.0272512883 0.00000000 NA
228 reward1_eco3_TR TR_high_num ~~ 0.0241069089 0.00000000 NA
229 TR_high_num TR_high_num ~~ 0.1205345445 0.00000000 NA
pvalue ci.lower ci.upper est.std se.std
1 NA 0.2498034763 0.2498034763 1.000000000 0.00000000
2 NA 0.0587824264 0.0587824264 0.338760297 0.00000000
3 2.258147e-03 0.1468620444 0.6730700345 0.210157533 0.06868486
4 7.134360e-11 0.4314083915 0.8024370859 0.648972745 0.06109572
5 NA 1.0000000000 1.0000000000 0.741621532 0.03708057
6 0.000000e+00 1.0774811796 1.5002147134 0.875912603 0.02969626
7 0.000000e+00 1.1413873176 1.5034266900 0.943903333 0.01876057
8 1.690193e-05 0.2041272780 0.5457339248 0.360849349 0.08932181
9 1.612298e-01 -0.0939464646 0.5648236344 0.102882284 0.07319247
10 3.335118e-01 -0.2159779753 0.6366945513 0.080705837 0.08361052
11 2.144491e-01 -0.1288162742 0.5739291103 0.085385759 0.06865325
12 3.130456e-01 -0.1987998931 0.6205372358 0.078107437 0.07750739
13 1.040041e-01 -0.0676243306 0.7255140966 0.126202644 0.07654477
14 8.104305e-01 -0.3426813379 0.4382566430 0.018334160 0.07646022
15 1.946044e-03 0.2018654978 0.8969735812 0.195640023 0.06090159
16 0.000000e+00 0.5960753275 0.9594595729 0.449997504 0.05499949
17 2.493285e-06 0.2796771485 0.6785233870 0.232777112 0.05202266
18 1.278012e-03 0.0796528321 0.3272786392 0.109046498 0.03541633
19 7.686337e-02 -0.0227371860 0.4444375172 0.097511031 0.05480827
20 1.345883e-04 0.2135651456 0.6641492971 0.395918660 0.08685720
21 1.191723e-08 0.3333488682 0.6826468547 0.434933648 0.05430897
22 NA 1.0000000000 1.0000000000 0.910992998 0.01848654
23 0.000000e+00 0.9415654820 1.1401330618 0.930946847 0.01776027
24 0.000000e+00 0.8535760931 1.0662776867 0.904654865 0.02883191
25 1.418580e-05 0.2141471338 0.5667052223 0.338997651 0.09843195
26 7.324322e-02 -0.0285408099 0.6348252171 0.119506653 0.06669344
27 2.423810e-01 -0.5508830070 0.1392441029 -0.071238449 0.05973098
28 3.304320e-01 -0.5004037157 0.1683338755 -0.057468185 0.05893193
29 7.164757e-01 -0.3082550681 0.4484736912 0.023428191 0.06470442
30 9.264378e-01 -0.3392827433 0.3728279895 0.005805358 0.06296524
31 8.398876e-01 -0.4056873745 0.3298650852 -0.013121846 0.06468259
32 2.821482e-01 -0.1236175413 0.4242569192 0.048289443 0.04535928
33 1.333657e-07 0.1504239342 0.3283406983 0.170091757 0.03368222
34 1.617895e-05 0.1061899122 0.2831676533 0.133337968 0.03306774
35 1.310803e-04 0.1164262060 0.3612066237 0.181599575 0.05216586
36 2.369736e-01 -0.2138441509 0.8644637277 0.173268323 0.13752937
37 4.961692e-06 0.3295440854 0.8251590049 0.655670944 0.05958702
38 NA 1.0000000000 1.0000000000 0.807186376 0.07503330
39 9.887269e-11 0.7120624338 1.3311395363 0.890914754 0.03202873
40 3.875242e-09 0.6842687802 1.3668761999 0.827587462 0.08168028
41 4.204938e-06 0.5654119358 1.4046223788 0.447230810 0.06283427
42 3.609355e-01 -0.3776994115 1.0372304543 0.131454521 0.14124721
43 9.812826e-01 -0.7776068147 0.7592109632 -0.002976877 0.12683551
44 9.693707e-01 -0.8950822989 0.8606851585 -0.002482224 0.06465219
45 6.858935e-01 -0.8602231506 0.5659380058 -0.058655484 0.14595463
46 1.268242e-01 -0.1796427855 1.4458355376 0.166823747 0.11061316
47 5.090113e-01 -0.5655346049 1.1402816714 0.029467190 0.04479310
48 8.078382e-01 -0.6274049464 0.8051768646 0.034208848 0.14043083
49 3.147802e-01 -0.3869799320 1.2018952430 0.131872265 0.13159048
50 9.572375e-01 -0.8464455187 0.8940621432 0.003436191 0.06411270
51 3.012522e-02 0.0614658320 1.2171937894 0.254856219 0.10827277
52 1.894802e-01 -1.1722452670 0.2320949986 -0.123866916 0.08928541
53 2.665042e-01 -0.2713677729 0.9818407918 0.062493366 0.05606749
54 8.160626e-01 -0.6121905745 0.7770706560 0.032863096 0.14066118
55 8.486988e-01 -0.8929673319 0.7345482304 -0.023428844 0.12244624
56 2.404899e-01 -1.8192978645 0.4564320253 -0.119877984 0.10904762
57 8.453450e-01 -0.3887218473 0.4746467637 0.015895262 0.08108427
58 4.133947e-03 0.1490704103 0.7927701854 0.348450155 0.12113170
59 3.540156e-05 0.1256409350 0.3520122280 0.206270900 0.05706974
60 3.667890e-02 0.0263808609 0.8258089271 0.315098993 0.13519515
61 NA 0.0056773517 0.0056773517 0.026661308 0.00000000
62 NA 0.1815224037 0.1815224037 1.000000000 0.00000000
63 NA 0.0053716482 0.0053716482 0.036315053 0.00000000
64 NA 0.0163333042 0.0163333042 0.087362959 0.00000000
65 NA 0.0073805573 0.0073805573 0.046310190 0.00000000
66 NA 0.1399248843 0.1399248843 1.000000000 0.00000000
67 NA 0.0855096515 0.0855096515 0.752695772 0.00000000
68 NA 0.0155472094 0.0155472094 0.306887429 0.00000000
69 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
70 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
71 NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
72 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
73 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
74 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
75 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
76 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
77 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
78 NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
79 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
80 NA -0.0048912569 -0.0048912569 -0.037663201 0.00000000
81 NA 0.0499606953 0.0499606953 0.329140294 0.00000000
82 NA 0.0011354703 0.0011354703 0.008775311 0.00000000
83 NA 0.0922351297 0.0922351297 1.000000000 0.00000000
84 NA 0.0167700236 0.0167700236 0.407717753 0.00000000
85 NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
86 NA -0.0009607826 -0.0009607826 -0.032878182 0.00000000
87 NA -0.0019215652 -0.0019215652 -0.046717659 0.00000000
88 NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
89 NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
90 NA -0.0086470434 -0.0086470434 -0.102581476 0.00000000
91 NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
92 NA 0.0042798498 0.0042798498 0.040590517 0.00000000
93 NA 0.0090837628 0.0090837628 0.134196341 0.00000000
94 NA -0.0002183597 -0.0002183597 -0.003784264 0.00000000
95 NA 0.0183422133 0.0183422133 1.000000000 0.00000000
96 NA -0.0001746877 -0.0001746877 -0.013405018 0.00000000
97 NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
98 NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
99 NA 0.0160712726 0.0160712726 0.341797304 0.00000000
100 NA -0.0210498734 -0.0210498734 -0.112590765 0.00000000
101 NA -0.0113110315 -0.0113110315 -0.070972421 0.00000000
102 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
103 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
104 NA 0.1399248843 0.1399248843 1.000000000 0.00000000
105 NA 0.0544152328 0.0544152328 0.588312086 0.00000000
106 NA 0.0077736047 0.0077736047 0.215976161 0.00000000
107 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
108 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
109 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
110 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
111 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
112 NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
113 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
114 NA -0.0142370513 -0.0142370513 -0.109626817 0.00000000
115 NA 0.0317931697 0.0317931697 0.257258271 0.00000000
116 NA -0.0077736047 -0.0077736047 -0.073789079 0.00000000
117 NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
118 NA 0.0611407110 0.0611407110 1.000000000 0.00000000
119 NA 0.0087343873 0.0087343873 0.367111549 0.00000000
120 NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
121 NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
122 NA -0.0055026640 -0.0055026640 -0.080178373 0.00000000
123 NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
124 NA 0.0001746877 0.0001746877 0.002034892 0.00000000
125 NA 0.0045418814 0.0045418814 0.094442483 0.00000000
126 NA 0.0022272688 0.0022272688 0.054329831 0.00000000
127 NA 0.0092584505 0.0092584505 1.000000000 0.00000000
128 NA -0.0002620316 -0.0002620316 -0.016496470 0.00000000
129 NA 0.0080356363 0.0080356363 0.240544456 0.00000000
130 NA 0.0235391737 0.0235391737 0.130409579 0.00000000
131 NA -0.0006332431 -0.0006332431 -0.004115502 0.00000000
132 NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
133 NA -0.0158529129 -0.0158529129 -0.144536791 0.00000000
134 NA -0.0028823478 -0.0028823478 -0.058930216 0.00000000
135 NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
136 NA -0.0100882173 -0.0100882173 -0.112970930 0.00000000
137 NA -0.0014411739 -0.0014411739 -0.041472933 0.00000000
138 NA 0.1304262381 0.1304262381 1.000000000 0.00000000
139 NA 0.0869508254 0.0869508254 0.792762400 0.00000000
140 NA 0.0158092410 0.0158092410 0.323223304 0.00000000
141 NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
142 NA -0.0100882173 -0.0100882173 -0.112970930 0.00000000
143 NA -0.0043235217 -0.0043235217 -0.072520642 0.00000000
144 NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
145 NA -0.0129705651 -0.0129705651 -0.129397504 0.00000000
146 NA -0.0043235217 -0.0043235217 -0.072520642 0.00000000
147 NA -0.0029260197 -0.0029260197 -0.023336676 0.00000000
148 NA 0.0499606953 0.0499606953 0.329140294 0.00000000
149 NA -0.0035374268 -0.0035374268 -0.027338468 0.00000000
150 NA -0.0105686086 -0.0105686086 -0.114583333 0.00000000
151 NA -0.0019215652 -0.0019215652 -0.046717659 0.00000000
152 NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
153 NA -0.0009607826 -0.0009607826 -0.032878182 0.00000000
154 NA 0.0922351297 0.0922351297 1.000000000 0.00000000
155 NA 0.0167700236 0.0167700236 0.407717753 0.00000000
156 NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
157 NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
158 NA -0.0086470434 -0.0086470434 -0.102581476 0.00000000
159 NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
160 NA 0.0042798498 0.0042798498 0.040590517 0.00000000
161 NA 0.0090837628 0.0090837628 0.134196341 0.00000000
162 NA 0.0044545375 0.0044545375 0.077198993 0.00000000
163 NA -0.0003493755 -0.0003493755 -0.019047619 0.00000000
164 NA -0.0001746877 -0.0001746877 -0.013405018 0.00000000
165 NA 0.0183422133 0.0183422133 1.000000000 0.00000000
166 NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
167 NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
168 NA 0.0160712726 0.0160712726 0.341797304 0.00000000
169 NA -0.0210498734 -0.0210498734 -0.112590765 0.00000000
170 NA 0.0027076601 0.0027076601 0.016989537 0.00000000
171 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
172 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
173 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
174 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
175 NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
176 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
177 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
178 NA 0.1399248843 0.1399248843 1.000000000 0.00000000
179 NA 0.0544152328 0.0544152328 0.588312086 0.00000000
180 NA 0.0233208140 0.0233208140 0.377661495 0.00000000
181 NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
182 NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
183 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
184 NA 0.0044545375 0.0044545375 0.034300415 0.00000000
185 NA 0.0317931697 0.0317931697 0.257258271 0.00000000
186 NA 0.0062450869 0.0062450869 0.059279991 0.00000000
187 NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
188 NA -0.0042798498 -0.0042798498 -0.070000000 0.00000000
189 NA -0.0006114071 -0.0006114071 -0.025697808 0.00000000
190 NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
191 NA 0.0611407110 0.0611407110 1.000000000 0.00000000
192 NA 0.0262031618 0.0262031618 0.641940739 0.00000000
193 NA -0.0055026640 -0.0055026640 -0.080178373 0.00000000
194 NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
195 NA 0.0188662765 0.0188662765 0.219768370 0.00000000
196 NA 0.0136256442 0.0136256442 0.165144565 0.00000000
197 NA 0.0020089091 0.0020089091 0.028562857 0.00000000
198 NA -0.0002620316 -0.0002620316 -0.016496470 0.00000000
199 NA 0.0272512883 0.0272512883 1.000000000 0.00000000
200 NA -0.0007860949 -0.0007860949 -0.028846154 0.00000000
201 NA 0.0241069089 0.0241069089 0.420622250 0.00000000
202 NA -0.0023582846 -0.0023582846 -0.012613903 0.00000000
203 NA -0.0113110315 -0.0113110315 -0.070972421 0.00000000
204 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
205 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
206 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
207 NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
208 NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
209 NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
210 NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
211 NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
212 NA 0.1399248843 0.1399248843 1.000000000 0.00000000
213 NA 0.0699624421 0.0699624421 0.673855795 0.00000000
214 NA 0.0233208140 0.0233208140 0.377661495 0.00000000
215 NA 0.0044545375 0.0044545375 0.034300415 0.00000000
216 NA 0.0408769325 0.0408769325 0.294664993 0.00000000
217 NA -0.0033190672 -0.0033190672 -0.028067285 0.00000000
218 NA -0.0015721897 -0.0015721897 -0.041824289 0.00000000
219 NA -0.0007860949 -0.0007860949 -0.029434407 0.00000000
220 NA -0.0015721897 -0.0015721897 -0.041824289 0.00000000
221 NA -0.0023582846 -0.0023582846 -0.051469764 0.00000000
222 NA 0.0770372958 0.0770372958 1.000000000 0.00000000
223 NA 0.0256790986 0.0256790986 0.560448538 0.00000000
224 NA 0.0162459603 0.0162459603 0.168592833 0.00000000
225 NA 0.0136256442 0.0136256442 0.165144565 0.00000000
226 NA -0.0026639881 -0.0026639881 -0.037876832 0.00000000
227 NA 0.0272512883 0.0272512883 1.000000000 0.00000000
228 NA 0.0241069089 0.0241069089 0.420622250 0.00000000
229 NA 0.1205345445 0.1205345445 1.000000000 0.00000000
z.std pvalue.std ci.lower.std ci.upper.std
1 NA NA 1.000000000 1.000000000
2 NA NA 0.338760297 0.338760297
3 3.05973601 2.215322e-03 0.075537685 0.344777381
4 10.62222860 0.000000e+00 0.529227327 0.768718163
5 20.00027422 0.000000e+00 0.668944954 0.814298110
6 29.49571996 0.000000e+00 0.817709000 0.934116205
7 50.31314523 0.000000e+00 0.907133290 0.980673377
8 4.03987962 5.347864e-05 0.185781824 0.535916874
9 1.40564019 1.598310e-01 -0.040572330 0.246336898
10 0.96525931 3.344149e-01 -0.083167780 0.244579454
11 1.24372488 2.136008e-01 -0.049172145 0.219943662
12 1.00774185 3.135784e-01 -0.073804248 0.230019122
13 1.64874281 9.920034e-02 -0.023822354 0.276227642
14 0.23978691 8.104955e-01 -0.131525120 0.168193440
15 3.21239590 1.316328e-03 0.076275097 0.315004950
16 8.18184800 2.220446e-16 0.342200475 0.557794532
17 4.47453331 7.657839e-06 0.130814578 0.334739647
18 3.07898933 2.077041e-03 0.039631769 0.178461226
19 1.77912987 7.521847e-02 -0.009911205 0.204933267
20 4.55827115 5.157642e-06 0.225681680 0.566155639
21 8.00850547 1.110223e-15 0.328490031 0.541377265
22 49.27872014 0.000000e+00 0.874760047 0.947225950
23 52.41737136 0.000000e+00 0.896137351 0.965756344
24 31.37686031 0.000000e+00 0.848145356 0.961164373
25 3.44397996 5.732182e-04 0.146074581 0.531920721
26 1.79188009 7.315218e-02 -0.011210093 0.250223399
27 -1.19265496 2.330045e-01 -0.188309018 0.045832120
28 -0.97516213 3.294798e-01 -0.172972642 0.058036273
29 0.36208020 7.172921e-01 -0.103390148 0.150246529
30 0.09219942 9.265396e-01 -0.117604243 0.129214959
31 -0.20286518 8.392404e-01 -0.139897398 0.113653706
32 1.06459909 2.870574e-01 -0.040613103 0.137191989
33 5.04989818 4.420456e-07 0.104075828 0.236107685
34 4.03226683 5.524141e-05 0.068526380 0.198149555
35 3.48119588 4.991803e-04 0.079356369 0.283842781
36 1.25986414 2.077184e-01 -0.096284291 0.442820938
37 11.00358610 0.000000e+00 0.538882524 0.772459364
38 10.75770877 0.000000e+00 0.660123813 0.954248939
39 27.81611423 0.000000e+00 0.828139601 0.953689908
40 10.13203557 0.000000e+00 0.667497063 0.987677861
41 7.11762611 1.098011e-12 0.324077912 0.570383708
42 0.93066986 3.520244e-01 -0.145384923 0.408293965
43 -0.02347038 9.812751e-01 -0.251569902 0.245616148
44 -0.03839351 9.693739e-01 -0.129198180 0.124233731
45 -0.40187477 6.877762e-01 -0.344721305 0.227410337
46 1.50817275 1.315103e-01 -0.049974054 0.383621549
47 0.65785117 5.106338e-01 -0.058325664 0.117260044
48 0.24359928 8.075412e-01 -0.241030516 0.309448212
49 1.00214139 3.162753e-01 -0.126040333 0.389784864
50 0.05359610 9.572570e-01 -0.122222389 0.129094771
51 2.35383489 1.858086e-02 0.042645493 0.467066946
52 -1.38731418 1.653460e-01 -0.298863104 0.051129273
53 1.11460963 2.650177e-01 -0.047396898 0.172383630
54 0.23363302 8.152699e-01 -0.242827754 0.308553946
55 -0.19133984 8.482594e-01 -0.263419075 0.216561386
56 -1.09931779 2.716295e-01 -0.333607385 0.093851416
57 0.19603385 8.445837e-01 -0.143026991 0.174817515
58 2.87662223 4.019565e-03 0.111036376 0.585863934
59 3.61436568 3.010839e-04 0.094416270 0.318125530
60 2.33069752 1.976932e-02 0.050121375 0.580076611
61 NA NA 0.026661308 0.026661308
62 NA NA 1.000000000 1.000000000
63 NA NA 0.036315053 0.036315053
64 NA NA 0.087362959 0.087362959
65 NA NA 0.046310190 0.046310190
66 NA NA 1.000000000 1.000000000
67 NA NA 0.752695772 0.752695772
68 NA NA 0.306887429 0.306887429
69 NA NA -0.202247191 -0.202247191
70 NA NA -0.118984467 -0.118984467
71 NA NA -0.043680572 -0.043680572
72 NA NA -0.152230606 -0.152230606
73 NA NA -0.062067121 -0.062067121
74 NA NA -0.202247191 -0.202247191
75 NA NA -0.118984467 -0.118984467
76 NA NA -0.076380977 -0.076380977
77 NA NA -0.202247191 -0.202247191
78 NA NA -0.136285442 -0.136285442
79 NA NA -0.076380977 -0.076380977
80 NA NA -0.037663201 -0.037663201
81 NA NA 0.329140294 0.329140294
82 NA NA 0.008775311 0.008775311
83 NA NA 1.000000000 1.000000000
84 NA NA 0.407717753 0.407717753
85 NA NA -0.089559105 -0.089559105
86 NA NA -0.032878182 -0.032878182
87 NA NA -0.046717659 -0.046717659
88 NA NA -0.089559105 -0.089559105
89 NA NA -0.057491638 -0.057491638
90 NA NA -0.102581476 -0.102581476
91 NA NA -0.057491638 -0.057491638
92 NA NA 0.040590517 0.040590517
93 NA NA 0.134196341 0.134196341
94 NA NA -0.003784264 -0.003784264
95 NA NA 1.000000000 1.000000000
96 NA NA -0.013405018 -0.013405018
97 NA NA -0.023440362 -0.023440362
98 NA NA -0.023440362 -0.023440362
99 NA NA 0.341797304 0.341797304
100 NA NA -0.112590765 -0.112590765
101 NA NA -0.070972421 -0.070972421
102 NA NA -0.152230606 -0.152230606
103 NA NA -0.062067121 -0.062067121
104 NA NA 1.000000000 1.000000000
105 NA NA 0.588312086 0.588312086
106 NA NA 0.215976161 0.215976161
107 NA NA -0.152230606 -0.152230606
108 NA NA -0.062067121 -0.062067121
109 NA NA -0.118984467 -0.118984467
110 NA NA -0.076380977 -0.076380977
111 NA NA -0.202247191 -0.202247191
112 NA NA -0.136285442 -0.136285442
113 NA NA -0.076380977 -0.076380977
114 NA NA -0.109626817 -0.109626817
115 NA NA 0.257258271 0.257258271
116 NA NA -0.073789079 -0.073789079
117 NA NA -0.036514837 -0.036514837
118 NA NA 1.000000000 1.000000000
119 NA NA 0.367111549 0.367111549
120 NA NA -0.036514837 -0.036514837
121 NA NA -0.044935852 -0.044935852
122 NA NA -0.080178373 -0.080178373
123 NA NA -0.044935852 -0.044935852
124 NA NA 0.002034892 0.002034892
125 NA NA 0.094442483 0.094442483
126 NA NA 0.054329831 0.054329831
127 NA NA 1.000000000 1.000000000
128 NA NA -0.016496470 -0.016496470
129 NA NA 0.240544456 0.240544456
130 NA NA 0.130409579 0.130409579
131 NA NA -0.004115502 -0.004115502
132 NA NA -0.192025512 -0.192025512
133 NA NA -0.144536791 -0.144536791
134 NA NA -0.058930216 -0.058930216
135 NA NA -0.192025512 -0.192025512
136 NA NA -0.112970930 -0.112970930
137 NA NA -0.041472933 -0.041472933
138 NA NA 1.000000000 1.000000000
139 NA NA 0.792762400 0.792762400
140 NA NA 0.323223304 0.323223304
141 NA NA -0.192025512 -0.192025512
142 NA NA -0.112970930 -0.112970930
143 NA NA -0.072520642 -0.072520642
144 NA NA -0.192025512 -0.192025512
145 NA NA -0.129397504 -0.129397504
146 NA NA -0.072520642 -0.072520642
147 NA NA -0.023336676 -0.023336676
148 NA NA 0.329140294 0.329140294
149 NA NA -0.027338468 -0.027338468
150 NA NA -0.114583333 -0.114583333
151 NA NA -0.046717659 -0.046717659
152 NA NA -0.089559105 -0.089559105
153 NA NA -0.032878182 -0.032878182
154 NA NA 1.000000000 1.000000000
155 NA NA 0.407717753 0.407717753
156 NA NA -0.089559105 -0.089559105
157 NA NA -0.057491638 -0.057491638
158 NA NA -0.102581476 -0.102581476
159 NA NA -0.057491638 -0.057491638
160 NA NA 0.040590517 0.040590517
161 NA NA 0.134196341 0.134196341
162 NA NA 0.077198993 0.077198993
163 NA NA -0.019047619 -0.019047619
164 NA NA -0.013405018 -0.013405018
165 NA NA 1.000000000 1.000000000
166 NA NA -0.023440362 -0.023440362
167 NA NA -0.023440362 -0.023440362
168 NA NA 0.341797304 0.341797304
169 NA NA -0.112590765 -0.112590765
170 NA NA 0.016989537 0.016989537
171 NA NA -0.152230606 -0.152230606
172 NA NA -0.062067121 -0.062067121
173 NA NA -0.202247191 -0.202247191
174 NA NA -0.118984467 -0.118984467
175 NA NA -0.043680572 -0.043680572
176 NA NA -0.152230606 -0.152230606
177 NA NA -0.062067121 -0.062067121
178 NA NA 1.000000000 1.000000000
179 NA NA 0.588312086 0.588312086
180 NA NA 0.377661495 0.377661495
181 NA NA -0.202247191 -0.202247191
182 NA NA -0.136285442 -0.136285442
183 NA NA -0.076380977 -0.076380977
184 NA NA 0.034300415 0.034300415
185 NA NA 0.257258271 0.257258271
186 NA NA 0.059279991 0.059279991
187 NA NA -0.036514837 -0.036514837
188 NA NA -0.070000000 -0.070000000
189 NA NA -0.025697808 -0.025697808
190 NA NA -0.036514837 -0.036514837
191 NA NA 1.000000000 1.000000000
192 NA NA 0.641940739 0.641940739
193 NA NA -0.080178373 -0.080178373
194 NA NA -0.044935852 -0.044935852
195 NA NA 0.219768370 0.219768370
196 NA NA 0.165144565 0.165144565
197 NA NA 0.028562857 0.028562857
198 NA NA -0.016496470 -0.016496470
199 NA NA 1.000000000 1.000000000
200 NA NA -0.028846154 -0.028846154
201 NA NA 0.420622250 0.420622250
202 NA NA -0.012613903 -0.012613903
203 NA NA -0.070972421 -0.070972421
204 NA NA -0.152230606 -0.152230606
205 NA NA -0.062067121 -0.062067121
206 NA NA -0.118984467 -0.118984467
207 NA NA -0.043680572 -0.043680572
208 NA NA -0.152230606 -0.152230606
209 NA NA -0.062067121 -0.062067121
210 NA NA -0.118984467 -0.118984467
211 NA NA -0.076380977 -0.076380977
212 NA NA 1.000000000 1.000000000
213 NA NA 0.673855795 0.673855795
214 NA NA 0.377661495 0.377661495
215 NA NA 0.034300415 0.034300415
216 NA NA 0.294664993 0.294664993
217 NA NA -0.028067285 -0.028067285
218 NA NA -0.041824289 -0.041824289
219 NA NA -0.029434407 -0.029434407
220 NA NA -0.041824289 -0.041824289
221 NA NA -0.051469764 -0.051469764
222 NA NA 1.000000000 1.000000000
223 NA NA 0.560448538 0.560448538
224 NA NA 0.168592833 0.168592833
225 NA NA 0.165144565 0.165144565
226 NA NA -0.037876832 -0.037876832
227 NA NA 1.000000000 1.000000000
228 NA NA 0.420622250 0.420622250
229 NA NA 1.000000000 1.000000000
Derived model (including interactions on DVS)
Comparing fits from baseline to derived
Derived model without PEB as control
aic bic srmr rmsea cfi tli
4732.955 4918.083 0.035 0.043 0.964 0.953
Derived model with PEB as control
aic bic srmr rmsea cfi tli
4732.955 4918.083 0.035 0.043 0.964 0.953
Comparing the effect of EEF vs. EEC on IM
Difference between IM -> EEC and IM -> EEF: -0.01549558
Standard Error of the Difference: 0.1252344
Z-score: -0.1237326
p-value: 0.901527
The difference is not statistically significant at the 0.05 level.
Indirect effect analysis
Effects of reward0_eco2 on EEC through IM using standardized loadings:
Indirect Effect: 0.04743528
Standard Error (Indirect): 0.05230396
Z-score (Indirect): 0.9069156
p-value (Indirect): 0.3644514
Direct Effect: 0.08070584
Total Effect: 0.1281411
Standard Error (Total): 0.09862263
Z-score (Total): 1.299307
p-value (Total): 0.1938385
Effects of reward1_eco1 on EEF through IM using standardized loadings:
Indirect Effect: 0.01159672
Standard Error (Indirect): 0.04772466
Z-score (Indirect): 0.2429922
p-value (Indirect): 0.8080114
Direct Effect: 0.02342819
Total Effect: 0.03502491
Standard Error (Total): 0.0804009
Z-score (Total): 0.4356283
p-value (Total): 0.6631064
Effects of reward1_eco2 on EEC through IM using standardized loadings:
Indirect Effect: 0.0919647
Standard Error (Indirect): 0.04521821
Z-score (Indirect): 2.033798
p-value (Indirect): 0.04197199
Direct Effect: 0.1262026
Total Effect: 0.2181673
Standard Error (Total): 0.08890326
Z-score (Total): 2.453986
p-value (Total): 0.01412825
Effects of reward1_eco3 on EEF through IM using standardized loadings:
Indirect Effect: 0.01114051
Standard Error (Indirect): 0.0477934
Z-score (Indirect): 0.2330973
p-value (Indirect): 0.8156859
Direct Effect: -0.01312185
Total Effect: -0.001981334
Standard Error (Total): 0.08042417
Z-score (Total): -0.02463605
p-value (Total): 0.9803453
Effects of reward1_eco3 on EEC through IM using standardized loadings:
Indirect Effect: 0.01185863
Standard Error (Indirect): 0.0508423
Z-score (Indirect): 0.2332433
p-value (Indirect): 0.8155725
Direct Effect: 0.01833416
Total Effect: 0.03019279
Standard Error (Total): 0.09182105
Z-score (Total): 0.3288221
p-value (Total): 0.7422902
Effects of ADT_high_num on EEF through IM using standardized loadings:
Indirect Effect: 0.05873755
Standard Error (Indirect): 0.04964374
Z-score (Indirect): 1.183181
p-value (Indirect): 0.2367372
Direct Effect: 0.09751103
Total Effect: 0.1562486
Standard Error (Total): 0.07394895
Z-score (Total): 2.112925
p-value (Total): 0.03460719
Effects of ADT_high_num on EEC through IM using standardized loadings:
Indirect Effect: 0.06252376
Standard Error (Indirect): 0.05198465
Z-score (Indirect): 1.202735
p-value (Indirect): 0.2290788
Direct Effect: 0.2101575
Total Effect: 0.2726813
Standard Error (Total): 0.0861395
Z-score (Total): 3.165578
p-value (Total): 0.001547752
Derived model - Seidali
Full mediation
Complete theoretical model with dummy moderators and full mediation
lavaan 0.6-21 ended normally after 111 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 48
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 237.626 252.700
Degrees of freedom 150 150
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.940
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1771.294 1633.267
Degrees of freedom 189 189
P-value 0.000 0.000
Scaling correction factor 1.085
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.945 0.929
Tucker-Lewis Index (TLI) 0.930 0.910
Robust Comparative Fit Index (CFI) 0.938
Robust Tucker-Lewis Index (TLI) 0.922
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2355.129 -2355.129
Scaling correction factor 1.621
for the MLR correction
Loglikelihood unrestricted model (H1) -2236.316 -2236.316
Scaling correction factor 1.105
for the MLR correction
Akaike (AIC) 4806.259 4806.259
Bayesian (BIC) 4967.826 4967.826
Sample-size adjusted Bayesian (SABIC) 4815.726 4815.726
Root Mean Square Error of Approximation:
RMSEA 0.052 0.057
90 Percent confidence interval - lower 0.039 0.044
90 Percent confidence interval - upper 0.065 0.069
P-value H_0: RMSEA <= 0.050 0.372 0.189
P-value H_0: RMSEA >= 0.080 0.000 0.001
Robust RMSEA 0.055
90 Percent confidence interval - lower 0.043
90 Percent confidence interval - upper 0.066
P-value H_0: Robust RMSEA <= 0.050 0.241
P-value H_0: Robust RMSEA >= 0.080 0.000
Standardized Root Mean Square Residual:
SRMR 0.056 0.056
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.843 0.000 1.257 0.876
EEC3 1.324 0.093 14.306 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.051 0.000 1.128 0.933
EEF3 0.962 0.054 17.777 0.000 1.037 0.904
IM =~
IM1 1.000 0.955 0.822
IM2 0.992 0.178 5.589 0.000 0.948 0.881
IM3 0.994 0.196 5.066 0.000 0.949 0.816
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.130 0.406 0.321 0.748 0.136 0.049
reward0_eco2 0.415 0.398 1.042 0.297 0.434 0.162
reward1_eco2 0.600 0.342 1.755 0.079 0.628 0.235
reward0_eco3 -0.179 0.404 -0.444 0.657 -0.188 -0.070
reward1_eco3 -0.037 0.442 -0.084 0.933 -0.039 -0.015
ADT_high_num 0.557 0.352 1.582 0.114 0.583 0.291
TR_high_num -0.062 0.287 -0.217 0.828 -0.065 -0.023
reward1_c1_ADT 0.074 0.448 0.166 0.868 0.078 0.024
reward0_c2_ADT -0.265 0.458 -0.579 0.562 -0.277 -0.084
reward1_c2_ADT -0.500 0.428 -1.169 0.243 -0.523 -0.129
reward0_c3_ADT 0.300 0.494 0.607 0.544 0.314 0.078
reward1_c3_ADT -0.165 0.517 -0.319 0.750 -0.172 -0.048
reward1_ec1_TR 0.530 0.482 1.099 0.272 0.555 0.075
reward0_ec2_TR 0.129 0.554 0.234 0.815 0.135 0.018
reward1_ec2_TR 0.481 0.415 1.158 0.247 0.503 0.083
reward0_ec3_TR 0.895 0.517 1.733 0.083 0.937 0.090
reward1_ec3_TR -0.572 0.606 -0.944 0.345 -0.598 -0.099
EEF ~
IM 0.704 0.077 9.097 0.000 0.624 0.624
reward1_eco1 0.095 0.185 0.513 0.608 0.088 0.032
reward0_eco2 -0.188 0.203 -0.925 0.355 -0.174 -0.065
reward1_eco2 -0.001 0.194 -0.005 0.996 -0.001 -0.000
reward0_eco3 -0.231 0.179 -1.292 0.196 -0.215 -0.080
reward1_eco3 -0.068 0.203 -0.336 0.737 -0.063 -0.024
EEC ~
IM 0.499 0.078 6.403 0.000 0.489 0.489
reward1_eco1 0.152 0.206 0.739 0.460 0.156 0.056
reward0_eco2 0.133 0.221 0.604 0.546 0.137 0.051
reward1_eco2 0.175 0.214 0.821 0.412 0.180 0.067
reward0_eco3 0.051 0.185 0.277 0.782 0.053 0.020
reward1_eco3 0.002 0.222 0.008 0.994 0.002 0.001
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.339 0.115 2.940 0.003 0.490 0.490
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.412 0.000 0.780 0.451
.EEC2 0.477 0.104 4.591 0.000 0.477 0.232
.EEC3 0.204 0.062 3.303 0.001 0.204 0.109
.EEF1 0.246 0.046 5.370 0.000 0.246 0.174
.EEF2 0.188 0.046 4.120 0.000 0.188 0.129
.EEF3 0.240 0.063 3.803 0.000 0.240 0.183
.IM1 0.439 0.182 2.415 0.016 0.439 0.324
.IM2 0.259 0.084 3.084 0.002 0.259 0.224
.IM3 0.451 0.229 1.970 0.049 0.451 0.333
.EEC 0.701 0.120 5.835 0.000 0.739 0.739
.EEF 0.684 0.171 3.994 0.000 0.589 0.589
.IM 0.761 0.189 4.021 0.000 0.834 0.834
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.676
IM2 0.776
IM3 0.667
EEC 0.261
EEF 0.411
IM 0.166
One moderator at a time
ADT
Partial mediation
ADT moderation using dummy and partial mediation
lavaan 0.6-21 ended normally after 71 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 42
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 188.840 197.001
Degrees of freedom 102 102
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.959
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1717.814 1476.651
Degrees of freedom 135 135
P-value 0.000 0.000
Scaling correction factor 1.163
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.945 0.929
Tucker-Lewis Index (TLI) 0.927 0.906
Robust Comparative Fit Index (CFI) 0.942
Robust Tucker-Lewis Index (TLI) 0.923
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2357.476 -2357.476
Scaling correction factor 1.742
for the MLR correction
Loglikelihood unrestricted model (H1) -2263.056 -2263.056
Scaling correction factor 1.187
for the MLR correction
Akaike (AIC) 4798.952 4798.952
Bayesian (BIC) 4940.323 4940.323
Sample-size adjusted Bayesian (SABIC) 4807.236 4807.236
Root Mean Square Error of Approximation:
RMSEA 0.063 0.066
90 Percent confidence interval - lower 0.049 0.052
90 Percent confidence interval - upper 0.077 0.080
P-value H_0: RMSEA <= 0.050 0.064 0.034
P-value H_0: RMSEA >= 0.080 0.022 0.050
Robust RMSEA 0.065
90 Percent confidence interval - lower 0.051
90 Percent confidence interval - upper 0.078
P-value H_0: Robust RMSEA <= 0.050 0.040
P-value H_0: Robust RMSEA >= 0.080 0.029
Standardized Root Mean Square Residual:
SRMR 0.055 0.055
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.842 0.000 1.257 0.876
EEC3 1.324 0.092 14.313 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.047 0.052 20.040 0.000 1.128 0.934
EEF3 0.962 0.054 17.784 0.000 1.037 0.904
IM =~
IM1 1.000 0.957 0.824
IM2 0.987 0.166 5.955 0.000 0.945 0.878
IM3 0.992 0.188 5.281 0.000 0.950 0.817
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.137 0.399 0.344 0.731 0.143 0.052
reward0_eco2 0.423 0.390 1.084 0.279 0.442 0.165
reward1_eco2 0.608 0.333 1.829 0.067 0.635 0.238
reward0_eco3 -0.172 0.398 -0.432 0.666 -0.179 -0.067
reward1_eco3 -0.031 0.437 -0.072 0.943 -0.033 -0.012
ADT_high_num 0.549 0.360 1.525 0.127 0.573 0.286
reward1_c1_ADT 0.170 0.451 0.376 0.707 0.177 0.054
reward0_c2_ADT -0.242 0.454 -0.532 0.595 -0.252 -0.077
reward1_c2_ADT -0.309 0.400 -0.773 0.439 -0.323 -0.080
reward0_c3_ADT 0.430 0.488 0.882 0.378 0.449 0.111
reward1_c3_ADT -0.363 0.509 -0.712 0.477 -0.379 -0.105
EEF ~
IM 0.705 0.077 9.102 0.000 0.626 0.626
reward1_eco1 0.095 0.185 0.514 0.608 0.088 0.032
reward0_eco2 -0.189 0.203 -0.931 0.352 -0.175 -0.066
reward1_eco2 -0.001 0.194 -0.007 0.994 -0.001 -0.000
reward0_eco3 -0.231 0.179 -1.291 0.197 -0.214 -0.080
reward1_eco3 -0.068 0.204 -0.332 0.740 -0.063 -0.023
EEC ~
IM 0.499 0.077 6.467 0.000 0.491 0.491
reward1_eco1 0.152 0.206 0.739 0.460 0.156 0.056
reward0_eco2 0.133 0.221 0.602 0.547 0.136 0.051
reward1_eco2 0.175 0.214 0.820 0.412 0.180 0.067
reward0_eco3 0.052 0.185 0.279 0.781 0.053 0.020
reward1_eco3 0.002 0.222 0.009 0.993 0.002 0.001
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.337 0.111 3.029 0.002 0.489 0.489
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.411 0.000 0.780 0.451
.EEC2 0.477 0.104 4.590 0.000 0.477 0.232
.EEC3 0.204 0.062 3.303 0.001 0.204 0.109
.EEF1 0.246 0.046 5.372 0.000 0.246 0.175
.EEF2 0.188 0.046 4.114 0.000 0.188 0.129
.EEF3 0.240 0.063 3.804 0.000 0.240 0.183
.IM1 0.435 0.170 2.553 0.011 0.435 0.322
.IM2 0.264 0.083 3.179 0.001 0.264 0.228
.IM3 0.450 0.229 1.969 0.049 0.450 0.333
.EEC 0.700 0.118 5.922 0.000 0.737 0.737
.EEF 0.681 0.167 4.090 0.000 0.587 0.587
.IM 0.783 0.178 4.388 0.000 0.854 0.854
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.825
EEF2 0.871
EEF3 0.817
IM1 0.678
IM2 0.772
IM3 0.667
EEC 0.263
EEF 0.413
IM 0.146
Full mediation
ADT moderation using dummy and full mediation
lavaan 0.6-21 ended normally after 71 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 42
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 188.840 197.001
Degrees of freedom 102 102
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.959
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1717.814 1476.651
Degrees of freedom 135 135
P-value 0.000 0.000
Scaling correction factor 1.163
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.945 0.929
Tucker-Lewis Index (TLI) 0.927 0.906
Robust Comparative Fit Index (CFI) 0.942
Robust Tucker-Lewis Index (TLI) 0.923
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2357.476 -2357.476
Scaling correction factor 1.742
for the MLR correction
Loglikelihood unrestricted model (H1) -2263.056 -2263.056
Scaling correction factor 1.187
for the MLR correction
Akaike (AIC) 4798.952 4798.952
Bayesian (BIC) 4940.323 4940.323
Sample-size adjusted Bayesian (SABIC) 4807.236 4807.236
Root Mean Square Error of Approximation:
RMSEA 0.063 0.066
90 Percent confidence interval - lower 0.049 0.052
90 Percent confidence interval - upper 0.077 0.080
P-value H_0: RMSEA <= 0.050 0.064 0.034
P-value H_0: RMSEA >= 0.080 0.022 0.050
Robust RMSEA 0.065
90 Percent confidence interval - lower 0.051
90 Percent confidence interval - upper 0.078
P-value H_0: Robust RMSEA <= 0.050 0.040
P-value H_0: Robust RMSEA >= 0.080 0.029
Standardized Root Mean Square Residual:
SRMR 0.055 0.055
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.842 0.000 1.257 0.876
EEC3 1.324 0.092 14.313 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.047 0.052 20.040 0.000 1.128 0.934
EEF3 0.962 0.054 17.784 0.000 1.037 0.904
IM =~
IM1 1.000 0.957 0.824
IM2 0.987 0.166 5.955 0.000 0.945 0.878
IM3 0.992 0.188 5.281 0.000 0.950 0.817
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.137 0.399 0.344 0.731 0.143 0.052
reward0_eco2 0.423 0.390 1.084 0.279 0.442 0.165
reward1_eco2 0.608 0.333 1.829 0.067 0.635 0.238
reward0_eco3 -0.172 0.398 -0.432 0.666 -0.179 -0.067
reward1_eco3 -0.031 0.437 -0.072 0.943 -0.033 -0.012
ADT_high_num 0.549 0.360 1.525 0.127 0.573 0.286
reward1_c1_ADT 0.170 0.451 0.376 0.707 0.177 0.054
reward0_c2_ADT -0.242 0.454 -0.532 0.595 -0.252 -0.077
reward1_c2_ADT -0.309 0.400 -0.773 0.439 -0.323 -0.080
reward0_c3_ADT 0.430 0.488 0.882 0.378 0.449 0.111
reward1_c3_ADT -0.363 0.509 -0.712 0.477 -0.379 -0.105
EEF ~
IM 0.705 0.077 9.102 0.000 0.626 0.626
reward1_eco1 0.095 0.185 0.514 0.608 0.088 0.032
reward0_eco2 -0.189 0.203 -0.931 0.352 -0.175 -0.066
reward1_eco2 -0.001 0.194 -0.007 0.994 -0.001 -0.000
reward0_eco3 -0.231 0.179 -1.291 0.197 -0.214 -0.080
reward1_eco3 -0.068 0.204 -0.332 0.740 -0.063 -0.023
EEC ~
IM 0.499 0.077 6.467 0.000 0.491 0.491
reward1_eco1 0.152 0.206 0.739 0.460 0.156 0.056
reward0_eco2 0.133 0.221 0.602 0.547 0.136 0.051
reward1_eco2 0.175 0.214 0.820 0.412 0.180 0.067
reward0_eco3 0.052 0.185 0.279 0.781 0.053 0.020
reward1_eco3 0.002 0.222 0.009 0.993 0.002 0.001
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.337 0.111 3.029 0.002 0.489 0.489
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.411 0.000 0.780 0.451
.EEC2 0.477 0.104 4.590 0.000 0.477 0.232
.EEC3 0.204 0.062 3.303 0.001 0.204 0.109
.EEF1 0.246 0.046 5.372 0.000 0.246 0.175
.EEF2 0.188 0.046 4.114 0.000 0.188 0.129
.EEF3 0.240 0.063 3.804 0.000 0.240 0.183
.IM1 0.435 0.170 2.553 0.011 0.435 0.322
.IM2 0.264 0.083 3.179 0.001 0.264 0.228
.IM3 0.450 0.229 1.969 0.049 0.450 0.333
.EEC 0.700 0.118 5.922 0.000 0.737 0.737
.EEF 0.681 0.167 4.090 0.000 0.587 0.587
.IM 0.783 0.178 4.388 0.000 0.854 0.854
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.825
EEF2 0.871
EEF3 0.817
IM1 0.678
IM2 0.772
IM3 0.667
EEC 0.263
EEF 0.413
IM 0.146
TR
Partial mediation
TR moderation using dummy and partial mediation
lavaan 0.6-21 ended normally after 88 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 42
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 185.577 192.266
Degrees of freedom 102 102
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.965
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1705.021 1473.950
Degrees of freedom 135 135
P-value 0.000 0.000
Scaling correction factor 1.157
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.947 0.933
Tucker-Lewis Index (TLI) 0.930 0.911
Robust Comparative Fit Index (CFI) 0.944
Robust Tucker-Lewis Index (TLI) 0.926
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2362.241 -2362.241
Scaling correction factor 1.704
for the MLR correction
Loglikelihood unrestricted model (H1) -2269.453 -2269.453
Scaling correction factor 1.181
for the MLR correction
Akaike (AIC) 4808.483 4808.483
Bayesian (BIC) 4949.854 4949.854
Sample-size adjusted Bayesian (SABIC) 4816.766 4816.766
Root Mean Square Error of Approximation:
RMSEA 0.062 0.064
90 Percent confidence interval - lower 0.048 0.050
90 Percent confidence interval - upper 0.076 0.078
P-value H_0: RMSEA <= 0.050 0.084 0.051
P-value H_0: RMSEA >= 0.080 0.016 0.033
Robust RMSEA 0.063
90 Percent confidence interval - lower 0.049
90 Percent confidence interval - upper 0.077
P-value H_0: Robust RMSEA <= 0.050 0.058
P-value H_0: Robust RMSEA >= 0.080 0.020
Standardized Root Mean Square Residual:
SRMR 0.059 0.059
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.846 0.000 1.257 0.876
EEC3 1.324 0.093 14.300 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.045 0.000 1.128 0.933
EEF3 0.962 0.054 17.771 0.000 1.037 0.904
IM =~
IM1 1.000 0.948 0.816
IM2 1.006 0.175 5.758 0.000 0.954 0.887
IM3 1.006 0.190 5.294 0.000 0.954 0.821
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.254 0.249 1.019 0.308 0.268 0.097
reward0_eco2 0.308 0.252 1.220 0.222 0.324 0.121
reward1_eco2 0.347 0.230 1.510 0.131 0.366 0.137
reward0_eco3 -0.144 0.287 -0.502 0.616 -0.152 -0.057
reward1_eco3 -0.144 0.295 -0.488 0.626 -0.152 -0.057
TR_high_num 0.079 0.303 0.260 0.795 0.083 0.029
reward1_ec1_TR 0.618 0.487 1.267 0.205 0.651 0.088
reward0_ec2_TR 0.102 0.541 0.188 0.851 0.107 0.015
reward1_ec2_TR 0.367 0.380 0.968 0.333 0.387 0.064
reward0_ec3_TR 1.286 0.504 2.550 0.011 1.356 0.130
reward1_ec3_TR -0.501 0.613 -0.816 0.414 -0.528 -0.087
EEF ~
IM 0.698 0.076 9.212 0.000 0.614 0.614
reward1_eco1 0.096 0.185 0.520 0.603 0.089 0.032
reward0_eco2 -0.184 0.203 -0.908 0.364 -0.171 -0.064
reward1_eco2 0.001 0.195 0.007 0.994 0.001 0.000
reward0_eco3 -0.233 0.179 -1.307 0.191 -0.217 -0.081
reward1_eco3 -0.072 0.205 -0.352 0.725 -0.067 -0.025
EEC ~
IM 0.493 0.077 6.426 0.000 0.480 0.480
reward1_eco1 0.153 0.206 0.746 0.456 0.157 0.057
reward0_eco2 0.136 0.221 0.615 0.538 0.140 0.052
reward1_eco2 0.177 0.214 0.829 0.407 0.182 0.068
reward0_eco3 0.050 0.184 0.269 0.788 0.051 0.019
reward1_eco3 -0.001 0.221 -0.004 0.996 -0.001 -0.000
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.349 0.113 3.092 0.002 0.497 0.497
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.414 0.000 0.780 0.451
.EEC2 0.478 0.104 4.601 0.000 0.478 0.232
.EEC3 0.203 0.062 3.295 0.001 0.203 0.109
.EEF1 0.245 0.046 5.369 0.000 0.245 0.174
.EEF2 0.188 0.046 4.109 0.000 0.188 0.129
.EEF3 0.240 0.063 3.804 0.000 0.240 0.183
.IM1 0.452 0.179 2.528 0.011 0.452 0.335
.IM2 0.248 0.074 3.336 0.001 0.248 0.214
.IM3 0.442 0.217 2.034 0.042 0.442 0.327
.EEC 0.709 0.118 5.991 0.000 0.747 0.747
.EEF 0.698 0.171 4.091 0.000 0.601 0.601
.IM 0.809 0.212 3.808 0.000 0.900 0.900
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.665
IM2 0.786
IM3 0.673
EEC 0.253
EEF 0.399
IM 0.100
Full mediation
TR moderation using dummy and full mediation
lavaan 0.6-21 ended normally after 88 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 42
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 185.577 192.266
Degrees of freedom 102 102
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.965
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1705.021 1473.950
Degrees of freedom 135 135
P-value 0.000 0.000
Scaling correction factor 1.157
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.947 0.933
Tucker-Lewis Index (TLI) 0.930 0.911
Robust Comparative Fit Index (CFI) 0.944
Robust Tucker-Lewis Index (TLI) 0.926
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -2362.241 -2362.241
Scaling correction factor 1.704
for the MLR correction
Loglikelihood unrestricted model (H1) -2269.453 -2269.453
Scaling correction factor 1.181
for the MLR correction
Akaike (AIC) 4808.483 4808.483
Bayesian (BIC) 4949.854 4949.854
Sample-size adjusted Bayesian (SABIC) 4816.766 4816.766
Root Mean Square Error of Approximation:
RMSEA 0.062 0.064
90 Percent confidence interval - lower 0.048 0.050
90 Percent confidence interval - upper 0.076 0.078
P-value H_0: RMSEA <= 0.050 0.084 0.051
P-value H_0: RMSEA >= 0.080 0.016 0.033
Robust RMSEA 0.063
90 Percent confidence interval - lower 0.049
90 Percent confidence interval - upper 0.077
P-value H_0: Robust RMSEA <= 0.050 0.058
P-value H_0: Robust RMSEA >= 0.080 0.020
Standardized Root Mean Square Residual:
SRMR 0.059 0.059
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.974 0.741
EEC2 1.291 0.109 11.846 0.000 1.257 0.876
EEC3 1.324 0.093 14.300 0.000 1.289 0.944
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.045 0.000 1.128 0.933
EEF3 0.962 0.054 17.771 0.000 1.037 0.904
IM =~
IM1 1.000 0.948 0.816
IM2 1.006 0.175 5.758 0.000 0.954 0.887
IM3 1.006 0.190 5.294 0.000 0.954 0.821
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.254 0.249 1.019 0.308 0.268 0.097
reward0_eco2 0.308 0.252 1.220 0.222 0.324 0.121
reward1_eco2 0.347 0.230 1.510 0.131 0.366 0.137
reward0_eco3 -0.144 0.287 -0.502 0.616 -0.152 -0.057
reward1_eco3 -0.144 0.295 -0.488 0.626 -0.152 -0.057
TR_high_num 0.079 0.303 0.260 0.795 0.083 0.029
reward1_ec1_TR 0.618 0.487 1.267 0.205 0.651 0.088
reward0_ec2_TR 0.102 0.541 0.188 0.851 0.107 0.015
reward1_ec2_TR 0.367 0.380 0.968 0.333 0.387 0.064
reward0_ec3_TR 1.286 0.504 2.550 0.011 1.356 0.130
reward1_ec3_TR -0.501 0.613 -0.816 0.414 -0.528 -0.087
EEF ~
IM 0.698 0.076 9.212 0.000 0.614 0.614
reward1_eco1 0.096 0.185 0.520 0.603 0.089 0.032
reward0_eco2 -0.184 0.203 -0.908 0.364 -0.171 -0.064
reward1_eco2 0.001 0.195 0.007 0.994 0.001 0.000
reward0_eco3 -0.233 0.179 -1.307 0.191 -0.217 -0.081
reward1_eco3 -0.072 0.205 -0.352 0.725 -0.067 -0.025
EEC ~
IM 0.493 0.077 6.426 0.000 0.480 0.480
reward1_eco1 0.153 0.206 0.746 0.456 0.157 0.057
reward0_eco2 0.136 0.221 0.615 0.538 0.140 0.052
reward1_eco2 0.177 0.214 0.829 0.407 0.182 0.068
reward0_eco3 0.050 0.184 0.269 0.788 0.051 0.019
reward1_eco3 -0.001 0.221 -0.004 0.996 -0.001 -0.000
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.349 0.113 3.092 0.002 0.497 0.497
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.780 0.093 8.414 0.000 0.780 0.451
.EEC2 0.478 0.104 4.601 0.000 0.478 0.232
.EEC3 0.203 0.062 3.295 0.001 0.203 0.109
.EEF1 0.245 0.046 5.369 0.000 0.245 0.174
.EEF2 0.188 0.046 4.109 0.000 0.188 0.129
.EEF3 0.240 0.063 3.804 0.000 0.240 0.183
.IM1 0.452 0.179 2.528 0.011 0.452 0.335
.IM2 0.248 0.074 3.336 0.001 0.248 0.214
.IM3 0.442 0.217 2.034 0.042 0.442 0.327
.EEC 0.709 0.118 5.991 0.000 0.747 0.747
.EEF 0.698 0.171 4.091 0.000 0.601 0.601
.IM 0.809 0.212 3.808 0.000 0.900 0.900
R-Square:
Estimate
EEC1 0.549
EEC2 0.768
EEC3 0.891
EEF1 0.826
EEF2 0.871
EEF3 0.817
IM1 0.665
IM2 0.786
IM3 0.673
EEC 0.253
EEF 0.399
IM 0.100
Only EEF as DV
Complete theoretical model with partial mediation
lavaan 0.6-21 ended normally after 94 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 30
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 140.264 159.618
Degrees of freedom 93 93
P-value (Chi-square) 0.001 0.000
Scaling correction factor 0.879
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 1168.896 1068.412
Degrees of freedom 117 117
P-value 0.000 0.000
Scaling correction factor 1.094
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.955 0.930
Tucker-Lewis Index (TLI) 0.943 0.912
Robust Comparative Fit Index (CFI) 0.944
Robust Tucker-Lewis Index (TLI) 0.929
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1494.166 -1494.166
Scaling correction factor 1.923
for the MLR correction
Loglikelihood unrestricted model (H1) -1424.034 -1424.034
Scaling correction factor 1.133
for the MLR correction
Akaike (AIC) 3048.332 3048.332
Bayesian (BIC) 3149.311 3149.311
Sample-size adjusted Bayesian (SABIC) 3054.249 3054.249
Root Mean Square Error of Approximation:
RMSEA 0.049 0.058
90 Percent confidence interval - lower 0.031 0.041
90 Percent confidence interval - upper 0.065 0.074
P-value H_0: RMSEA <= 0.050 0.534 0.205
P-value H_0: RMSEA >= 0.080 0.000 0.010
Robust RMSEA 0.054
90 Percent confidence interval - lower 0.040
90 Percent confidence interval - upper 0.068
P-value H_0: Robust RMSEA <= 0.050 0.300
P-value H_0: Robust RMSEA >= 0.080 0.001
Standardized Root Mean Square Residual:
SRMR 0.043 0.043
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEF =~
EEF1 1.000 1.078 0.909
EEF2 1.046 0.052 20.221 0.000 1.128 0.933
EEF3 0.962 0.055 17.480 0.000 1.037 0.904
IM =~
IM1 1.000 0.946 0.813
IM2 1.012 0.168 6.023 0.000 0.957 0.889
IM3 1.006 0.185 5.445 0.000 0.951 0.818
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.135 0.404 0.335 0.738 0.143 0.052
reward0_eco2 0.397 0.393 1.009 0.313 0.420 0.157
reward1_eco2 0.600 0.338 1.773 0.076 0.635 0.237
reward0_eco3 -0.207 0.395 -0.524 0.601 -0.219 -0.082
reward1_eco3 -0.027 0.437 -0.062 0.950 -0.029 -0.011
ADT_high_num 0.544 0.344 1.582 0.114 0.575 0.288
TR_high_num -0.082 0.283 -0.288 0.773 -0.086 -0.030
reward1_c1_ADT 0.080 0.444 0.180 0.857 0.085 0.026
reward0_c2_ADT -0.275 0.452 -0.608 0.543 -0.290 -0.088
reward1_c2_ADT -0.506 0.422 -1.200 0.230 -0.536 -0.132
reward0_c3_ADT 0.307 0.486 0.630 0.528 0.324 0.080
reward1_c3_ADT -0.192 0.512 -0.375 0.708 -0.203 -0.056
reward1_ec1_TR 0.541 0.481 1.125 0.261 0.573 0.078
reward0_ec2_TR 0.129 0.545 0.237 0.812 0.137 0.019
reward1_ec2_TR 0.472 0.409 1.154 0.249 0.500 0.082
reward0_ec3_TR 0.883 0.513 1.719 0.086 0.934 0.090
reward1_ec3_TR -0.577 0.603 -0.958 0.338 -0.611 -0.101
EEF ~
IM 0.715 0.077 9.307 0.000 0.627 0.627
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF1 0.245 0.046 5.291 0.000 0.245 0.174
.EEF2 0.188 0.047 4.037 0.000 0.188 0.129
.EEF3 0.240 0.065 3.679 0.000 0.240 0.183
.IM1 0.457 0.171 2.679 0.007 0.457 0.338
.IM2 0.242 0.070 3.454 0.001 0.242 0.209
.IM3 0.448 0.218 2.049 0.040 0.448 0.331
.EEF 0.706 0.168 4.199 0.000 0.607 0.607
.IM 0.745 0.181 4.123 0.000 0.833 0.833
Only EEC as DV
Complete theoretical model
lavaan 0.6-21 ended normally after 92 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 30
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 159.838 165.561
Degrees of freedom 93 93
P-value (Chi-square) 0.000 0.000
Scaling correction factor 0.965
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 980.770 868.817
Degrees of freedom 117 117
P-value 0.000 0.000
Scaling correction factor 1.129
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.923 0.903
Tucker-Lewis Index (TLI) 0.903 0.879
Robust Comparative Fit Index (CFI) 0.917
Robust Tucker-Lewis Index (TLI) 0.896
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1694.172 -1694.172
Scaling correction factor 1.702
for the MLR correction
Loglikelihood unrestricted model (H1) -1614.253 -1614.253
Scaling correction factor 1.145
for the MLR correction
Akaike (AIC) 3448.345 3448.345
Bayesian (BIC) 3549.324 3549.324
Sample-size adjusted Bayesian (SABIC) 3454.261 3454.261
Root Mean Square Error of Approximation:
RMSEA 0.058 0.060
90 Percent confidence interval - lower 0.042 0.045
90 Percent confidence interval - upper 0.073 0.075
P-value H_0: RMSEA <= 0.050 0.189 0.129
P-value H_0: RMSEA >= 0.080 0.007 0.015
Robust RMSEA 0.059
90 Percent confidence interval - lower 0.044
90 Percent confidence interval - upper 0.074
P-value H_0: Robust RMSEA <= 0.050 0.145
P-value H_0: Robust RMSEA >= 0.080 0.009
Standardized Root Mean Square Residual:
SRMR 0.054 0.054
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.967 0.736
EEC2 1.292 0.109 11.800 0.000 1.249 0.871
EEC3 1.345 0.096 14.069 0.000 1.301 0.952
IM =~
IM1 1.000 0.922 0.793
IM2 1.049 0.162 6.484 0.000 0.968 0.899
IM3 1.046 0.172 6.095 0.000 0.965 0.830
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.137 0.387 0.355 0.723 0.149 0.054
reward0_eco2 0.400 0.384 1.044 0.297 0.434 0.162
reward1_eco2 0.582 0.334 1.742 0.081 0.631 0.236
reward0_eco3 -0.184 0.389 -0.473 0.636 -0.199 -0.074
reward1_eco3 -0.033 0.427 -0.077 0.938 -0.036 -0.013
ADT_high_num 0.483 0.326 1.483 0.138 0.524 0.262
TR_high_num -0.064 0.275 -0.233 0.816 -0.069 -0.024
reward1_c1_ADT 0.098 0.429 0.229 0.819 0.107 0.032
reward0_c2_ADT -0.224 0.437 -0.514 0.607 -0.243 -0.074
reward1_c2_ADT -0.445 0.405 -1.098 0.272 -0.482 -0.119
reward0_c3_ADT 0.322 0.473 0.680 0.497 0.349 0.086
reward1_c3_ADT -0.127 0.503 -0.253 0.800 -0.138 -0.038
reward1_ec1_TR 0.501 0.445 1.126 0.260 0.543 0.074
reward0_ec2_TR 0.063 0.525 0.121 0.904 0.069 0.009
reward1_ec2_TR 0.446 0.388 1.149 0.250 0.484 0.080
reward0_ec3_TR 0.802 0.501 1.599 0.110 0.869 0.084
reward1_ec3_TR -0.654 0.594 -1.102 0.271 -0.709 -0.117
EEC ~
IM 0.507 0.082 6.207 0.000 0.483 0.483
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.793 0.092 8.618 0.000 0.793 0.459
.EEC2 0.497 0.114 4.362 0.000 0.497 0.241
.EEC3 0.174 0.069 2.527 0.011 0.174 0.093
.IM1 0.501 0.164 3.053 0.002 0.501 0.370
.IM2 0.221 0.055 4.057 0.000 0.221 0.191
.IM3 0.421 0.194 2.166 0.030 0.421 0.311
.EEC 0.717 0.115 6.220 0.000 0.767 0.767
.IM 0.713 0.175 4.065 0.000 0.838 0.838
With moderators as latent variables
Derived model
Derived model
lavaan 0.6-21 ended normally after 70 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 50
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 807.145 793.458
Degrees of freedom 205 205
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.017
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 3407.498 2919.599
Degrees of freedom 238 238
P-value 0.000 0.000
Scaling correction factor 1.167
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.810 0.781
Tucker-Lewis Index (TLI) 0.779 0.745
Robust Comparative Fit Index (CFI) 0.809
Robust Tucker-Lewis Index (TLI) 0.778
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -4202.458 -4202.458
Scaling correction factor 1.816
for the MLR correction
Loglikelihood unrestricted model (H1) -3798.885 -3798.885
Scaling correction factor 1.174
for the MLR correction
Akaike (AIC) 8504.915 8504.915
Bayesian (BIC) 8673.214 8673.214
Sample-size adjusted Bayesian (SABIC) 8514.776 8514.776
Root Mean Square Error of Approximation:
RMSEA 0.117 0.116
90 Percent confidence interval - lower 0.109 0.107
90 Percent confidence interval - upper 0.126 0.124
P-value H_0: RMSEA <= 0.050 0.000 0.000
P-value H_0: RMSEA >= 0.080 1.000 1.000
Robust RMSEA 0.117
90 Percent confidence interval - lower 0.108
90 Percent confidence interval - upper 0.125
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 1.000
Standardized Root Mean Square Residual:
SRMR 0.195 0.195
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.958 0.729
EEC2 1.290 0.106 12.130 0.000 1.236 0.862
EEC3 1.375 0.096 14.294 0.000 1.318 0.965
EEF =~
EEF1 1.000 0.992 0.896
EEF2 1.044 0.053 19.814 0.000 1.035 0.921
EEF3 0.961 0.055 17.397 0.000 0.953 0.890
IM =~
IM1 1.000 0.918 0.790
IM2 1.066 0.158 6.760 0.000 0.978 0.909
IM3 1.044 0.169 6.175 0.000 0.958 0.824
ADT =~
ADT1 1.000 0.917 0.879
ADT2 1.040 0.068 15.275 0.000 0.954 0.901
ADT3 1.146 0.075 15.340 0.000 1.051 0.879
TR =~
TR1 1.000 1.308 0.872
TR2 1.110 0.055 20.197 0.000 1.452 0.942
TR3 1.060 0.058 18.217 0.000 1.387 0.921
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
Reward_PBP 0.090 0.139 0.645 0.519 0.098 0.049
ADT_high_num 0.448 0.286 1.565 0.118 0.488 0.244
Condition_EEF 0.149 0.281 0.530 0.596 0.162 0.076
Condition_EEC 0.609 0.243 2.511 0.012 0.664 0.314
ADT_EEF 0.134 0.347 0.387 0.699 0.146 0.058
ADT_EEC -0.273 0.333 -0.820 0.412 -0.298 -0.111
Reward_TR -0.166 0.366 -0.454 0.650 -0.181 -0.048
TR_high_num 0.024 0.244 0.100 0.920 0.027 0.009
EEF ~
IM 0.444 0.078 5.672 0.000 0.411 0.411
Reward_PBP 0.137 0.109 1.260 0.208 0.138 0.069
Condition_EEF 0.173 0.129 1.348 0.178 0.175 0.082
Condition_EEC 0.032 0.136 0.238 0.812 0.033 0.015
EEC 0.863 0.211 4.092 0.000 0.834 0.834
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC ~~
.EEF -0.310 0.150 -2.070 0.038 -0.401 -0.401
Reward_PBP ~~
TR_high_num 0.006 0.012 0.504 0.614 0.006 0.034
EEC ~~
ADT 0.359 0.083 4.311 0.000 0.408 0.408
TR 0.400 0.099 4.025 0.000 0.319 0.319
ADT ~~
TR 0.634 0.106 6.009 0.000 0.529 0.529
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.810 0.092 8.808 0.000 0.810 0.469
.EEC2 0.530 0.106 5.004 0.000 0.530 0.258
.EEC3 0.129 0.059 2.179 0.029 0.129 0.069
.EEF1 0.242 0.045 5.348 0.000 0.242 0.198
.EEF2 0.191 0.047 4.052 0.000 0.191 0.151
.EEF3 0.240 0.063 3.833 0.000 0.240 0.209
.IM1 0.509 0.161 3.151 0.002 0.509 0.376
.IM2 0.201 0.049 4.080 0.000 0.201 0.173
.IM3 0.434 0.202 2.144 0.032 0.434 0.321
.ADT1 0.247 0.057 4.339 0.000 0.247 0.227
.ADT2 0.210 0.052 4.002 0.000 0.210 0.187
.ADT3 0.325 0.088 3.692 0.000 0.325 0.227
.TR1 0.537 0.101 5.336 0.000 0.537 0.239
.TR2 0.268 0.068 3.923 0.000 0.268 0.113
.TR3 0.345 0.087 3.956 0.000 0.345 0.152
Reward_PBP 0.250 0.001 391.251 0.000 0.250 1.000
TR_high_num 0.121 0.017 7.058 0.000 0.121 1.000
EEC 0.918 0.145 6.315 0.000 1.000 1.000
.EEF 0.652 0.162 4.030 0.000 0.662 0.662
.IM 0.755 0.168 4.504 0.000 0.896 0.896
ADT 0.841 0.124 6.799 0.000 1.000 1.000
TR 1.710 0.185 9.239 0.000 1.000 1.000
Entire model based on composite
With bootstrapping
Complete theoretical model with partial mediation
lavaan 0.6-21 ended normally after 9 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 33
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 49.175 60.142
Degrees of freedom 24 24
P-value (Chi-square) 0.002 0.000
Scaling correction factor 0.818
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 290.659 324.975
Degrees of freedom 54 54
P-value 0.000 0.000
Scaling correction factor 0.894
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.894 0.867
Tucker-Lewis Index (TLI) 0.761 0.700
Robust Comparative Fit Index (CFI) 0.878
Robust Tucker-Lewis Index (TLI) 0.726
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -861.722 -861.722
Scaling correction factor 1.009
for the MLR correction
Loglikelihood unrestricted model (H1) -837.134 -837.134
Scaling correction factor 0.928
for the MLR correction
Akaike (AIC) 1789.443 1789.443
Bayesian (BIC) 1900.521 1900.521
Sample-size adjusted Bayesian (SABIC) 1795.952 1795.952
Root Mean Square Error of Approximation:
RMSEA 0.070 0.084
90 Percent confidence interval - lower 0.042 0.055
90 Percent confidence interval - upper 0.098 0.114
P-value H_0: RMSEA <= 0.050 0.113 0.029
P-value H_0: RMSEA >= 0.080 0.299 0.615
Robust RMSEA 0.076
90 Percent confidence interval - lower 0.052
90 Percent confidence interval - upper 0.100
P-value H_0: Robust RMSEA <= 0.050 0.038
P-value H_0: Robust RMSEA >= 0.080 0.412
Standardized Root Mean Square Residual:
SRMR 0.040 0.040
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM_composite ~
reward1_eco1 0.105 0.394 0.266 0.790 0.105 0.037
reward0_eco2 0.430 0.396 1.084 0.278 0.430 0.158
reward1_eco2 0.590 0.340 1.733 0.083 0.590 0.218
reward0_eco3 -0.183 0.409 -0.447 0.655 -0.183 -0.068
reward1_eco3 -0.028 0.434 -0.065 0.948 -0.028 -0.010
ADT_high_num 0.522 0.322 1.621 0.105 0.522 0.257
TR_high_num -0.063 0.297 -0.214 0.831 -0.063 -0.022
reward1_c1_ADT 0.104 0.440 0.236 0.813 0.104 0.031
reward0_c2_ADT -0.258 0.456 -0.565 0.572 -0.258 -0.077
reward1_c2_ADT -0.492 0.409 -1.202 0.229 -0.492 -0.120
reward0_c3_ADT 0.308 0.502 0.614 0.539 0.308 0.075
reward1_c3_ADT -0.180 0.507 -0.355 0.723 -0.180 -0.049
reward1_ec1_TR 0.452 0.552 0.820 0.412 0.452 0.060
reward0_ec2_TR 0.073 0.549 0.133 0.895 0.073 0.010
reward1_ec2_TR 0.452 0.419 1.079 0.281 0.452 0.074
reward0_ec3_TR 0.869 0.537 1.619 0.105 0.869 0.082
reward1_ec3_TR -0.575 0.572 -1.005 0.315 -0.575 -0.094
EEF_composite ~
IM_composite 0.625 0.068 9.145 0.000 0.625 0.568
reward1_eco1 0.132 0.186 0.707 0.480 0.132 0.043
reward0_eco2 -0.173 0.205 -0.843 0.399 -0.173 -0.058
reward1_eco2 0.031 0.191 0.161 0.872 0.031 0.010
reward0_eco3 -0.242 0.180 -1.346 0.178 -0.242 -0.081
reward1_eco3 -0.104 0.205 -0.504 0.614 -0.104 -0.035
EEC_composite ~
IM_composite 0.592 0.072 8.179 0.000 0.592 0.486
reward1_eco1 0.206 0.246 0.839 0.401 0.206 0.060
reward0_eco2 0.227 0.262 0.868 0.386 0.227 0.069
reward1_eco2 0.313 0.239 1.313 0.189 0.313 0.095
reward0_eco3 0.098 0.212 0.464 0.643 0.098 0.030
reward1_eco3 0.020 0.261 0.075 0.940 0.020 0.006
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite ~~
.EEC_composite 0.444 0.096 4.625 0.000 0.444 0.466
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM_composite 0.886 0.110 8.034 0.000 0.886 0.862
.EEF_composite 0.810 0.124 6.525 0.000 0.810 0.651
.EEC_composite 1.123 0.116 9.704 0.000 1.123 0.736
R-Square:
Estimate
IM_composite 0.138
EEF_composite 0.349
EEC_composite 0.264
Entire model based on latent interaction - product indicators
Based on ADT as a latent variable
lavaan 0.6-21 ended normally after 67 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 74
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 597.087 501.179
Degrees of freedom 262 262
P-value (Chi-square) 0.000 0.000
Scaling correction factor 1.191
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 3736.116 2567.883
Degrees of freedom 315 315
P-value 0.000 0.000
Scaling correction factor 1.455
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.902 0.894
Tucker-Lewis Index (TLI) 0.882 0.872
Robust Comparative Fit Index (CFI) 0.913
Robust Tucker-Lewis Index (TLI) 0.895
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -6244.962 -6244.962
Scaling correction factor 2.963
for the MLR correction
Loglikelihood unrestricted model (H1) -5946.419 -5946.419
Scaling correction factor 1.582
for the MLR correction
Akaike (AIC) 12637.924 12637.924
Bayesian (BIC) 12887.006 12887.006
Sample-size adjusted Bayesian (SABIC) 12652.519 12652.519
Root Mean Square Error of Approximation:
RMSEA 0.077 0.065
90 Percent confidence interval - lower 0.069 0.057
90 Percent confidence interval - upper 0.086 0.073
P-value H_0: RMSEA <= 0.050 0.000 0.001
P-value H_0: RMSEA >= 0.080 0.301 0.001
Robust RMSEA 0.071
90 Percent confidence interval - lower 0.062
90 Percent confidence interval - upper 0.081
P-value H_0: Robust RMSEA <= 0.050 0.000
P-value H_0: Robust RMSEA >= 0.080 0.064
Standardized Root Mean Square Residual:
SRMR 0.068 0.068
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
EEC =~
EEC1 1.000 0.971 0.740
EEC2 1.289 0.108 11.900 0.000 1.251 0.874
EEC3 1.326 0.093 14.262 0.000 1.287 0.945
EEF =~
EEF1 1.000 1.076 0.909
EEF2 1.044 0.053 19.745 0.000 1.124 0.932
EEF3 0.960 0.055 17.380 0.000 1.033 0.903
ADT =~
ADT1 1.000 0.916 0.878
ADT2 1.039 0.068 15.207 0.000 0.952 0.900
ADT3 1.151 0.079 14.549 0.000 1.054 0.882
TR =~
TR1 1.000 1.308 0.872
TR2 1.110 0.054 20.418 0.000 1.452 0.942
TR3 1.061 0.058 18.211 0.000 1.387 0.921
IM =~
IM1 1.000 0.949 0.819
IM2 0.995 0.158 6.291 0.000 0.945 0.881
IM3 0.999 0.181 5.530 0.000 0.948 0.818
IM_ADT =~
IM1.ADT1 1.000 0.806 0.514
IM2.ADT2 1.240 0.380 3.266 0.001 0.999 0.738
IM3.ADT3 1.987 0.790 2.514 0.012 1.601 0.877
IM_TR =~
IM1.TR1 1.000 1.092 0.537
IM2.TR2 1.317 0.479 2.751 0.006 1.438 0.776
IM3.TR3 1.515 0.903 1.677 0.094 1.654 0.827
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM ~
reward1_eco1 0.303 0.188 1.614 0.106 0.319 0.115
reward0_eco2 0.211 0.205 1.029 0.303 0.223 0.083
reward1_eco2 0.373 0.167 2.229 0.026 0.393 0.147
reward0_eco3 -0.033 0.229 -0.146 0.884 -0.035 -0.013
reward1_eco3 -0.247 0.211 -1.174 0.241 -0.261 -0.097
TR 0.164 0.074 2.219 0.027 0.226 0.226
ADT 0.094 0.108 0.863 0.388 0.090 0.090
IM_ADT -0.823 0.538 -1.529 0.126 -0.699 -0.699
IM_TR 0.447 0.519 0.860 0.390 0.514 0.514
EEF ~
IM 0.607 0.079 7.661 0.000 0.536 0.536
reward1_eco1 0.090 0.180 0.501 0.616 0.084 0.030
reward0_eco2 -0.187 0.198 -0.946 0.344 -0.174 -0.065
reward1_eco2 0.064 0.182 0.351 0.726 0.059 0.022
reward0_eco3 -0.227 0.174 -1.305 0.192 -0.211 -0.079
reward1_eco3 -0.057 0.185 -0.309 0.757 -0.053 -0.020
TR 0.050 0.059 0.850 0.395 0.061 0.061
ADT 0.275 0.098 2.792 0.005 0.234 0.234
EEC ~
IM 0.395 0.081 4.873 0.000 0.386 0.386
reward1_eco1 0.148 0.206 0.718 0.473 0.152 0.055
reward0_eco2 0.140 0.219 0.641 0.521 0.144 0.054
reward1_eco2 0.246 0.192 1.280 0.201 0.253 0.095
reward0_eco3 0.057 0.179 0.318 0.750 0.059 0.022
reward1_eco3 0.015 0.194 0.076 0.939 0.015 0.006
TR 0.077 0.056 1.385 0.166 0.104 0.104
ADT 0.263 0.086 3.057 0.002 0.248 0.248
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC ~~
.EEF 0.265 0.082 3.255 0.001 0.428 0.428
ADT ~~
TR 0.633 0.105 6.009 0.000 0.529 0.529
IM_ADT -0.106 0.105 -1.008 0.314 -0.144 -0.144
IM_TR -0.089 0.127 -0.703 0.482 -0.089 -0.089
TR ~~
IM_ADT -0.093 0.110 -0.842 0.400 -0.088 -0.088
IM_TR -0.247 0.199 -1.239 0.215 -0.173 -0.173
IM_ADT ~~
IM_TR 0.737 0.565 1.305 0.192 0.838 0.838
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEC1 0.779 0.092 8.436 0.000 0.779 0.452
.EEC2 0.483 0.103 4.689 0.000 0.483 0.236
.EEC3 0.198 0.061 3.238 0.001 0.198 0.107
.EEF1 0.242 0.045 5.362 0.000 0.242 0.173
.EEF2 0.190 0.047 4.067 0.000 0.190 0.131
.EEF3 0.241 0.063 3.818 0.000 0.241 0.184
.ADT1 0.249 0.058 4.322 0.000 0.249 0.229
.ADT2 0.213 0.053 4.009 0.000 0.213 0.190
.ADT3 0.318 0.090 3.527 0.000 0.318 0.222
.TR1 0.537 0.100 5.349 0.000 0.537 0.239
.TR2 0.270 0.067 3.995 0.000 0.270 0.113
.TR3 0.344 0.088 3.908 0.000 0.344 0.151
.IM1 0.442 0.167 2.647 0.008 0.442 0.329
.IM2 0.257 0.074 3.455 0.001 0.257 0.223
.IM3 0.445 0.217 2.052 0.040 0.445 0.331
.IM1.ADT1 1.812 1.036 1.749 0.080 1.812 0.736
.IM2.ADT2 0.835 0.269 3.101 0.002 0.835 0.456
.IM3.ADT3 0.773 0.659 1.172 0.241 0.773 0.231
.IM1.TR1 2.942 1.108 2.654 0.008 2.942 0.712
.IM2.TR2 1.369 0.702 1.951 0.051 1.369 0.399
.IM3.TR3 1.264 0.911 1.388 0.165 1.264 0.316
.EEC 0.622 0.097 6.395 0.000 0.660 0.660
.EEF 0.618 0.133 4.656 0.000 0.534 0.534
ADT 0.839 0.125 6.731 0.000 1.000 1.000
TR 1.710 0.185 9.258 0.000 1.000 1.000
.IM 0.649 0.133 4.895 0.000 0.720 0.720
IM_ADT 0.649 0.368 1.763 0.078 1.000 1.000
IM_TR 1.192 1.069 1.116 0.265 1.000 1.000
R-Square:
Estimate
EEC1 0.548
EEC2 0.764
EEC3 0.893
EEF1 0.827
EEF2 0.869
EEF3 0.816
ADT1 0.771
ADT2 0.810
ADT3 0.778
TR1 0.761
TR2 0.887
TR3 0.849
IM1 0.671
IM2 0.777
IM3 0.669
IM1.ADT1 0.264
IM2.ADT2 0.544
IM3.ADT3 0.769
IM1.TR1 0.288
IM2.TR2 0.601
IM3.TR3 0.684
EEC 0.340
EEF 0.466
IM 0.280
R square
EEC1 EEC2 EEC3 EEF1 EEF2 EEF3 ADT1 ADT2
0.548 0.764 0.893 0.827 0.869 0.816 0.771 0.810
ADT3 TR1 TR2 TR3 IM1 IM2 IM3 IM1.ADT1
0.778 0.761 0.887 0.849 0.671 0.777 0.669 0.264
IM2.ADT2 IM3.ADT3 IM1.TR1 IM2.TR2 IM3.TR3 EEC EEF IM
0.544 0.769 0.288 0.601 0.684 0.340 0.466 0.280
Complete theoretical model with full mediation
lavaan 0.6-21 ended normally after 9 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 23
Number of observations 214
Model Test User Model:
Standard Scaled
Test Statistic 56.516 64.619
Degrees of freedom 34 34
P-value (Chi-square) 0.009 0.001
Scaling correction factor 0.875
Yuan-Bentler correction (Mplus variant)
Model Test Baseline Model:
Test statistic 290.659 324.975
Degrees of freedom 54 54
P-value 0.000 0.000
Scaling correction factor 0.894
User Model versus Baseline Model:
Comparative Fit Index (CFI) 0.905 0.887
Tucker-Lewis Index (TLI) 0.849 0.821
Robust Comparative Fit Index (CFI) 0.890
Robust Tucker-Lewis Index (TLI) 0.825
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -865.392 -865.392
Scaling correction factor 1.008
for the MLR correction
Loglikelihood unrestricted model (H1) -837.134 -837.134
Scaling correction factor 0.928
for the MLR correction
Akaike (AIC) 1776.784 1776.784
Bayesian (BIC) 1854.202 1854.202
Sample-size adjusted Bayesian (SABIC) 1781.321 1781.321
Root Mean Square Error of Approximation:
RMSEA 0.056 0.065
90 Percent confidence interval - lower 0.028 0.038
90 Percent confidence interval - upper 0.081 0.090
P-value H_0: RMSEA <= 0.050 0.335 0.161
P-value H_0: RMSEA >= 0.080 0.054 0.176
Robust RMSEA 0.061
90 Percent confidence interval - lower 0.038
90 Percent confidence interval - upper 0.083
P-value H_0: Robust RMSEA <= 0.050 0.204
P-value H_0: Robust RMSEA >= 0.080 0.080
Standardized Root Mean Square Residual:
SRMR 0.042 0.042
Parameter Estimates:
Standard errors Sandwich
Information bread Observed
Observed information based on Hessian
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
IM_composite ~
reward1_eco1 0.105 0.394 0.266 0.790 0.105 0.037
reward0_eco2 0.430 0.396 1.084 0.278 0.430 0.158
reward1_eco2 0.590 0.340 1.733 0.083 0.590 0.218
reward0_eco3 -0.183 0.409 -0.447 0.655 -0.183 -0.068
reward1_eco3 -0.028 0.434 -0.065 0.948 -0.028 -0.010
ADT_high_num 0.522 0.322 1.621 0.105 0.522 0.257
TR_high_num -0.063 0.297 -0.214 0.831 -0.063 -0.022
reward1_c1_ADT 0.104 0.440 0.236 0.813 0.104 0.031
reward0_c2_ADT -0.258 0.456 -0.565 0.572 -0.258 -0.077
reward1_c2_ADT -0.492 0.409 -1.202 0.229 -0.492 -0.120
reward0_c3_ADT 0.308 0.502 0.614 0.539 0.308 0.075
reward1_c3_ADT -0.180 0.507 -0.355 0.723 -0.180 -0.049
reward1_ec1_TR 0.452 0.552 0.820 0.412 0.452 0.060
reward0_ec2_TR 0.073 0.549 0.133 0.895 0.073 0.010
reward1_ec2_TR 0.452 0.419 1.079 0.281 0.452 0.074
reward0_ec3_TR 0.869 0.537 1.619 0.105 0.869 0.082
reward1_ec3_TR -0.575 0.572 -1.005 0.315 -0.575 -0.094
EEF_composite ~
IM_composite 0.638 0.070 9.154 0.000 0.638 0.580
EEC_composite ~
IM_composite 0.616 0.073 8.481 0.000 0.616 0.506
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.EEF_composite ~~
.EEC_composite 0.447 0.096 4.675 0.000 0.447 0.462
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.IM_composite 0.886 0.110 8.034 0.000 0.886 0.862
.EEF_composite 0.825 0.124 6.670 0.000 0.825 0.664
.EEC_composite 1.136 0.115 9.837 0.000 1.136 0.744
R-Square:
Estimate
IM_composite 0.138
EEF_composite 0.336
EEC_composite 0.256
Nested modelling
CFA
Mediation
Moderation
Only mediation
aic bic srmr rmsea cfi tli
4804.246 4925.421 0.048 0.078 0.955 0.932
Entire model as baseline
aic bic srmr rmsea cfi tli
4783.907 4958.937 0.036 0.044 0.961 0.950
Only ADT as moderator
aic bic srmr rmsea cfi tli
4798.952 4940.323 0.055 0.063 0.945 0.927
Only TR as moderator
aic bic srmr rmsea cfi tli
4808.483 4949.854 0.059 0.062 0.947 0.930
Derived model with PEB as control
aic bic srmr rmsea cfi tli
4732.955 4918.083 0.035 0.043 0.964 0.953
Both moderators
aic bic srmr rmsea cfi tli
4806.259 4967.826 0.056 0.052 0.945 0.930
Only ADT as moderator
aic bic srmr rmsea cfi tli
4798.952 4940.323 0.055 0.063 0.945 0.927
Only TR as moderator
aic bic srmr rmsea cfi tli
4808.483 4949.854 0.059 0.062 0.947 0.930