2_3 condition study

Published

November 5, 2025


Data preparation - raw dataset

Import

Sample size

$all
[1] 270

Data Quality

Manipulation check and bot

Manipulation flag

                    
                     FALSE TRUE
  no_reward            128    0
  performance_reward   135    7
          
           FALSE TRUE
  both_ori    75    2
  EEC_ori     83   19
  EEF_ori     73   18

Descriptive stats on failed manipulation checks

Reward manipulation check
   
    FALSE TRUE
  1   128    0
  2   135    7
Overall percentages (out of all participants)
   
    FALSE  TRUE
  1 47.41  0.00
  2 50.00  2.59
Within each condition (row percentages)
   
     FALSE   TRUE
  1 100.00   0.00
  2  95.07   4.93
Total failed manipulation check (Reward condition):
7 participants ( 2.59 %)
Eco-orientation manipulation check
   
    FALSE TRUE
  1    73   18
  2    83   19
  3    75    2
Overall percentages (out of all participants)
   
    FALSE  TRUE
  1 27.04  6.67
  2 30.74  7.04
  3 27.78  0.74
Within each condition (row percentages)
   
    FALSE  TRUE
  1 80.22 19.78
  2 81.37 18.63
  3 97.40  2.60
Total failed manipulation check (eco condition):
39 participants ( 14.44 %)

Response bias checks

Total approvals
   vars   n   mean      sd median trimmed    mad min  max range skew kurtosis
X1    1 270 928.87 1012.21    560  740.51 603.42   0 5278  5278 1.91     3.97
     se
X1 61.6

Correlation between total approvals and passing attention check

Bot flag


FALSE  TRUE 
  269     1 

Attention

Duration

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  1.750   4.217   5.417   6.241   7.042  25.000 

Outliers defined as 3 std. deviations below or above the mean
Outliers on completion time

FALSE  TRUE 
  263     7 

On scales

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
 0.0000  0.8287  1.1507  1.1605  1.4746  2.5300 
Flagged outliers based on scales

FALSE  TRUE 
  266     4 

Removing bad participants

Exclude participants

cond.reward_flag cond.eco_flag outliers_completion bot_flag outliers_scales n
TRUE FALSE FALSE FALSE FALSE 5
TRUE TRUE FALSE FALSE FALSE 2
FALSE FALSE FALSE FALSE TRUE 3
FALSE FALSE FALSE TRUE FALSE 1
FALSE FALSE TRUE FALSE FALSE 7
FALSE TRUE FALSE FALSE FALSE 36
FALSE TRUE FALSE FALSE TRUE 1
total excluded from the dataset
$all
[1] 55

Filtered dataset

Descriptive on good participants

Descriptive tables

✅ All descriptive tables have been saved to 'descriptive_tables.xlsx'
   vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 214 43.19 11.62     41   42.61 11.86  19  73    54 0.45    -0.61 0.79
                Sex   n percent
1            Female 123    57.5
2              Male  90    42.1
3 Prefer not to say   1     0.5
  Employment.status   n percent
1         Full-Time 160    74.8
2         Part-Time  54    25.2
   vars   n  mean    sd median trimmed   mad min max range skew kurtosis   se
X1    1 214 43.19 11.62     41   42.61 11.86  19  73    54 0.45    -0.61 0.79
   vars   n   mean      sd median trimmed    mad min  max range skew kurtosis
X1    1 214 938.69 1034.65  560.5  740.38 576.73   0 5278  5278 2.03     4.44
      se
X1 70.73

Conditions

Group statistics

Reward groups

         no_reward performance_reward 
               109                105 
Eco orientation groups

both_ori  EEC_ori  EEF_ori 
      72       72       70 
# A tibble: 6 × 9
  Condition_reward_name Condition_eco_name     n mean_EEF sd_EEF mean_EEC sd_EEC
  <chr>                 <chr>              <int>    <dbl>  <dbl>    <dbl>  <dbl>
1 no_reward             EEC_ori               36     5.42  1.24      4.51   1.46
2 no_reward             EEF_ori               37     5.39  0.848     4.09   1.05
3 no_reward             both_ori              36     5.09  1.08      4.14   1.05
4 performance_reward    EEC_ori               36     5.67  1.05      4.64   1.14
5 performance_reward    EEF_ori               33     5.71  1.06      4.47   1.20
6 performance_reward    both_ori              36     5.14  1.31      3.97   1.40
# ℹ 2 more variables: mean_IM <dbl>, sd_IM <dbl>

Ease and feedback

Q: Were there anything that you found confusing or difficult to follow/answer?

   vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
X1    1 214 4.07 0.82   4.19    4.16 0.91 1.37   5  3.63 -0.81    -0.03 0.06

Scales

Descriptive stats on scales

 all good 
 270  214 
     vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
IM1     1 214 5.15 1.17      5    5.22 1.48   1   7     6 -0.75     0.71 0.08
IM2     2 214 5.66 1.08      6    5.78 1.48   1   7     6 -1.32     3.08 0.07
IM3     3 214 5.48 1.17      6    5.60 1.48   1   7     6 -1.31     2.67 0.08
EEF1    4 214 5.28 1.19      5    5.38 1.48   1   7     6 -1.03     1.89 0.08
EEF2    5 214 5.43 1.21      6    5.55 1.48   1   7     6 -0.89     0.87 0.08
EEF3    6 214 5.48 1.15      6    5.58 1.48   1   7     6 -0.93     1.33 0.08
EEC1    7 214 4.25 1.32      4    4.30 1.48   1   7     6 -0.28    -0.50 0.09
EEC2    8 214 4.29 1.44      5    4.37 1.48   1   7     6 -0.42    -0.43 0.10
EEC3    9 214 4.36 1.37      5    4.43 1.48   1   7     6 -0.38    -0.22 0.09
ADT1   10 214 5.39 1.05      5    5.43 1.48   1   7     6 -0.57     0.77 0.07
ADT2   11 214 5.33 1.06      5    5.37 1.48   1   7     6 -0.66     1.00 0.07
ADT3   12 214 5.25 1.20      5    5.32 1.48   1   7     6 -0.60     0.16 0.08
TR1    13 214 3.79 1.50      4    3.81 1.48   1   7     6 -0.09    -0.83 0.10
TR2    14 214 3.76 1.55      4    3.78 1.48   1   7     6 -0.12    -1.13 0.11
TR3    15 214 3.48 1.51      4    3.51 1.48   1   7     6 -0.11    -1.05 0.10

Descriptive stats on scales

 all good 
 270  214 
     Variable vars   n     mean       sd median  trimmed    mad min max range
IM1       IM1    1 214 5.149533 1.165254      5 5.215116 1.4826   1   7     6
IM2       IM2    2 214 5.663551 1.078548      6 5.784884 1.4826   1   7     6
IM3       IM3    3 214 5.476636 1.165593      6 5.598837 1.4826   1   7     6
EEF1     EEF1    4 214 5.280374 1.189109      5 5.377907 1.4826   1   7     6
EEF2     EEF2    5 214 5.429907 1.211154      6 5.552326 1.4826   1   7     6
EEF3     EEF3    6 214 5.481308 1.149454      6 5.575581 1.4826   1   7     6
EEC1     EEC1    7 214 4.247664 1.317762      4 4.302326 1.4826   1   7     6
EEC2     EEC2    8 214 4.294393 1.438004      5 4.372093 1.4826   1   7     6
EEC3     EEC3    9 214 4.359813 1.369168      5 4.430233 1.4826   1   7     6
ADT1     ADT1   10 214 5.387850 1.045465      5 5.430233 1.4826   1   7     6
ADT2     ADT2   11 214 5.331776 1.060259      5 5.366279 1.4826   1   7     6
ADT3     ADT3   12 214 5.247664 1.198344      5 5.319767 1.4826   1   7     6
TR1       TR1   13 214 3.794393 1.502663      4 3.808140 1.4826   1   7     6
TR2       TR2   14 214 3.761682 1.545622      4 3.779070 1.4826   1   7     6
TR3       TR3   15 214 3.476636 1.509568      4 3.505814 1.4826   1   7     6
            skew   kurtosis         se
IM1  -0.75151662  0.7088089 0.07965512
IM2  -1.31757192  3.0807794 0.07372804
IM3  -1.30711427  2.6734375 0.07967828
EEF1 -1.03398779  1.8891674 0.08128579
EEF2 -0.89419883  0.8716892 0.08279281
EEF3 -0.93296574  1.3260497 0.07857508
EEC1 -0.27581240 -0.4959343 0.09008036
EEC2 -0.41715981 -0.4286639 0.09829994
EEC3 -0.37865475 -0.2174569 0.09359441
ADT1 -0.57402680  0.7699548 0.07146652
ADT2 -0.66312767  1.0036774 0.07247784
ADT3 -0.59607506  0.1612733 0.08191708
TR1  -0.08742161 -0.8302237 0.10271994
TR2  -0.12440585 -1.1321737 0.10565655
TR3  -0.11033638 -1.0525237 0.10319191

Normality tests

Non-normality test across all scales

$IM1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89828, p-value = 7.037e-11


$IM2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.8369, p-value = 3.068e-14


$IM3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.84179, p-value = 5.232e-14


$EEF1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.86711, p-value = 1.016e-12


$EEF2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.88319, p-value = 8.227e-12


$EEF3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.87878, p-value = 4.549e-12


$EEC1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93787, p-value = 6.574e-08


$EEC2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93103, p-value = 1.712e-08


$EEC3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93714, p-value = 5.665e-08


$ADT1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89708, p-value = 5.889e-11


$ADT2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.89669, p-value = 5.561e-11


$ADT3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.91222, p-value = 6.201e-10


$TR1

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.93235, p-value = 2.209e-08


$TR2

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.92099, p-value = 2.744e-09


$TR3

    Shapiro-Wilk normality test

data:  newX[, i]
W = 0.92493, p-value = 5.528e-09

Non-normality test on EEF composite


    Shapiro-Wilk normality test

data:  data_filtered$EEF_composite
W = 0.91886, p-value = 1.894e-09

Non-normality test on EEC composite


    Shapiro-Wilk normality test

data:  data_filtered$EEC_composite
W = 0.97719, p-value = 0.001521

Non-normality test on DV per condition

Reward condition on EEF
# A tibble: 2 × 3
  Condition_reward_name     n   shapiro_p
  <chr>                 <int>       <dbl>
1 no_reward               109 0.0000692  
2 performance_reward      105 0.000000224
Reward condition on EEC
# A tibble: 2 × 3
  Condition_reward_name     n shapiro_p
  <chr>                 <int>     <dbl>
1 no_reward               109    0.0785
2 performance_reward      105    0.0148
Eco condition on EEF
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72 0.0000168
2 EEF_ori               70 0.00165  
3 both_ori              72 0.0000608
Eco condition on EEC
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72    0.0536
2 EEF_ori               70    0.152 
3 both_ori              72    0.0106

Non-normality test on IM composite


    Shapiro-Wilk normality test

data:  data_filtered$IM_composite
W = 0.93519, p-value = 3.841e-08

Non-normality test on IM per condition

# A tibble: 2 × 3
  Condition_reward_name     n shapiro_p
  <chr>                 <int>     <dbl>
1 no_reward               109 0.0000303
2 performance_reward      105 0.0000587
# A tibble: 3 × 3
  Condition_eco_name     n shapiro_p
  <chr>              <int>     <dbl>
1 EEC_ori               72 0.00132  
2 EEF_ori               70 0.0000113
3 both_ori              72 0.0123   

Factor analyses

KMO

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = efa_data_good)
Overall MSA =  0.86
MSA for each item = 
 IM1  IM2  IM3 EEF1 EEF2 EEF3 EEC1 EEC2 EEC3 ADT1 ADT2 ADT3  TR1  TR2  TR3 
0.92 0.82 0.85 0.88 0.90 0.91 0.91 0.85 0.82 0.90 0.82 0.86 0.90 0.78 0.82 

Correlation analysis

Bartlett test

R was not square, finding R from data
$chisq
[1] 2708.657

$p.value
[1] 0

$df
[1] 105

Correlation matrix

           IM1        IM2        IM3      EEF1      EEF2      EEF3      EEC1
IM1  1.0000000 0.71262664 0.62823456 0.5727130 0.6361886 0.5979741 0.4588498
IM2  0.7126266 1.00000000 0.76302737 0.3777322 0.4958078 0.4720588 0.3991398
IM3  0.6282346 0.76302737 1.00000000 0.3502518 0.4394806 0.4587153 0.4607446
EEF1 0.5727130 0.37773216 0.35025185 1.0000000 0.8514946 0.8282150 0.5097636
EEF2 0.6361886 0.49580780 0.43948059 0.8514946 1.0000000 0.8353906 0.5242375
EEF3 0.5979741 0.47205876 0.45871527 0.8282150 0.8353906 1.0000000 0.5098388
EEC1 0.4588498 0.39913977 0.46074456 0.5097636 0.5242375 0.5098388 1.0000000
EEC2 0.5003468 0.35475987 0.35004673 0.5006247 0.5496824 0.5188643 0.6055075
EEC3 0.4840296 0.31126891 0.33918961 0.5231259 0.5489536 0.5457312 0.7049909
ADT1 0.3799424 0.18288808 0.16735796 0.3992853 0.3942005 0.3518112 0.3252536
ADT2 0.2674586 0.09396665 0.08038113 0.2982523 0.2722882 0.2651405 0.2601366
ADT3 0.3801755 0.23186565 0.20079144 0.3826485 0.3597516 0.3288763 0.3177411
TR1  0.3045355 0.22072568 0.21972388 0.3030427 0.2938621 0.3049110 0.3056084
TR2  0.2701257 0.14599969 0.12849649 0.2383268 0.2280353 0.2604160 0.1881631
TR3  0.2608877 0.15086114 0.15311072 0.2965969 0.2751431 0.3136058 0.2448330
          EEC2      EEC3      ADT1       ADT2      ADT3       TR1       TR2
IM1  0.5003468 0.4840296 0.3799424 0.26745861 0.3801755 0.3045355 0.2701257
IM2  0.3547599 0.3112689 0.1828881 0.09396665 0.2318656 0.2207257 0.1459997
IM3  0.3500467 0.3391896 0.1673580 0.08038113 0.2007914 0.2197239 0.1284965
EEF1 0.5006247 0.5231259 0.3992853 0.29825231 0.3826485 0.3030427 0.2383268
EEF2 0.5496824 0.5489536 0.3942005 0.27228822 0.3597516 0.2938621 0.2280353
EEF3 0.5188643 0.5457312 0.3518112 0.26514049 0.3288763 0.3049110 0.2604160
EEC1 0.6055075 0.7049909 0.3252536 0.26013655 0.3177411 0.3056084 0.1881631
EEC2 1.0000000 0.8329934 0.3421561 0.27127818 0.3470874 0.3040757 0.2175972
EEC3 0.8329934 1.0000000 0.3841870 0.30223586 0.3431703 0.3441873 0.2714351
ADT1 0.3421561 0.3841870 1.0000000 0.79398707 0.7623848 0.4604202 0.4351735
ADT2 0.2712782 0.3022359 0.7939871 1.00000000 0.7996797 0.4290446 0.4209084
ADT3 0.3470874 0.3431703 0.7623848 0.79967969 1.0000000 0.4403519 0.4020901
TR1  0.3040757 0.3441873 0.4604202 0.42904461 0.4403519 1.0000000 0.8237549
TR2  0.2175972 0.2714351 0.4351735 0.42090838 0.4020901 0.8237549 1.0000000
TR3  0.2248661 0.2959732 0.4475272 0.42286050 0.4638784 0.7947046 0.8698778
           TR3
IM1  0.2608877
IM2  0.1508611
IM3  0.1531107
EEF1 0.2965969
EEF2 0.2751431
EEF3 0.3136058
EEC1 0.2448330
EEC2 0.2248661
EEC3 0.2959732
ADT1 0.4475272
ADT2 0.4228605
ADT3 0.4638784
TR1  0.7947046
TR2  0.8698778
TR3  1.0000000

Outliers

EFA

Parallel analysis suggests that the number of factors =  5  and the number of components =  NA 
Threshold=0.35

Loadings:
     MR2   MR5   MR3   MR4   MR1  
IM1     NA 0.390    NA 0.636    NA
IM2     NA    NA    NA 0.897    NA
IM3     NA    NA    NA 0.783    NA
EEF1    NA 0.849    NA    NA    NA
EEF2    NA 0.804    NA    NA    NA
EEF3    NA 0.775    NA    NA    NA
EEC1    NA    NA    NA    NA 0.589
EEC2    NA    NA    NA    NA 0.740
EEC3    NA    NA    NA    NA 0.933
ADT1    NA    NA 0.791    NA    NA
ADT2    NA    NA 0.880    NA    NA
ADT3    NA    NA 0.810    NA    NA
TR1  0.807    NA    NA    NA    NA
TR2  0.923    NA    NA    NA    NA
TR3  0.868    NA    NA    NA    NA

               MR2 MR5 MR3 MR4 MR1
SS loadings     NA  NA  NA  NA  NA
Proportion Var  NA  NA  NA  NA  NA
Cumulative Var  NA  NA  NA  NA  NA
Factor Analysis using method =  minres
Call: fa(r = cor(efa_data_good, use = "pairwise.complete.obs"), nfactors = 5, 
    rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix
      MR2  MR5  MR3  MR4  MR1   h2     u2 com
IM1  0.13 0.39 0.20 0.64 0.26 0.68 0.3179 2.4
IM2  0.06 0.20 0.05 0.90 0.13 0.87 0.1314 1.2
IM3  0.07 0.18 0.02 0.78 0.20 0.69 0.3104 1.3
EEF1 0.12 0.85 0.19 0.18 0.26 0.87 0.1288 1.4
EEF2 0.10 0.80 0.17 0.31 0.29 0.86 0.1375 1.7
EEF3 0.15 0.77 0.13 0.30 0.28 0.81 0.1927 1.7
EEC1 0.11 0.29 0.15 0.30 0.59 0.55 0.4475 2.2
EEC2 0.10 0.28 0.16 0.21 0.74 0.71 0.2942 1.6
EEC3 0.15 0.25 0.15 0.13 0.93 1.00 0.0014 1.3
ADT1 0.25 0.19 0.79 0.08 0.17 0.76 0.2371 1.5
ADT2 0.23 0.09 0.88 0.00 0.11 0.85 0.1502 1.2
ADT3 0.24 0.15 0.81 0.14 0.14 0.78 0.2248 1.4
TR1  0.81 0.10 0.24 0.13 0.17 0.77 0.2346 1.4
TR2  0.92 0.08 0.21 0.06 0.07 0.91 0.0904 1.1
TR3  0.87 0.14 0.24 0.05 0.09 0.84 0.1598 1.2

                       MR2  MR5  MR3  MR4  MR1
SS loadings           2.55 2.52 2.42 2.24 2.23
Proportion Var        0.17 0.17 0.16 0.15 0.15
Cumulative Var        0.17 0.34 0.50 0.65 0.80
Proportion Explained  0.21 0.21 0.20 0.19 0.19
Cumulative Proportion 0.21 0.42 0.63 0.81 1.00

Mean item complexity =  1.5
Test of the hypothesis that 5 factors are sufficient.

df null model =  105  with the objective function =  13.07
df of  the model are 40  and the objective function was  0.23 

The root mean square of the residuals (RMSR) is  0.01 
The df corrected root mean square of the residuals is  0.01 

Fit based upon off diagonal values = 1
Measures of factor score adequacy             
                                                   MR2  MR5  MR3  MR4  MR1
Correlation of (regression) scores with factors   0.96 0.95 0.95 0.94 1.00
Multiple R square of scores with factors          0.93 0.90 0.89 0.89 0.99
Minimum correlation of possible factor scores     0.86 0.79 0.79 0.77 0.98

Loading required namespace: GPArotation
Threshold = 0.35

Loadings:
     MR1   MR2   MR3   MR5   MR4  
IM1     NA    NA    NA    NA 0.574
IM2     NA    NA    NA    NA 0.951
IM3     NA    NA    NA    NA 0.816
EEF1 0.971    NA    NA    NA    NA
EEF2 0.875    NA    NA    NA    NA
EEF3 0.842    NA    NA    NA    NA
EEC1    NA    NA    NA 0.572    NA
EEC2    NA    NA    NA 0.774    NA
EEC3    NA    NA    NA 1.032    NA
ADT1    NA    NA 0.820    NA    NA
ADT2    NA    NA 0.954    NA    NA
ADT3    NA    NA 0.857    NA    NA
TR1     NA 0.825    NA    NA    NA
TR2     NA 0.980    NA    NA    NA
TR3     NA 0.903    NA    NA    NA

               MR1 MR2 MR3 MR5 MR4
SS loadings     NA  NA  NA  NA  NA
Proportion Var  NA  NA  NA  NA  NA
Cumulative Var  NA  NA  NA  NA  NA

Factor Correlation Matrix:
      1     2     3     4     5
1 1.000 0.310 0.399 0.607 0.530
2 0.310 1.000 0.516 0.312 0.198
3 0.399 0.516 1.000 0.384 0.203
4 0.607 0.312 0.384 1.000 0.418
5 0.530 0.198 0.203 0.418 1.000

      1     2     3     4     5
1 1.000 0.311 0.399 0.610 0.531
2 0.311 1.000 0.517 0.314 0.198
3 0.399 0.517 1.000 0.386 0.205
4 0.610 0.314 0.386 1.000 0.419
5 0.531 0.198 0.205 0.419 1.000

CFA

Without moderators

lavaan 0.6-21 ended normally after 34 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                97.943      92.692
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.057
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1591.464     907.183
  Degrees of freedom                                36          36
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.754

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.952       0.921
  Tucker-Lewis Index (TLI)                       0.929       0.882
                                                                  
  Robust Comparative Fit Index (CFI)                         0.953
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2375.203   -2375.203
  Scaling correction factor                                  2.460
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2326.231   -2326.231
  Scaling correction factor                                  1.712
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4792.406    4792.406
  Bayesian (BIC)                              4863.092    4863.092
  Sample-size adjusted Bayesian (SABIC)       4796.548    4796.548

Root Mean Square Error of Approximation:

  RMSEA                                          0.120       0.116
  90 Percent confidence interval - lower         0.096       0.092
  90 Percent confidence interval - upper         0.145       0.140
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.996       0.992
                                                                  
  Robust RMSEA                                               0.119
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.145
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.994

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC =~                                                                
    EEC1              1.000                               1.000    1.000
    EEC2              1.289    0.108   11.885    0.000    1.076    1.502
    EEC3              1.330    0.093   14.310    0.000    1.147    1.512
  EEF =~                                                                
    EEF1              1.000                               1.000    1.000
    EEF2              1.047    0.052   20.022    0.000    0.944    1.149
    EEF3              0.963    0.054   17.668    0.000    0.856    1.070
  IM =~                                                                 
    IM1               1.000                               1.000    1.000
    IM2               1.000    0.161    6.229    0.000    0.686    1.315
    IM3               1.002    0.180    5.560    0.000    0.649    1.355
   Std.lv  Std.all
                  
    0.973    0.740
    1.254    0.874
    1.293    0.947
                  
    1.077    0.908
    1.128    0.933
    1.037    0.904
                  
    0.952    0.819
    0.952    0.885
    0.953    0.820

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC ~~                                                                
    EEF               0.674    0.121    5.579    0.000    0.437    0.911
    IM                0.459    0.137    3.354    0.001    0.191    0.727
  EEF ~~                                                                
    IM                0.640    0.159    4.027    0.000    0.328    0.951
   Std.lv  Std.all
                  
    0.643    0.643
    0.496    0.496
                  
    0.624    0.624

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
   .EEC1              0.782    0.093    8.402    0.000    0.600    0.965
   .EEC2              0.486    0.104    4.666    0.000    0.282    0.690
   .EEC3              0.193    0.061    3.147    0.002    0.073    0.313
   .EEF1              0.247    0.046    5.416    0.000    0.157    0.336
   .EEF2              0.188    0.046    4.102    0.000    0.098    0.278
   .EEF3              0.239    0.064    3.765    0.000    0.115    0.364
   .IM1               0.446    0.165    2.698    0.007    0.122    0.770
   .IM2               0.251    0.073    3.428    0.001    0.108    0.395
   .IM3               0.444    0.218    2.035    0.042    0.016    0.871
    EEC               0.946    0.149    6.367    0.000    0.655    1.238
    EEF               1.161    0.184    6.298    0.000    0.800    1.522
    IM                0.906    0.210    4.312    0.000    0.494    1.317
   Std.lv  Std.all
    0.782    0.453
    0.486    0.236
    0.193    0.103
    0.247    0.175
    0.188    0.129
    0.239    0.182
    0.446    0.330
    0.251    0.217
    0.444    0.328
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.764
    EEC3              0.897
    EEF1              0.825
    EEF2              0.871
    EEF3              0.818
    IM1               0.670
    IM2               0.783
    IM3               0.672

With moderators

lavaan 0.6-21 ended normally after 49 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        40

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               175.241     160.591
  Degrees of freedom                                80          80
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.091
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2798.001    1963.914
  Degrees of freedom                               105         105
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.425

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.965       0.957
  Tucker-Lewis Index (TLI)                       0.954       0.943
                                                                  
  Robust Comparative Fit Index (CFI)                         0.967
  Robust Tucker-Lewis Index (TLI)                            0.956

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3958.712   -3958.712
  Scaling correction factor                                  2.043
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3871.091   -3871.091
  Scaling correction factor                                  1.408
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                7997.424    7997.424
  Bayesian (BIC)                              8132.063    8132.063
  Sample-size adjusted Bayesian (SABIC)       8005.313    8005.313

Root Mean Square Error of Approximation:

  RMSEA                                          0.075       0.069
  90 Percent confidence interval - lower         0.060       0.054
  90 Percent confidence interval - upper         0.090       0.083
  P-value H_0: RMSEA <= 0.050                    0.004       0.021
  P-value H_0: RMSEA >= 0.080                    0.287       0.104
                                                                  
  Robust RMSEA                                               0.072
  90 Percent confidence interval - lower                     0.055
  90 Percent confidence interval - upper                     0.088
  P-value H_0: Robust RMSEA <= 0.050                         0.016
  P-value H_0: Robust RMSEA >= 0.080                         0.205

Standardized Root Mean Square Residual:

  SRMR                                           0.061       0.061

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC =~                                                                
    EEC1              1.000                               1.000    1.000
    EEC2              1.287    0.108   11.932    0.000    1.076    1.499
    EEC3              1.332    0.093   14.258    0.000    1.149    1.515
  EEF =~                                                                
    EEF1              1.000                               1.000    1.000
    EEF2              1.045    0.053   19.733    0.000    0.941    1.149
    EEF3              0.961    0.056   17.299    0.000    0.852    1.070
  ADT =~                                                                
    ADT1              1.000                               1.000    1.000
    ADT2              1.037    0.068   15.299    0.000    0.904    1.170
    ADT3              1.147    0.076   15.133    0.000    0.998    1.295
  IM =~                                                                 
    IM1               1.000                               1.000    1.000
    IM2               0.999    0.166    6.036    0.000    0.675    1.324
    IM3               1.001    0.186    5.387    0.000    0.637    1.365
  TR =~                                                                 
    TR1               1.000                               1.000    1.000
    TR2               1.110    0.055   20.135    0.000    1.002    1.218
    TR3               1.060    0.058   18.145    0.000    0.945    1.174
   Std.lv  Std.all
                  
    0.973    0.740
    1.252    0.873
    1.295    0.948
                  
    1.079    0.909
    1.127    0.933
    1.037    0.904
                  
    0.918    0.880
    0.952    0.900
    1.052    0.880
                  
    0.952    0.819
    0.952    0.884
    0.953    0.819
                  
    1.309    0.873
    1.452    0.942
    1.386    0.921

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
  EEC ~~                                                                
    EEF               0.674    0.121    5.566    0.000    0.437    0.911
    ADT               0.366    0.085    4.307    0.000    0.200    0.533
    IM                0.458    0.139    3.293    0.001    0.186    0.731
    TR                0.417    0.103    4.040    0.000    0.215    0.619
  EEF ~~                                                                
    ADT               0.408    0.102    4.021    0.000    0.209    0.607
    IM                0.641    0.163    3.933    0.000    0.322    0.960
    TR                0.451    0.113    3.997    0.000    0.230    0.672
  ADT ~~                                                                
    IM                0.240    0.116    2.077    0.038    0.014    0.467
    TR                0.635    0.106    6.018    0.000    0.428    0.842
  IM ~~                                                                 
    TR                0.305    0.137    2.235    0.025    0.038    0.573
   Std.lv  Std.all
                  
    0.642    0.642
    0.410    0.410
    0.495    0.495
    0.327    0.327
                  
    0.412    0.412
    0.624    0.624
    0.320    0.320
                  
    0.275    0.275
    0.529    0.529
                  
    0.245    0.245

Variances:
                   Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
   .EEC1              0.782    0.093    8.420    0.000    0.600    0.965
   .EEC2              0.491    0.104    4.732    0.000    0.287    0.694
   .EEC3              0.188    0.061    3.070    0.002    0.068    0.308
   .EEF1              0.244    0.045    5.397    0.000    0.155    0.332
   .EEF2              0.190    0.047    4.072    0.000    0.098    0.281
   .EEF3              0.240    0.063    3.788    0.000    0.116    0.364
   .ADT1              0.246    0.057    4.344    0.000    0.135    0.357
   .ADT2              0.213    0.053    4.003    0.000    0.109    0.317
   .ADT3              0.322    0.088    3.647    0.000    0.149    0.495
   .IM1               0.444    0.172    2.589    0.010    0.108    0.781
   .IM2               0.252    0.075    3.350    0.001    0.105    0.400
   .IM3               0.444    0.220    2.019    0.043    0.013    0.875
   .TR1               0.535    0.101    5.302    0.000    0.337    0.733
   .TR2               0.269    0.068    3.946    0.000    0.135    0.402
   .TR3               0.346    0.088    3.945    0.000    0.174    0.518
    EEC               0.946    0.148    6.373    0.000    0.655    1.237
    EEF               1.164    0.185    6.288    0.000    0.801    1.527
    ADT               0.842    0.124    6.812    0.000    0.600    1.084
    IM                0.907    0.217    4.182    0.000    0.482    1.332
    TR                1.712    0.186    9.230    0.000    1.349    2.076
   Std.lv  Std.all
    0.782    0.453
    0.491    0.238
    0.188    0.101
    0.244    0.173
    0.190    0.130
    0.240    0.183
    0.246    0.226
    0.213    0.190
    0.322    0.225
    0.444    0.329
    0.252    0.218
    0.444    0.328
    0.535    0.238
    0.269    0.113
    0.346    0.152
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000
    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.762
    EEC3              0.899
    EEF1              0.827
    EEF2              0.870
    EEF3              0.817
    ADT1              0.774
    ADT2              0.810
    ADT3              0.775
    IM1               0.671
    IM2               0.782
    IM3               0.672
    TR1               0.762
    TR2               0.887
    TR3               0.848
Cronbach’s Alpha:
  EEC   EEF   ADT    IM    TR 
0.883 0.939 0.914 0.874 0.936 
Omega:
  EEC   EEF   ADT    IM    TR 
0.902 0.939 0.917 0.882 0.938 
Average Variance Extracted (AVE):
  EEC   EEF   ADT    IM    TR 
0.742 0.839 0.785 0.705 0.833 
$type
[1] "cor.bentler"

$cov
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.040  0.000                                                        
EEC3  0.003  0.005  0.000                                                 
EEF1  0.078 -0.009 -0.031  0.000                                          
EEF2  0.081  0.027 -0.019  0.003  0.000                                   
EEF3  0.080  0.012 -0.005  0.006 -0.008  0.000                            
ADT1  0.058  0.027  0.042  0.069  0.056  0.024  0.000                     
ADT2 -0.013 -0.051 -0.048 -0.039 -0.074 -0.070  0.002  0.000              
ADT3  0.051  0.032  0.001  0.053  0.021  0.001 -0.012  0.008  0.000       
IM1   0.159  0.146  0.100  0.108  0.159  0.136  0.182  0.065  0.182  0.000
IM2   0.075 -0.027 -0.104 -0.124 -0.019 -0.027 -0.031 -0.125  0.018 -0.012
IM3   0.161 -0.004 -0.045 -0.115 -0.037 -0.003 -0.031 -0.122  0.003 -0.043
TR1   0.094  0.055  0.073  0.049  0.034  0.053  0.054  0.014  0.034  0.129
TR2  -0.040 -0.052 -0.021 -0.035 -0.053 -0.012 -0.003 -0.027 -0.036  0.081
TR3   0.022 -0.038  0.010  0.029  0.001  0.048  0.019 -0.015  0.035  0.076
        IM2    IM3    TR1    TR2    TR3
EEC1                                   
EEC2                                   
EEC3                                   
EEF1                                   
EEF2                                   
EEF3                                   
ADT1                                   
ADT2                                   
ADT3                                   
IM1                                    
IM2   0.000                            
IM3   0.038  0.000                     
TR1   0.032  0.044  0.000              
TR2  -0.058 -0.061  0.002  0.000       
TR3  -0.049 -0.032 -0.009  0.003  0.000

$cov.z
       EEC1   EEC2   EEC3   EEF1   EEF2   EEF3   ADT1   ADT2   ADT3    IM1
EEC1  0.000                                                               
EEC2 -0.776  0.000                                                        
EEC3  0.067  0.068  0.000                                                 
EEF1  0.963 -0.095 -0.304  0.000                                          
EEF2  1.141  0.293 -0.196  0.028  0.000                                   
EEF3  1.119  0.142 -0.053  0.057 -0.082  0.000                            
ADT1  0.882  0.351  0.545  0.821  0.612  0.250  0.000                     
ADT2 -0.196 -0.659 -0.614 -0.435 -0.811 -0.720  0.027  0.000              
ADT3  0.780  0.422  0.010  0.605  0.229  0.007 -0.136  0.089  0.000       
IM1   2.501  2.255  1.533  1.266  1.898  1.605  2.128  0.777  2.220  0.000
IM2   1.601 -0.492 -1.946 -1.596 -0.309 -0.451 -0.637 -2.693  0.396 -0.236
IM3   2.402 -0.068 -0.787 -1.434 -0.569 -0.058 -0.562 -2.256  0.049 -0.928
TR1   1.463  0.911  1.217  0.774  0.501  0.778  0.857  0.226  0.543  1.791
TR2  -0.612 -0.791 -0.334 -0.473 -0.699 -0.154 -0.043 -0.419 -0.530  1.297
TR3   0.341 -0.613  0.170  0.429  0.010  0.669  0.288 -0.242  0.556  1.107
        IM2    IM3    TR1    TR2    TR3
EEC1                                   
EEC2                                   
EEC3                                   
EEF1                                   
EEF2                                   
EEF3                                   
ADT1                                   
ADT2                                   
ADT3                                   
IM1                                    
IM2   0.000                            
IM3   0.639  0.000                     
TR1   0.680  0.829  0.000              
TR2  -1.327 -1.298  0.041  0.000       
TR3  -1.010 -0.614 -0.252  0.059  0.000

$summary
                           cov
srmr                     0.061
srmr.se                  0.035
srmr.exactfit.z          0.000
srmr.exactfit.pvalue     0.500
usrmr                    0.000
usrmr.se                 0.059
usrmr.ci.lower          -0.097
usrmr.ci.upper           0.097
usrmr.closefit.h0.value  0.050
usrmr.closefit.z        -0.850
usrmr.closefit.pvalue    0.802
      EEC   EEF   ADT    IM    TR
EEC 1.000                        
EEF 0.642 1.000                  
ADT 0.410 0.412 1.000            
IM  0.495 0.624 0.275 1.000      
TR  0.327 0.320 0.529 0.245 1.000
Correlation matrix
Latent factor correlation matrix with p-values:
    IM             ADT            TR             EEF        EEC       
IM  "1"            "0.27 (0.009)" "0.24 (0.004)" "0.62 (0)" "0.49 (0)"
ADT "0.27 (0.009)" "1"            "0.53 (0)"     "0.41 (0)" "0.41 (0)"
TR  "0.24 (0.004)" "0.53 (0)"     "1"            "0.32 (0)" "0.33 (0)"
EEF "0.62 (0)"     "0.41 (0)"     "0.32 (0)"     "1"        "0.64 (0)"
EEC "0.49 (0)"     "0.41 (0)"     "0.33 (0)"     "0.64 (0)" "1"       

VIF

VIF for EEF model - composite
 IM_composite_standardized ADT_composite_standardized 
                  1.098069                   1.375429 
 TR_composite_standardized 
                  1.356606 
VIF for EEC model - composite
 IM_composite_standardized ADT_composite_standardized 
                  1.098069                   1.375429 
 TR_composite_standardized 
                  1.356606 

SEM

No mediation

No moderation - using individual items
lavaan 0.6-21 ended normally after 54 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        29

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               212.944     200.701
  Degrees of freedom                                61          61
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.061
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.902       0.878
  Tucker-Lewis Index (TLI)                       0.870       0.838
                                                                  
  Robust Comparative Fit Index (CFI)                         0.903
  Robust Tucker-Lewis Index (TLI)                            0.871

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2410.470   -2410.470
  Scaling correction factor                                  1.964
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4878.940    4878.940
  Bayesian (BIC)                              4976.553    4976.553
  Sample-size adjusted Bayesian (SABIC)       4884.660    4884.660

Root Mean Square Error of Approximation:

  RMSEA                                          0.108       0.103
  90 Percent confidence interval - lower         0.092       0.088
  90 Percent confidence interval - upper         0.124       0.119
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.998       0.994
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.090
  90 Percent confidence interval - upper                     0.123
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.996

Standardized Root Mean Square Residual:

  SRMR                                           0.194       0.194

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.086    0.916
    EEF2              1.033    0.052   20.016    0.000    1.122    0.928
    EEF3              0.953    0.055   17.192    0.000    1.035    0.903
  EEC =~                                                                
    EEC1              1.000                               0.970    0.738
    EEC2              1.292    0.108   11.960    0.000    1.253    0.873
    EEC3              1.336    0.093   14.406    0.000    1.296    0.949
  IM =~                                                                 
    IM1               1.000                               0.890    0.766
    IM2               1.124    0.160    7.041    0.000    1.001    0.930
    IM3               1.071    0.160    6.703    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    reward1_eco1      0.320    0.232    1.382    0.167    0.295    0.107
    reward0_eco2      0.028    0.247    0.113    0.910    0.026    0.010
    reward1_eco2      0.281    0.221    1.270    0.204    0.258    0.097
    reward0_eco3     -0.298    0.226   -1.318    0.187   -0.275   -0.103
    reward1_eco3     -0.241    0.257   -0.937    0.349   -0.222   -0.083
  EEC ~                                                                 
    reward1_eco1      0.308    0.216    1.427    0.153    0.318    0.115
    reward0_eco2      0.284    0.243    1.170    0.242    0.293    0.109
    reward1_eco2      0.369    0.222    1.665    0.096    0.380    0.142
    reward0_eco3      0.003    0.198    0.013    0.989    0.003    0.001
    reward1_eco3     -0.113    0.236   -0.480    0.631   -0.117   -0.044

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.639    0.111    5.752    0.000    0.632    0.632

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.227    0.045    5.040    0.000    0.227    0.161
   .EEF2              0.202    0.050    4.038    0.000    0.202    0.138
   .EEF3              0.243    0.064    3.805    0.000    0.243    0.185
   .EEC1              0.788    0.092    8.525    0.000    0.788    0.456
   .EEC2              0.488    0.104    4.717    0.000    0.488    0.237
   .EEC3              0.186    0.060    3.119    0.002    0.186    0.100
   .IM1               0.559    0.154    3.634    0.000    0.559    0.413
   .IM2               0.156    0.050    3.096    0.002    0.156    0.134
   .IM3               0.443    0.202    2.190    0.029    0.443    0.327
   .EEF               1.126    0.177    6.360    0.000    0.954    0.954
   .EEC               0.907    0.139    6.520    0.000    0.964    0.964
    IM                0.793    0.185    4.279    0.000    1.000    1.000

R-Square:
                   Estimate
    EEF1              0.839
    EEF2              0.862
    EEF3              0.815
    EEC1              0.544
    EEC2              0.763
    EEC3              0.900
    IM1               0.587
    IM2               0.866
    IM3               0.673
    EEF               0.046
    EEC               0.036
No moderation - using composite variables
lavaan 0.6-21 ended normally after 13 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        13

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Model Test Baseline Model:

  Test statistic                               117.595     117.789
  Degrees of freedom                                11          11
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.998

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.000       1.000
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -617.053    -617.053
  Loglikelihood unrestricted model (H1)       -617.053    -617.053
                                                                  
  Akaike (AIC)                                1260.105    1260.105
  Bayesian (BIC)                              1303.863    1303.863
  Sample-size adjusted Bayesian (SABIC)       1262.669    1262.669

Root Mean Square Error of Approximation:

  RMSEA                                          0.000          NA
  90 Percent confidence interval - lower         0.000          NA
  90 Percent confidence interval - upper         0.000          NA
  P-value H_0: RMSEA <= 0.050                       NA          NA
  P-value H_0: RMSEA >= 0.080                       NA          NA
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.000
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000       0.000

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF_composite ~                                                       
    reward1_eco1      0.320    0.227    1.406    0.160    0.320    0.104
    reward0_eco2      0.029    0.245    0.119    0.905    0.029    0.010
    reward1_eco2      0.279    0.221    1.265    0.206    0.279    0.094
    reward0_eco3     -0.295    0.224   -1.313    0.189   -0.295   -0.099
    reward1_eco3     -0.248    0.255   -0.973    0.331   -0.248   -0.083
  EEC_composite ~                                                       
    reward1_eco1      0.385    0.267    1.443    0.149    0.385    0.112
    reward0_eco2      0.419    0.294    1.424    0.155    0.419    0.127
    reward1_eco2      0.549    0.253    2.171    0.030    0.549    0.166
    reward0_eco3      0.049    0.242    0.201    0.840    0.049    0.015
    reward1_eco3     -0.118    0.286   -0.412    0.680   -0.118   -0.036

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.804    0.119    6.753    0.000    0.804    0.609

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF_composite     1.190    0.156    7.613    0.000    1.190    0.957
   .EEC_composite     1.464    0.134   10.921    0.000    1.464    0.960

R-Square:
                   Estimate
    EEF_composite     0.043
    EEC_composite     0.040

Only reward

lavaan 0.6-21 ended normally after 30 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        15

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                16.866      15.013
  Degrees of freedom                                12          12
  P-value (Chi-square)                           0.155       0.241
  Scaling correction factor                                  1.123
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1083.011     786.571
  Degrees of freedom                                21          21
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.377

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.995       0.996
  Tucker-Lewis Index (TLI)                       0.992       0.993
                                                                  
  Robust Comparative Fit Index (CFI)                         0.997
  Robust Tucker-Lewis Index (TLI)                            0.994

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1597.734   -1597.734
  Scaling correction factor                                  1.534
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1589.301   -1589.301
  Scaling correction factor                                  1.351
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3225.467    3225.467
  Bayesian (BIC)                              3275.957    3275.957
  Sample-size adjusted Bayesian (SABIC)       3228.425    3228.425

Root Mean Square Error of Approximation:

  RMSEA                                          0.044       0.034
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.088       0.079
  P-value H_0: RMSEA <= 0.050                    0.542       0.666
  P-value H_0: RMSEA >= 0.080                    0.096       0.046
                                                                  
  Robust RMSEA                                               0.036
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.087
  P-value H_0: Robust RMSEA <= 0.050                         0.614
  P-value H_0: Robust RMSEA >= 0.080                         0.083

Standardized Root Mean Square Residual:

  SRMR                                           0.032       0.032

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.086    0.915
    EEF2              1.034    0.052   19.856    0.000    1.123    0.929
    EEF3              0.953    0.055   17.218    0.000    1.035    0.903
  EEC =~                                                                
    EEC1              1.000                               0.968    0.736
    EEC2              1.290    0.108   11.992    0.000    1.249    0.870
    EEC3              1.345    0.094   14.378    0.000    1.301    0.953

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    Reward_PBP        0.204    0.152    1.341    0.180    0.188    0.094
  EEC ~                                                                 
    Reward_PBP        0.091    0.138    0.657    0.511    0.094    0.047

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.667    0.122    5.465    0.000    0.638    0.638

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.228    0.045    5.094    0.000    0.228    0.162
   .EEF2              0.200    0.050    3.999    0.000    0.200    0.137
   .EEF3              0.244    0.064    3.824    0.000    0.244    0.185
   .EEC1              0.792    0.093    8.519    0.000    0.792    0.458
   .EEC2              0.499    0.104    4.805    0.000    0.499    0.243
   .EEC3              0.172    0.059    2.926    0.003    0.172    0.092
   .EEF               1.169    0.187    6.234    0.000    0.991    0.991
   .EEC               0.935    0.147    6.361    0.000    0.998    0.998

R-Square:
                   Estimate
    EEF1              0.838
    EEF2              0.863
    EEF3              0.815
    EEC1              0.542
    EEC2              0.757
    EEC3              0.908
    EEF               0.009
    EEC               0.002
lavaan 0.6-21 ended normally after 19 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         7

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 1.449       1.178
  Degrees of freedom                                 2           2
  P-value (Chi-square)                           0.485       0.555
  Scaling correction factor                                  1.231
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               348.056      90.801
  Degrees of freedom                                 6           6
  P-value                                        0.000       0.000
  Scaling correction factor                                  3.833

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.005       1.029
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.009

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -817.854    -817.854
  Scaling correction factor                                  3.835
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -817.129    -817.129
  Scaling correction factor                                  3.256
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1649.707    1649.707
  Bayesian (BIC)                              1673.269    1673.269
  Sample-size adjusted Bayesian (SABIC)       1651.088    1651.088

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.123       0.104
  P-value H_0: RMSEA <= 0.050                    0.643       0.744
  P-value H_0: RMSEA >= 0.080                    0.198       0.121
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.129
  P-value H_0: Robust RMSEA <= 0.050                         0.677
  P-value H_0: Robust RMSEA >= 0.080                         0.194

Standardized Root Mean Square Residual:

  SRMR                                           0.015       0.015

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM =~                                                                 
    IM1               1.000                               0.890    0.765
    IM2               1.127    0.159    7.099    0.000    1.002    0.931
    IM3               1.071    0.159    6.728    0.000    0.953    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    Reward_PBP        0.095    0.129    0.741    0.459    0.107    0.054

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM1               0.560    0.153    3.663    0.000    0.560    0.414
   .IM2               0.153    0.050    3.062    0.002    0.153    0.133
   .IM3               0.444    0.202    2.195    0.028    0.444    0.328
   .IM                0.789    0.183    4.315    0.000    0.997    0.997

R-Square:
                   Estimate
    IM1               0.586
    IM2               0.867
    IM3               0.672
    IM                0.003

Only eco-conditions - as predictors

lavaan 0.6-21 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        17

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                23.616      21.493
  Degrees of freedom                                16          16
  P-value (Chi-square)                           0.098       0.160
  Scaling correction factor                                  1.099
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1096.894     846.941
  Degrees of freedom                                27          27
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.295

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.993       0.993
  Tucker-Lewis Index (TLI)                       0.988       0.989
                                                                  
  Robust Comparative Fit Index (CFI)                         0.994
  Robust Tucker-Lewis Index (TLI)                            0.990

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1594.167   -1594.167
  Scaling correction factor                                  1.468
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1582.359   -1582.359
  Scaling correction factor                                  1.289
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3222.335    3222.335
  Bayesian (BIC)                              3279.556    3279.556
  Sample-size adjusted Bayesian (SABIC)       3225.688    3225.688

Root Mean Square Error of Approximation:

  RMSEA                                          0.047       0.040
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.085       0.078
  P-value H_0: RMSEA <= 0.050                    0.505       0.622
  P-value H_0: RMSEA >= 0.080                    0.081       0.040
                                                                  
  Robust RMSEA                                               0.042
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.084
  P-value H_0: Robust RMSEA <= 0.050                         0.576
  P-value H_0: Robust RMSEA >= 0.080                         0.069

Standardized Root Mean Square Residual:

  SRMR                                           0.032       0.032

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.087    0.916
    EEF2              1.032    0.052   20.012    0.000    1.121    0.928
    EEF3              0.953    0.056   17.097    0.000    1.036    0.903
  EEC =~                                                                
    EEC1              1.000                               0.970    0.738
    EEC2              1.290    0.107   12.000    0.000    1.251    0.872
    EEC3              1.339    0.093   14.353    0.000    1.298    0.950

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    Condtn_EEF (a)    0.421    0.183    2.304    0.021    0.387    0.182
    Condtn_EEC (b)    0.424    0.194    2.191    0.028    0.390    0.184
  EEC ~                                                                 
    Condtn_EEF (c)    0.201    0.160    1.258    0.208    0.207    0.097
    Condtn_EEC (d)    0.380    0.180    2.116    0.034    0.392    0.185

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.647    0.112    5.757    0.000    0.633    0.633

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.227    0.045    5.018    0.000    0.227    0.161
   .EEF2              0.203    0.050    4.059    0.000    0.203    0.139
   .EEF3              0.242    0.064    3.791    0.000    0.242    0.184
   .EEC1              0.788    0.093    8.510    0.000    0.788    0.456
   .EEC2              0.494    0.102    4.823    0.000    0.494    0.240
   .EEC3              0.181    0.059    3.054    0.002    0.181    0.097
   .EEF               1.141    0.177    6.452    0.000    0.966    0.966
   .EEC               0.916    0.141    6.509    0.000    0.974    0.974
The effect of EEF_ori on EEF vs. EEC
$stat
[1] 0.0003175485

$df
[1] 1

$p.value
[1] 0.9857825

$se
[1] "robust.huber.white"
The effect of EEC_ori on EEC vs. EEF
$stat
[1] 1.09681

$df
[1] 1

$p.value
[1] 0.2949672

$se
[1] "robust.huber.white"
The effect of combining both orientations on EEF vs. EEC as compared to individually
$stat
[1] 7.73023

$df
[1] 4

$p.value
[1] 0.1019753

$se
[1] "robust.huber.white"
Group difference between being assigned to an eco orientation group
$stat
[1] 4.801772

$df
[1] 1

$p.value
[1] 0.02843048

$se
[1] "robust.huber.white"
$stat
[1] 5.309948

$df
[1] 1

$p.value
[1] 0.02120399

$se
[1] "robust.huber.white"
$stat
[1] 0.0003175485

$df
[1] 1

$p.value
[1] 0.9857825

$se
[1] "robust.huber.white"
lavaan 0.6-21 ended normally after 40 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        23

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               196.426     181.437
  Degrees of freedom                                40          40
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.083
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1615.752    1086.268
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.487

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.900       0.863
  Tucker-Lewis Index (TLI)                       0.865       0.815
                                                                  
  Robust Comparative Fit Index (CFI)                         0.900
  Robust Tucker-Lewis Index (TLI)                            0.865

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2412.300   -2412.300
  Scaling correction factor                                  2.213
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2314.087   -2314.087
  Scaling correction factor                                  1.495
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4870.600    4870.600
  Bayesian (BIC)                              4948.018    4948.018
  Sample-size adjusted Bayesian (SABIC)       4875.136    4875.136

Root Mean Square Error of Approximation:

  RMSEA                                          0.135       0.129
  90 Percent confidence interval - lower         0.117       0.111
  90 Percent confidence interval - upper         0.154       0.147
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    1.000       1.000
                                                                  
  Robust RMSEA                                               0.134
  90 Percent confidence interval - lower                     0.114
  90 Percent confidence interval - upper                     0.154
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.245       0.245

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.087    0.916
    EEF2              1.032    0.052   20.012    0.000    1.121    0.928
    EEF3              0.953    0.056   17.097    0.000    1.036    0.903
  EEC =~                                                                
    EEC1              1.000                               0.970    0.738
    EEC2              1.290    0.107   12.000    0.000    1.251    0.872
    EEC3              1.339    0.093   14.353    0.000    1.298    0.950
  IM =~                                                                 
    IM1               1.000                               0.890    0.766
    IM2               1.124    0.160    7.041    0.000    1.001    0.930
    IM3               1.071    0.160    6.703    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    Condition_both   -0.421    0.183   -2.304    0.021   -0.387   -0.183
    Condition_EEC     0.003    0.177    0.018    0.986    0.003    0.001
  EEC ~                                                                 
    Condition_both   -0.201    0.160   -1.258    0.208   -0.207   -0.098
    Condition_EEC     0.179    0.171    1.047    0.295    0.185    0.087

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF ~~                                                                
   .EEC               0.647    0.112    5.757    0.000    0.633    0.633

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.227    0.045    5.018    0.000    0.227    0.161
   .EEF2              0.203    0.050    4.059    0.000    0.203    0.139
   .EEF3              0.242    0.064    3.791    0.000    0.242    0.184
   .EEC1              0.788    0.093    8.510    0.000    0.788    0.456
   .EEC2              0.494    0.102    4.823    0.000    0.494    0.240
   .EEC3              0.181    0.059    3.054    0.002    0.181    0.097
   .IM1               0.559    0.154    3.634    0.000    0.559    0.413
   .IM2               0.156    0.050    3.096    0.002    0.156    0.134
   .IM3               0.443    0.202    2.190    0.029    0.443    0.327
   .EEF               1.141    0.177    6.452    0.000    0.966    0.966
   .EEC               0.916    0.141    6.509    0.000    0.974    0.974
    IM                0.793    0.185    4.279    0.000    1.000    1.000
   lhs op            rhs    est    se      z pvalue ci.lower ci.upper std.lv
10 EEF  ~ Condition_both -0.421 0.183 -2.304  0.021   -0.779   -0.063 -0.387
11 EEF  ~  Condition_EEC  0.003 0.177  0.018  0.986   -0.344    0.350  0.003
12 EEC  ~ Condition_both -0.201 0.160 -1.258  0.208   -0.514    0.112 -0.207
13 EEC  ~  Condition_EEC  0.179 0.171  1.047  0.295   -0.156    0.515  0.185
   std.all std.nox
10  -0.183  -0.387
11   0.001   0.003
12  -0.098  -0.207
13   0.087   0.185

Only EEF

lavaan 0.6-21 ended normally after 29 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 6.372       6.056
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.783       0.811
  Scaling correction factor                                  1.052
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               586.644     458.910
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.278

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.011       1.016
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.013

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -727.189    -727.189
  Scaling correction factor                                  1.599
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -724.003    -724.003
  Scaling correction factor                                  1.339
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1476.378    1476.378
  Bayesian (BIC)                              1513.404    1513.404
  Sample-size adjusted Bayesian (SABIC)       1478.548    1478.548

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.050       0.045
  P-value H_0: RMSEA <= 0.050                    0.951       0.963
  P-value H_0: RMSEA >= 0.080                    0.004       0.002
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.048
  P-value H_0: Robust RMSEA <= 0.050                         0.956
  P-value H_0: Robust RMSEA >= 0.080                         0.004

Standardized Root Mean Square Residual:

  SRMR                                           0.011       0.011

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.090    0.919
    EEF2              1.027    0.051   20.078    0.000    1.119    0.926
    EEF3              0.949    0.057   16.663    0.000    1.034    0.902

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    reward1_eco1      0.320    0.232    1.378    0.168    0.294    0.106
    reward0_eco2      0.026    0.248    0.104    0.917    0.024    0.009
    reward1_eco2      0.279    0.222    1.257    0.209    0.256    0.096
    reward0_eco3     -0.300    0.227   -1.323    0.186   -0.276   -0.103
    reward1_eco3     -0.244    0.258   -0.944    0.345   -0.224   -0.084

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.220    0.046    4.733    0.000    0.220    0.156
   .EEF2              0.207    0.052    3.979    0.000    0.207    0.142
   .EEF3              0.245    0.066    3.710    0.000    0.245    0.186
   .EEF               1.133    0.177    6.399    0.000    0.954    0.954

R-Square:
                   Estimate
    EEF1              0.844
    EEF2              0.858
    EEF3              0.814
    EEF               0.046

Only EEC

lavaan 0.6-21 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                12.579      12.705
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.248       0.241
  Scaling correction factor                                  0.990
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               419.779     376.677
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.114

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.994       0.992
  Tucker-Lewis Index (TLI)                       0.988       0.986
                                                                  
  Robust Comparative Fit Index (CFI)                         0.993
  Robust Tucker-Lewis Index (TLI)                            0.988

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -909.881    -909.881
  Scaling correction factor                                  1.148
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -903.592    -903.592
  Scaling correction factor                                  1.073
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1841.763    1841.763
  Bayesian (BIC)                              1878.789    1878.789
  Sample-size adjusted Bayesian (SABIC)       1843.932    1843.932

Root Mean Square Error of Approximation:

  RMSEA                                          0.035       0.036
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.086       0.087
  P-value H_0: RMSEA <= 0.050                    0.626       0.617
  P-value H_0: RMSEA >= 0.080                    0.080       0.084
                                                                  
  Robust RMSEA                                               0.035
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.086
  P-value H_0: Robust RMSEA <= 0.050                         0.621
  P-value H_0: Robust RMSEA >= 0.080                         0.081

Standardized Root Mean Square Residual:

  SRMR                                           0.023       0.023

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.947    0.720
    EEC2              1.291    0.106   12.136    0.000    1.222    0.852
    EEC3              1.410    0.108   13.109    0.000    1.335    0.977

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~                                                                 
    reward1_eco1      0.286    0.209    1.372    0.170    0.302    0.109
    reward0_eco2      0.246    0.233    1.058    0.290    0.260    0.097
    reward1_eco2      0.316    0.220    1.438    0.150    0.334    0.125
    reward0_eco3     -0.028    0.191   -0.149    0.882   -0.030   -0.011
    reward1_eco3     -0.100    0.230   -0.437    0.662   -0.106   -0.040

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.831    0.093    8.896    0.000    0.831    0.481
   .EEC2              0.564    0.123    4.568    0.000    0.564    0.274
   .EEC3              0.083    0.076    1.100    0.271    0.083    0.045
   .EEC               0.869    0.137    6.328    0.000    0.969    0.969

R-Square:
                   Estimate
    EEC1              0.519
    EEC2              0.726
    EEC3              0.955
    EEC               0.031

Mediation

Individual items

Non-connected DVs
Simple mediation only on reward - H2a
lavaan 0.6-21 ended normally after 34 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        24

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               103.369      96.972
  Degrees of freedom                                30          30
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.066
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1598.761     986.859
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.620

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.953       0.929
  Tucker-Lewis Index (TLI)                       0.929       0.893
                                                                  
  Robust Comparative Fit Index (CFI)                         0.953
  Robust Tucker-Lewis Index (TLI)                            0.930

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2374.267   -2374.267
  Scaling correction factor                                  2.283
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2322.583   -2322.583
  Scaling correction factor                                  1.607
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4796.534    4796.534
  Bayesian (BIC)                              4877.318    4877.318
  Sample-size adjusted Bayesian (SABIC)       4801.267    4801.267

Root Mean Square Error of Approximation:

  RMSEA                                          0.107       0.102
  90 Percent confidence interval - lower         0.085       0.081
  90 Percent confidence interval - upper         0.130       0.124
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.976       0.954
                                                                  
  Robust RMSEA                                               0.105
  90 Percent confidence interval - lower                     0.082
  90 Percent confidence interval - upper                     0.129
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.965

Standardized Root Mean Square Residual:

  SRMR                                           0.063       0.063

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.973    0.740
    EEC2              1.289    0.109   11.877    0.000    1.254    0.874
    EEC3              1.329    0.093   14.314    0.000    1.293    0.947
  EEF =~                                                                
    EEF1              1.000                               1.077    0.908
    EEF2              1.048    0.052   19.969    0.000    1.128    0.934
    EEF3              0.963    0.054   17.743    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.952    0.819
    IM2               1.000    0.161    6.215    0.000    0.952    0.885
    IM3               1.001    0.181    5.532    0.000    0.953    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    Reward_PBP        0.085    0.138    0.619    0.536    0.090    0.045
  EEF ~                                                                 
    IM                0.703    0.075    9.335    0.000    0.621    0.621
    Reward_PBP        0.144    0.124    1.160    0.246    0.134    0.067
  EEC ~                                                                 
    IM                0.506    0.076    6.661    0.000    0.495    0.495
    Reward_PBP        0.047    0.124    0.377    0.706    0.048    0.024

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.348    0.108    3.210    0.001    0.491    0.491

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.782    0.093    8.404    0.000    0.782    0.453
   .EEC2              0.485    0.104    4.656    0.000    0.485    0.236
   .EEC3              0.193    0.061    3.147    0.002    0.193    0.104
   .EEF1              0.247    0.045    5.437    0.000    0.247    0.176
   .EEF2              0.187    0.046    4.063    0.000    0.187    0.128
   .EEF3              0.240    0.063    3.787    0.000    0.240    0.183
   .IM1               0.445    0.166    2.679    0.007    0.445    0.329
   .IM2               0.252    0.074    3.403    0.001    0.252    0.218
   .IM3               0.444    0.219    2.029    0.042    0.444    0.328
   .EEC               0.713    0.116    6.152    0.000    0.753    0.753
   .EEF               0.703    0.166    4.226    0.000    0.606    0.606
   .IM                0.905    0.209    4.324    0.000    0.998    0.998

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.764
    EEC3              0.896
    EEF1              0.824
    EEF2              0.872
    EEF3              0.817
    IM1               0.671
    IM2               0.782
    IM3               0.672
    EEC               0.247
    EEF               0.394
    IM                0.002
Simple mediation on both dependent variables with interaction between IVs - H2b and H2c
lavaan 0.6-21 ended normally after 55 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.697    0.075    9.275    0.000    0.612    0.612
    reward1_eco1      0.097    0.185    0.522    0.602    0.090    0.032
    reward0_eco2     -0.184    0.203   -0.909    0.363   -0.171   -0.064
    reward1_eco2      0.002    0.195    0.008    0.994    0.001    0.001
    reward0_eco3     -0.234    0.178   -1.312    0.189   -0.217   -0.081
    reward1_eco3     -0.073    0.205   -0.353    0.724   -0.067   -0.025
  EEC ~                                                                 
    IM                0.492    0.075    6.547    0.000    0.478    0.478
    reward1_eco1      0.154    0.205    0.748    0.454    0.158    0.057
    reward0_eco2      0.136    0.221    0.617    0.537    0.140    0.052
    reward1_eco2      0.178    0.214    0.831    0.406    0.182    0.068
    reward0_eco3      0.049    0.184    0.267    0.789    0.050    0.019
    reward1_eco3     -0.002    0.222   -0.007    0.994   -0.002   -0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.352    0.107    3.281    0.001    0.498    0.498

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.710    0.115    6.173    0.000    0.749    0.749
   .EEF               0.701    0.165    4.250    0.000    0.603    0.603
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.251
    EEF               0.397
    IM                0.063
Mediation EEF–> EEC
Non-connected DVs - H3
lavaan 0.6-21 ended normally after 41 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        31

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               133.626     131.043
  Degrees of freedom                                59          59
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.020
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.952       0.937
  Tucker-Lewis Index (TLI)                       0.934       0.914
                                                                  
  Robust Comparative Fit Index (CFI)                         0.952
  Robust Tucker-Lewis Index (TLI)                            0.934

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2370.811   -2370.811
  Scaling correction factor                                  1.984
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4803.621    4803.621
  Bayesian (BIC)                              4907.967    4907.967
  Sample-size adjusted Bayesian (SABIC)       4809.735    4809.735

Root Mean Square Error of Approximation:

  RMSEA                                          0.077       0.076
  90 Percent confidence interval - lower         0.060       0.058
  90 Percent confidence interval - upper         0.094       0.093
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.400       0.350
                                                                  
  Robust RMSEA                                               0.076
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.094
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.380

Standardized Root Mean Square Residual:

  SRMR                                           0.068       0.068

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.969    0.739
    EEC2              1.291    0.109   11.847    0.000    1.251    0.875
    EEC3              1.324    0.093   14.305    0.000    1.283    0.943
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.047    0.053   19.827    0.000    1.129    0.934
    EEF3              0.961    0.054   17.759    0.000    1.036    0.903
  IM =~                                                                 
    IM1               1.000                               0.935    0.811
    IM2               1.008    0.159    6.344    0.000    0.942    0.884
    IM3               1.011    0.178    5.667    0.000    0.945    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    EEF        (a)    0.526    0.134    3.920    0.000    0.607    0.607
    reward1_c1        0.162    0.183    0.887    0.375    0.174    0.063
    reward0_c2        0.295    0.178    1.659    0.097    0.315    0.118
    reward1_c2        0.264    0.172    1.536    0.125    0.283    0.106
    reward0_c3        0.061    0.211    0.287    0.774    0.065    0.024
    reward1_c3       -0.115    0.208   -0.555    0.579   -0.123   -0.046
  EEC ~                                                                 
    IM         (b)    0.142    0.093    1.532    0.125    0.137    0.137
    reward1_c1        0.115    0.203    0.569    0.570    0.119    0.043
    reward0_c2        0.230    0.199    1.158    0.247    0.237    0.089
    reward1_c2        0.186    0.193    0.960    0.337    0.191    0.072
    reward0_c3        0.158    0.176    0.894    0.371    0.163    0.061
    reward1_c3        0.027    0.201    0.136    0.892    0.028    0.011
    EEF        (c)    0.500    0.078    6.440    0.000    0.556    0.556

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.454
   .EEC2              0.478    0.104    4.600    0.000    0.478    0.234
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.110
   .EEF1              0.245    0.046    5.374    0.000    0.245    0.174
   .EEF2              0.186    0.046    4.085    0.000    0.186    0.128
   .EEF3              0.242    0.063    3.824    0.000    0.242    0.184
   .IM1               0.455    0.164    2.769    0.006    0.455    0.342
   .IM2               0.248    0.068    3.671    0.000    0.248    0.218
   .IM3               0.436    0.212    2.054    0.040    0.436    0.328
   .EEC               0.534    0.084    6.378    0.000    0.568    0.568
    EEF               1.162    0.184    6.300    0.000    1.000    1.000
   .IM                0.531    0.087    6.092    0.000    0.607    0.607

R-Square:
                   Estimate
    EEC1              0.546
    EEC2              0.766
    EEC3              0.890
    EEF1              0.826
    EEF2              0.872
    EEF3              0.816
    IM1               0.658
    IM2               0.782
    IM3               0.672
    EEC               0.432
    IM                0.393

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    indirect          0.075    0.058    1.294    0.196    0.083    0.083
    total             0.575    0.061    9.394    0.000    0.640    0.640
Only EEF
lavaan 0.6-21 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        18

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                72.150      74.571
  Degrees of freedom                                33          33
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.968
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1079.141     722.264
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.494

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.962       0.939
  Tucker-Lewis Index (TLI)                       0.948       0.916
                                                                  
  Robust Comparative Fit Index (CFI)                         0.960
  Robust Tucker-Lewis Index (TLI)                            0.946

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1504.987   -1504.987
  Scaling correction factor                                  2.595
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1468.911   -1468.911
  Scaling correction factor                                  1.542
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3045.973    3045.973
  Bayesian (BIC)                              3106.561    3106.561
  Sample-size adjusted Bayesian (SABIC)       3049.523    3049.523

Root Mean Square Error of Approximation:

  RMSEA                                          0.074       0.077
  90 Percent confidence interval - lower         0.051       0.053
  90 Percent confidence interval - upper         0.098       0.100
  P-value H_0: RMSEA <= 0.050                    0.044       0.032
  P-value H_0: RMSEA >= 0.080                    0.369       0.432
                                                                  
  Robust RMSEA                                               0.075
  90 Percent confidence interval - lower                     0.053
  90 Percent confidence interval - upper                     0.098
  P-value H_0: Robust RMSEA <= 0.050                         0.034
  P-value H_0: Robust RMSEA >= 0.080                         0.393

Standardized Root Mean Square Residual:

  SRMR                                           0.045       0.045

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.188    0.000    1.128    0.933
    EEF3              0.961    0.055   17.472    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.939    0.808
    IM2               1.024    0.153    6.682    0.000    0.961    0.893
    IM3               1.019    0.172    5.935    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.330    0.214    1.544    0.122    0.352    0.127
    reward0_eco2      0.290    0.217    1.334    0.182    0.309    0.115
    reward1_eco2      0.404    0.191    2.115    0.034    0.430    0.161
    reward0_eco3     -0.105    0.256   -0.410    0.682   -0.112   -0.042
    reward1_eco3     -0.235    0.245   -0.957    0.339   -0.250   -0.093
  EEF ~                                                                 
    IM                0.709    0.075    9.417    0.000    0.617    0.617

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.245    0.046    5.289    0.000    0.245    0.174
   .EEF2              0.188    0.047    4.009    0.000    0.188    0.129
   .EEF3              0.240    0.065    3.680    0.000    0.240    0.183
   .IM1               0.470    0.157    2.989    0.003    0.470    0.348
   .IM2               0.234    0.060    3.912    0.000    0.234    0.202
   .IM3               0.437    0.208    2.098    0.036    0.437    0.323
   .EEF               0.719    0.163    4.411    0.000    0.619    0.619
   .IM                0.824    0.195    4.218    0.000    0.935    0.935

R-Square:
                   Estimate
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.652
    IM2               0.798
    IM3               0.677
    EEF               0.381
    IM                0.065
Only EEC
lavaan 0.6-21 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        18

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                73.346      74.807
  Degrees of freedom                                33          33
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.980
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               873.803     616.512
  Degrees of freedom                                45          45
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.417

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.927
  Tucker-Lewis Index (TLI)                       0.934       0.900
                                                                  
  Robust Comparative Fit Index (CFI)                         0.949
  Robust Tucker-Lewis Index (TLI)                            0.931

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1704.410   -1704.410
  Scaling correction factor                                  2.233
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1667.737   -1667.737
  Scaling correction factor                                  1.423
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3444.820    3444.820
  Bayesian (BIC)                              3505.408    3505.408
  Sample-size adjusted Bayesian (SABIC)       3448.370    3448.370

Root Mean Square Error of Approximation:

  RMSEA                                          0.076       0.077
  90 Percent confidence interval - lower         0.052       0.054
  90 Percent confidence interval - upper         0.099       0.100
  P-value H_0: RMSEA <= 0.050                    0.037       0.031
  P-value H_0: RMSEA >= 0.080                    0.399       0.438
                                                                  
  Robust RMSEA                                               0.076
  90 Percent confidence interval - lower                     0.053
  90 Percent confidence interval - upper                     0.099
  P-value H_0: Robust RMSEA <= 0.050                         0.032
  P-value H_0: Robust RMSEA >= 0.080                         0.414

Standardized Root Mean Square Residual:

  SRMR                                           0.050       0.050

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.967    0.735
    EEC2              1.292    0.109   11.807    0.000    1.249    0.871
    EEC3              1.346    0.096   14.085    0.000    1.301    0.953
  IM =~                                                                 
    IM1               1.000                               0.918    0.790
    IM2               1.056    0.149    7.069    0.000    0.969    0.900
    IM3               1.056    0.165    6.409    0.000    0.969    0.833

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.330    0.208    1.584    0.113    0.359    0.130
    reward0_eco2      0.310    0.212    1.465    0.143    0.338    0.126
    reward1_eco2      0.413    0.187    2.210    0.027    0.450    0.168
    reward0_eco3     -0.076    0.247   -0.308    0.758   -0.083   -0.031
    reward1_eco3     -0.220    0.240   -0.920    0.358   -0.240   -0.090
  EEC ~                                                                 
    IM                0.503    0.079    6.364    0.000    0.477    0.477

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.793    0.092    8.626    0.000    0.793    0.459
   .EEC2              0.498    0.114    4.379    0.000    0.498    0.242
   .EEC3              0.172    0.068    2.516    0.012    0.172    0.092
   .IM1               0.509    0.154    3.300    0.001    0.509    0.377
   .IM2               0.219    0.050    4.376    0.000    0.219    0.189
   .IM3               0.413    0.190    2.173    0.030    0.413    0.306
   .EEC               0.722    0.113    6.407    0.000    0.772    0.772
   .IM                0.787    0.188    4.193    0.000    0.934    0.934

R-Square:
                   Estimate
    EEC1              0.541
    EEC2              0.758
    EEC3              0.908
    IM1               0.623
    IM2               0.811
    IM3               0.694
    EEC               0.228
    IM                0.066
Partial mediation EEF->>EEC
Partial mediation EEF --> EEC
lavaan 0.6-21 ended normally after 52 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        37

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     119.475
  Degrees of freedom                                53          53
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.040
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.954       0.942
  Tucker-Lewis Index (TLI)                       0.930       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.931

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.799
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4806.246    4806.246
  Bayesian (BIC)                              4930.787    4930.787
  Sample-size adjusted Bayesian (SABIC)       4813.544    4813.544

Root Mean Square Error of Approximation:

  RMSEA                                          0.079       0.077
  90 Percent confidence interval - lower         0.061       0.059
  90 Percent confidence interval - upper         0.097       0.095
  P-value H_0: RMSEA <= 0.050                    0.005       0.009
  P-value H_0: RMSEA >= 0.080                    0.491       0.393
                                                                  
  Robust RMSEA                                               0.078
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.097
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.451

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.697    0.075    9.275    0.000    0.612    0.612
    reward1_eco1      0.097    0.185    0.522    0.602    0.090    0.032
    reward0_eco2     -0.184    0.203   -0.909    0.363   -0.171   -0.064
    reward1_eco2      0.002    0.195    0.008    0.994    0.001    0.001
    reward0_eco3     -0.234    0.178   -1.312    0.189   -0.217   -0.081
    reward1_eco3     -0.073    0.205   -0.353    0.724   -0.067   -0.025
  EEC ~                                                                 
    IM                0.135    0.529    0.254    0.799    0.131    0.131
    reward1_eco1      0.104    0.219    0.476    0.634    0.107    0.039
    reward0_eco2      0.231    0.231    0.998    0.318    0.237    0.089
    reward1_eco2      0.177    0.194    0.911    0.362    0.181    0.068
    reward0_eco3      0.169    0.240    0.704    0.481    0.174    0.065
    reward1_eco3      0.036    0.208    0.171    0.864    0.037    0.014
    EEF               0.513    0.747    0.686    0.493    0.567    0.567

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF              -0.008    0.516   -0.015    0.988   -0.013   -0.013

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.534    0.085    6.256    0.000    0.563    0.563
   .EEF               0.701    0.165    4.250    0.000    0.603    0.603
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.437
    EEF               0.397
    IM                0.063
Partial EEC->>EEF
Partial mediation EEC --> EEF
lavaan 0.6-21 ended normally after 51 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        36

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               124.251     121.729
  Degrees of freedom                                54          54
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.021
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1635.931    1229.293
  Degrees of freedom                                81          81
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.331

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.941
  Tucker-Lewis Index (TLI)                       0.932       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2366.123   -2366.123
  Scaling correction factor                                  1.849
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2303.998   -2303.998
  Scaling correction factor                                  1.352
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4804.246    4804.246
  Bayesian (BIC)                              4925.421    4925.421
  Sample-size adjusted Bayesian (SABIC)       4811.346    4811.346

Root Mean Square Error of Approximation:

  RMSEA                                          0.078       0.077
  90 Percent confidence interval - lower         0.060       0.059
  90 Percent confidence interval - upper         0.096       0.095
  P-value H_0: RMSEA <= 0.050                    0.007       0.009
  P-value H_0: RMSEA >= 0.080                    0.444       0.393
                                                                  
  Robust RMSEA                                               0.077
  90 Percent confidence interval - lower                     0.059
  90 Percent confidence interval - upper                     0.096
  P-value H_0: Robust RMSEA <= 0.050                         0.008
  P-value H_0: Robust RMSEA >= 0.080                         0.423

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.023    0.000    1.128    0.933
    EEF3              0.962    0.054   17.770    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.947    0.814
    IM2               1.008    0.159    6.345    0.000    0.954    0.887
    IM3               1.011    0.178    5.669    0.000    0.957    0.823

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.321    0.217    1.477    0.140    0.339    0.122
    reward0_eco2      0.311    0.219    1.421    0.155    0.328    0.123
    reward1_eco2      0.405    0.194    2.086    0.037    0.428    0.160
    reward0_eco3     -0.085    0.261   -0.324    0.746   -0.089   -0.033
    reward1_eco3     -0.231    0.249   -0.927    0.354   -0.243   -0.091
  EEF ~                                                                 
    IM                0.453    0.084    5.416    0.000    0.398    0.398
    reward1_eco1      0.020    0.191    0.107    0.915    0.019    0.007
    reward0_eco2     -0.252    0.184   -1.365    0.172   -0.233   -0.087
    reward1_eco2     -0.086    0.182   -0.475    0.634   -0.080   -0.030
    reward0_eco3     -0.258    0.171   -1.511    0.131   -0.240   -0.090
    reward1_eco3     -0.072    0.188   -0.382    0.703   -0.067   -0.025
    EEC               0.495    0.119    4.165    0.000    0.447    0.447
  EEC ~                                                                 
    IM                0.492    0.075    6.547    0.000    0.478    0.478
    reward1_eco1      0.154    0.205    0.748    0.454    0.158    0.057
    reward0_eco2      0.136    0.221    0.617    0.537    0.140    0.052
    reward1_eco2      0.177    0.214    0.831    0.406    0.182    0.068
    reward0_eco3      0.049    0.184    0.267    0.789    0.050    0.019
    reward1_eco3     -0.002    0.222   -0.007    0.994   -0.002   -0.001

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.413    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.602    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.296    0.001    0.203    0.109
   .EEF1              0.246    0.046    5.369    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.097    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.805    0.000    0.240    0.183
   .IM1               0.455    0.164    2.769    0.006    0.455    0.337
   .IM2               0.248    0.067    3.672    0.000    0.248    0.214
   .IM3               0.436    0.212    2.054    0.040    0.436    0.323
   .EEC               0.710    0.115    6.173    0.000    0.749    0.749
   .EEF               0.527    0.094    5.626    0.000    0.453    0.453
   .IM                0.840    0.205    4.107    0.000    0.937    0.937

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.663
    IM2               0.786
    IM3               0.677
    EEC               0.251
    EEF               0.547
    IM                0.063
IM
IM as DV and only manipulations as IVs
lavaan 0.6-21 ended normally after 28 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 5.678       6.197
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.842       0.798
  Scaling correction factor                                  0.916
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               364.355     194.854
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.870

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.022       1.039
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.019

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -811.818    -811.818
  Scaling correction factor                                  2.800
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -808.979    -808.979
  Scaling correction factor                                  1.903
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1645.637    1645.637
  Bayesian (BIC)                              1682.663    1682.663
  Sample-size adjusted Bayesian (SABIC)       1647.806    1647.806

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.043       0.051
  P-value H_0: RMSEA <= 0.050                    0.968       0.947
  P-value H_0: RMSEA >= 0.080                    0.002       0.005
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.046
  P-value H_0: Robust RMSEA <= 0.050                         0.961
  P-value H_0: Robust RMSEA >= 0.080                         0.002

Standardized Root Mean Square Residual:

  SRMR                                           0.015       0.015

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM =~                                                                 
    IM1               1.000                               0.889    0.765
    IM2               1.125    0.158    7.111    0.000    1.000    0.930
    IM3               1.075    0.161    6.681    0.000    0.956    0.822

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.320    0.203    1.575    0.115    0.361    0.130
    reward0_eco2      0.279    0.207    1.349    0.177    0.313    0.117
    reward1_eco2      0.388    0.184    2.104    0.035    0.437    0.163
    reward0_eco3     -0.077    0.235   -0.327    0.744   -0.087   -0.032
    reward1_eco3     -0.211    0.234   -0.901    0.368   -0.237   -0.089

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM1               0.561    0.153    3.676    0.000    0.561    0.415
   .IM2               0.157    0.049    3.213    0.001    0.157    0.136
   .IM3               0.438    0.203    2.162    0.031    0.438    0.324
   .IM                0.740    0.179    4.127    0.000    0.937    0.937

R-Square:
                   Estimate
    IM1               0.585
    IM2               0.864
    IM3               0.676
    IM                0.063
IM without independent variables
lavaan 0.6-21 ended normally after 33 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                97.943      92.692
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.057
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1591.464     907.183
  Degrees of freedom                                36          36
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.754

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.952       0.921
  Tucker-Lewis Index (TLI)                       0.929       0.882
                                                                  
  Robust Comparative Fit Index (CFI)                         0.953
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2375.203   -2375.203
  Scaling correction factor                                  2.460
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2326.231   -2326.231
  Scaling correction factor                                  1.712
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4792.406    4792.406
  Bayesian (BIC)                              4863.092    4863.092
  Sample-size adjusted Bayesian (SABIC)       4796.548    4796.548

Root Mean Square Error of Approximation:

  RMSEA                                          0.120       0.116
  90 Percent confidence interval - lower         0.096       0.092
  90 Percent confidence interval - upper         0.145       0.140
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.996       0.992
                                                                  
  Robust RMSEA                                               0.119
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.145
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.994

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.973    0.740
    EEC2              1.289    0.108   11.885    0.000    1.254    0.874
    EEC3              1.330    0.093   14.310    0.000    1.293    0.947
  EEF =~                                                                
    EEF1              1.000                               1.077    0.908
    EEF2              1.047    0.052   20.022    0.000    1.128    0.933
    EEF3              0.963    0.054   17.668    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.952    0.819
    IM2               1.000    0.161    6.229    0.000    0.952    0.885
    IM3               1.002    0.180    5.560    0.000    0.953    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.706    0.074    9.485    0.000    0.624    0.624
  EEC ~                                                                 
    IM                0.507    0.076    6.680    0.000    0.496    0.496

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.350    0.107    3.264    0.001    0.492    0.492

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.782    0.093    8.402    0.000    0.782    0.453
   .EEC2              0.486    0.104    4.666    0.000    0.486    0.236
   .EEC3              0.193    0.061    3.147    0.002    0.193    0.103
   .EEF1              0.247    0.046    5.416    0.000    0.247    0.175
   .EEF2              0.188    0.046    4.102    0.000    0.188    0.129
   .EEF3              0.239    0.064    3.765    0.000    0.239    0.182
   .IM1               0.446    0.165    2.698    0.007    0.446    0.330
   .IM2               0.251    0.073    3.428    0.001    0.251    0.217
   .IM3               0.444    0.218    2.035    0.042    0.444    0.328
   .EEC               0.714    0.116    6.168    0.000    0.754    0.754
   .EEF               0.709    0.164    4.318    0.000    0.611    0.611
    IM                0.906    0.210    4.312    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.547
    EEC2              0.764
    EEC3              0.897
    EEF1              0.825
    EEF2              0.871
    EEF3              0.818
    IM1               0.670
    IM2               0.783
    IM3               0.672
    EEC               0.246
    EEF               0.389
ADT and full mediation by IM
lavaan 0.6-21 ended normally after 41 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               134.813     118.054
  Degrees of freedom                                48          48
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.142
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2129.667    1338.116
  Degrees of freedom                                66          66
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.592

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.958       0.945
  Tucker-Lewis Index (TLI)                       0.942       0.924
                                                                  
  Robust Comparative Fit Index (CFI)                         0.960
  Robust Tucker-Lewis Index (TLI)                            0.946

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3094.749   -3094.749
  Scaling correction factor                                  2.271
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3027.343   -3027.343
  Scaling correction factor                                  1.576
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6249.498    6249.498
  Bayesian (BIC)                              6350.478    6350.478
  Sample-size adjusted Bayesian (SABIC)       6255.415    6255.415

Root Mean Square Error of Approximation:

  RMSEA                                          0.092       0.083
  90 Percent confidence interval - lower         0.074       0.065
  90 Percent confidence interval - upper         0.110       0.100
  P-value H_0: RMSEA <= 0.050                    0.000       0.002
  P-value H_0: RMSEA >= 0.080                    0.865       0.612
                                                                  
  Robust RMSEA                                               0.088
  90 Percent confidence interval - lower                     0.068
  90 Percent confidence interval - upper                     0.108
  P-value H_0: Robust RMSEA <= 0.050                         0.001
  P-value H_0: Robust RMSEA >= 0.080                         0.764

Standardized Root Mean Square Residual:

  SRMR                                           0.068       0.068

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.973    0.740
    EEC2              1.288    0.108   11.907    0.000    1.254    0.874
    EEC3              1.329    0.093   14.332    0.000    1.293    0.947
  EEF =~                                                                
    EEF1              1.000                               1.079    0.909
    EEF2              1.045    0.053   19.772    0.000    1.128    0.933
    EEF3              0.961    0.055   17.310    0.000    1.036    0.904
  IM =~                                                                 
    IM1               1.000                               0.952    0.819
    IM2               1.000    0.166    6.039    0.000    0.952    0.885
    IM3               1.001    0.186    5.393    0.000    0.953    0.820
  ADT =~                                                                
    ADT1              1.000                               0.916    0.878
    ADT2              1.040    0.068   15.254    0.000    0.953    0.901
    ADT3              1.150    0.077   14.926    0.000    1.053    0.881

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.213    0.155    1.370    0.171    0.188    0.188
    EEC               0.974    0.270    3.607    0.000    0.879    0.879
  EEC ~                                                                 
    IM                0.424    0.078    5.461    0.000    0.415    0.415
    ADT               0.315    0.083    3.773    0.000    0.296    0.296
  IM ~                                                                  
    ADT               0.285    0.140    2.028    0.043    0.274    0.274

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF              -0.345    0.177   -1.954    0.051   -0.515   -0.515

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.781    0.093    8.388    0.000    0.781    0.452
   .EEC2              0.486    0.103    4.711    0.000    0.486    0.236
   .EEC3              0.193    0.062    3.139    0.002    0.193    0.104
   .EEF1              0.244    0.045    5.406    0.000    0.244    0.173
   .EEF2              0.189    0.046    4.089    0.000    0.189    0.129
   .EEF3              0.241    0.063    3.799    0.000    0.241    0.183
   .IM1               0.445    0.172    2.594    0.009    0.445    0.329
   .IM2               0.252    0.075    3.361    0.001    0.252    0.217
   .IM3               0.444    0.220    2.018    0.044    0.444    0.328
   .ADT1              0.249    0.057    4.343    0.000    0.249    0.229
   .ADT2              0.211    0.053    4.005    0.000    0.211    0.189
   .ADT3              0.320    0.087    3.674    0.000    0.320    0.224
   .EEC               0.637    0.099    6.422    0.000    0.673    0.673
   .EEF               0.706    0.211    3.345    0.001    0.607    0.607
   .IM                0.838    0.162    5.176    0.000    0.925    0.925
    ADT               0.839    0.124    6.777    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.548
    EEC2              0.764
    EEC3              0.896
    EEF1              0.827
    EEF2              0.871
    EEF3              0.817
    IM1               0.671
    IM2               0.783
    IM3               0.672
    ADT1              0.771
    ADT2              0.811
    ADT3              0.776
    EEC               0.327
    EEF               0.393
    IM                0.075
GG plot
Direct effect of manipulations on IM (EEF)
`geom_smooth()` using formula = 'y ~ x'

Direct effect of manipulations on IM (EEC)
`geom_smooth()` using formula = 'y ~ x'

Composite variables

Simple mediation with partial mediation
lavaan 0.6-21 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        21

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Model Test Baseline Model:

  Test statistic                               221.582     210.615
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.052

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.000       1.000
                                                                  
  Robust Comparative Fit Index (CFI)                            NA
  Robust Tucker-Lewis Index (TLI)                               NA

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -871.672    -871.672
  Loglikelihood unrestricted model (H1)       -871.672    -871.672
                                                                  
  Akaike (AIC)                                1785.345    1785.345
  Bayesian (BIC)                              1856.030    1856.030
  Sample-size adjusted Bayesian (SABIC)       1789.487    1789.487

Root Mean Square Error of Approximation:

  RMSEA                                          0.000          NA
  90 Percent confidence interval - lower         0.000          NA
  90 Percent confidence interval - upper         0.000          NA
  P-value H_0: RMSEA <= 0.050                       NA          NA
  P-value H_0: RMSEA >= 0.080                       NA          NA
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.000
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000       0.000

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.301    0.220    1.366    0.172    0.301    0.107
    reward0_eco2      0.324    0.221    1.462    0.144    0.324    0.119
    reward1_eco2      0.398    0.197    2.018    0.044    0.398    0.147
    reward0_eco3     -0.084    0.264   -0.318    0.751   -0.084   -0.031
    reward1_eco3     -0.232    0.251   -0.923    0.356   -0.232   -0.086
  EEF_composite ~                                                       
    IM_composite      0.625    0.068    9.145    0.000    0.625    0.568
    reward1_eco1      0.132    0.186    0.707    0.480    0.132    0.043
    reward0_eco2     -0.173    0.205   -0.843    0.399   -0.173   -0.058
    reward1_eco2      0.031    0.191    0.161    0.872    0.031    0.010
    reward0_eco3     -0.242    0.180   -1.346    0.178   -0.242   -0.081
    reward1_eco3     -0.104    0.205   -0.504    0.614   -0.104   -0.035
  EEC_composite ~                                                       
    IM_composite      0.592    0.072    8.179    0.000    0.592    0.486
    reward1_eco1      0.206    0.246    0.839    0.401    0.206    0.060
    reward0_eco2      0.227    0.262    0.868    0.386    0.227    0.069
    reward1_eco2      0.313    0.239    1.313    0.189    0.313    0.095
    reward0_eco3      0.098    0.212    0.464    0.643    0.098    0.030
    reward1_eco3      0.020    0.261    0.075    0.940    0.020    0.006

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.444    0.096    4.625    0.000    0.444    0.466

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.973    0.126    7.710    0.000    0.973    0.946
   .EEF_composite     0.810    0.124    6.525    0.000    0.810    0.651
   .EEC_composite     1.123    0.116    9.704    0.000    1.123    0.736

R-Square:
                   Estimate
    IM_composite      0.054
    EEF_composite     0.349
    EEC_composite     0.264
Simple mediation with full mediation
lavaan 0.6-21 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        11

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 7.341       7.259
  Degrees of freedom                                10          10
  P-value (Chi-square)                           0.693       0.701
  Scaling correction factor                                  1.011
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               221.582     210.615
  Degrees of freedom                                18          18
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.052

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.024       1.026
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.025

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -875.343    -875.343
  Scaling correction factor                                  1.222
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -871.672    -871.672
  Scaling correction factor                                  1.122
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1772.686    1772.686
  Bayesian (BIC)                              1809.712    1809.712
  Sample-size adjusted Bayesian (SABIC)       1774.855    1774.855

Root Mean Square Error of Approximation:

  RMSEA                                          0.000       0.000
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.058       0.057
  P-value H_0: RMSEA <= 0.050                    0.919       0.923
  P-value H_0: RMSEA >= 0.080                    0.008       0.007
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.057
  P-value H_0: Robust RMSEA <= 0.050                         0.921
  P-value H_0: Robust RMSEA >= 0.080                         0.008

Standardized Root Mean Square Residual:

  SRMR                                           0.024       0.024

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.301    0.220    1.366    0.172    0.301    0.107
    reward0_eco2      0.324    0.221    1.462    0.144    0.324    0.119
    reward1_eco2      0.398    0.197    2.018    0.044    0.398    0.147
    reward0_eco3     -0.084    0.264   -0.318    0.751   -0.084   -0.031
    reward1_eco3     -0.232    0.251   -0.923    0.356   -0.232   -0.086
  EEF_composite ~                                                       
    IM_composite      0.638    0.070    9.154    0.000    0.638    0.580
  EEC_composite ~                                                       
    IM_composite      0.616    0.073    8.481    0.000    0.616    0.506

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.447    0.096    4.675    0.000    0.447    0.462

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.973    0.126    7.710    0.000    0.973    0.946
   .EEF_composite     0.825    0.124    6.670    0.000    0.825    0.664
   .EEC_composite     1.136    0.115    9.837    0.000    1.136    0.744

R-Square:
                   Estimate
    IM_composite      0.054
    EEF_composite     0.336
    EEC_composite     0.256

Response bias check

Moderation

ADT without IVs

Continuous ADT
On reward groups
function (..., domain = NULL, appendLF = TRUE) 
{
    cond <- if (...length() == 1L && inherits(..1, "condition")) {
        if (nargs() > 1L) 
            warning("additional arguments ignored in message()")
        ..1
    }
    else {
        msg <- .makeMessage(..., domain = domain, appendLF = appendLF)
        call <- sys.call()
        simpleMessage(msg, call)
    }
    defaultHandler <- function(c) {
        cat(conditionMessage(c), file = stderr(), sep = "")
    }
    withRestarts({
        signalCondition(cond)
        defaultHandler(cond)
    }, muffleMessage = function() NULL)
    invisible()
}
<bytecode: 0x14dd28808>
<environment: namespace:base>
lavaan 0.6-21 ended normally after 46 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        84

  Number of observations per group:                   
    no_reward                                      109
    performance_reward                             105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               211.222     215.445
  Degrees of freedom                                96          96
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.980
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    no_reward                                   94.458      94.458
    performance_reward                         120.987     120.987

Model Test Baseline Model:

  Test statistic                              2264.264    1602.257
  Degrees of freedom                               132         132
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.413

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.919
  Tucker-Lewis Index (TLI)                       0.926       0.888
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.923

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3054.575   -3054.575
  Scaling correction factor                                  1.806
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2948.964   -2948.964
  Scaling correction factor                                  1.366
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6277.149    6277.149
  Bayesian (BIC)                              6559.891    6559.891
  Sample-size adjusted Bayesian (SABIC)       6293.716    6293.716

Root Mean Square Error of Approximation:

  RMSEA                                          0.106       0.108
  90 Percent confidence interval - lower         0.087       0.088
  90 Percent confidence interval - upper         0.125       0.127
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.985       0.990
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.088
  90 Percent confidence interval - upper                     0.126
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.077       0.077

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [no_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.891    0.724
    EEC2              1.469    0.150    9.790    0.000    1.310    0.891
    EEC3              1.362    0.129   10.526    0.000    1.214    0.933
  EEF =~                                                                
    EEF1              1.000                               1.004    0.895
    EEF2              1.043    0.071   14.594    0.000    1.047    0.908
    EEF3              1.018    0.050   20.279    0.000    1.021    0.920
  IM =~                                                                 
    IM1               1.000                               1.136    0.920
    IM2               0.860    0.076   11.389    0.000    0.977    0.938
    IM3               0.842    0.104    8.123    0.000    0.956    0.803
  ADT =~                                                                
    ADT1              1.000                               0.898    0.863
    ADT2              0.973    0.080   12.092    0.000    0.873    0.938
    ADT3              1.137    0.095   11.950    0.000    1.021    0.867

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.534    0.085    6.262    0.000    0.604    0.604
    ADT               0.161    0.090    1.794    0.073    0.144    0.144
  EEC ~                                                                 
    IM                0.365    0.088    4.127    0.000    0.465    0.465
    ADT               0.176    0.106    1.663    0.096    0.177    0.177
  IM ~                                                                  
    ADT               0.295    0.168    1.759    0.079    0.233    0.233

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.254    0.078    3.244    0.001    0.444    0.444

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.165    0.118   35.341    0.000    4.165    3.385
   .EEC2              4.275    0.141   30.351    0.000    4.275    2.907
   .EEC3              4.294    0.125   34.445    0.000    4.294    3.299
   .EEF1              5.193    0.107   48.365    0.000    5.193    4.633
   .EEF2              5.303    0.110   47.999    0.000    5.303    4.597
   .EEF3              5.404    0.106   50.837    0.000    5.404    4.869
   .IM1               5.156    0.118   43.574    0.000    5.156    4.174
   .IM2               5.596    0.100   56.098    0.000    5.596    5.373
   .IM3               5.431    0.114   47.591    0.000    5.431    4.558
   .ADT1              5.394    0.100   54.121    0.000    5.394    5.184
   .ADT2              5.422    0.089   60.768    0.000    5.422    5.820
   .ADT3              5.229    0.113   46.345    0.000    5.229    4.439

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.719    0.128    5.608    0.000    0.719    0.475
   .EEC2              0.447    0.114    3.927    0.000    0.447    0.207
   .EEC3              0.220    0.086    2.565    0.010    0.220    0.130
   .EEF1              0.249    0.070    3.584    0.000    0.249    0.198
   .EEF2              0.235    0.076    3.103    0.002    0.235    0.176
   .EEF3              0.188    0.075    2.498    0.012    0.188    0.153
   .IM1               0.236    0.072    3.293    0.001    0.236    0.154
   .IM2               0.130    0.044    2.971    0.003    0.130    0.120
   .IM3               0.505    0.322    1.567    0.117    0.505    0.356
   .ADT1              0.277    0.083    3.354    0.001    0.277    0.256
   .ADT2              0.105    0.056    1.872    0.061    0.105    0.121
   .ADT3              0.346    0.149    2.326    0.020    0.346    0.249
   .EEC               0.568    0.133    4.284    0.000    0.714    0.714
   .EEF               0.578    0.133    4.335    0.000    0.574    0.574
   .IM                1.221    0.202    6.046    0.000    0.946    0.946
    ADT               0.806    0.129    6.247    0.000    1.000    1.000


Group 2 [performance_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.045    0.751
    EEC2              1.159    0.150    7.730    0.000    1.212    0.868
    EEC3              1.305    0.133    9.835    0.000    1.364    0.956
  EEF =~                                                                
    EEF1              1.000                               1.154    0.928
    EEF2              1.032    0.076   13.578    0.000    1.191    0.954
    EEF3              0.906    0.094    9.606    0.000    1.046    0.888
  IM =~                                                                 
    IM1               1.000                               0.734    0.678
    IM2               1.293    0.503    2.569    0.010    0.949    0.858
    IM3               1.304    0.549    2.377    0.017    0.957    0.846
  ADT =~                                                                
    ADT1              1.000                               0.940    0.899
    ADT2              1.097    0.110    9.974    0.000    1.031    0.884
    ADT3              1.151    0.113   10.219    0.000    1.082    0.892

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.708    0.126    5.600    0.000    0.450    0.450
    ADT               0.498    0.163    3.051    0.002    0.405    0.405
  EEC ~                                                                 
    IM                0.496    0.133    3.714    0.000    0.348    0.348
    ADT               0.479    0.116    4.133    0.000    0.431    0.431
  IM ~                                                                  
    ADT               0.199    0.208    0.955    0.340    0.254    0.254

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.272    0.146    1.862    0.063    0.390    0.390

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.333    0.136   31.909    0.000    4.333    3.114
   .EEC2              4.314    0.136   31.668    0.000    4.314    3.090
   .EEC3              4.429    0.139   31.808    0.000    4.429    3.104
   .EEF1              5.371    0.121   44.242    0.000    5.371    4.318
   .EEF2              5.562    0.122   45.624    0.000    5.562    4.452
   .EEF3              5.562    0.115   48.357    0.000    5.562    4.719
   .IM1               5.143    0.106   48.718    0.000    5.143    4.754
   .IM2               5.733    0.108   53.099    0.000    5.733    5.182
   .IM3               5.524    0.110   50.069    0.000    5.524    4.886
   .ADT1              5.381    0.102   52.741    0.000    5.381    5.147
   .ADT2              5.238    0.114   45.986    0.000    5.238    4.488
   .ADT3              5.267    0.118   44.485    0.000    5.267    4.341

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.844    0.138    6.109    0.000    0.844    0.436
   .EEC2              0.481    0.153    3.142    0.002    0.481    0.247
   .EEC3              0.174    0.088    1.970    0.049    0.174    0.086
   .EEF1              0.216    0.055    3.898    0.000    0.216    0.139
   .EEF2              0.141    0.050    2.832    0.005    0.141    0.090
   .EEF3              0.295    0.100    2.946    0.003    0.295    0.212
   .IM1               0.632    0.301    2.097    0.036    0.632    0.540
   .IM2               0.324    0.115    2.811    0.005    0.324    0.265
   .IM3               0.363    0.259    1.399    0.162    0.363    0.284
   .ADT1              0.210    0.079    2.655    0.008    0.210    0.192
   .ADT2              0.299    0.081    3.690    0.000    0.299    0.219
   .ADT3              0.301    0.082    3.669    0.000    0.301    0.205
   .EEC               0.674    0.134    5.026    0.000    0.617    0.617
   .EEF               0.721    0.244    2.958    0.003    0.541    0.541
   .IM                0.503    0.238    2.115    0.034    0.935    0.935
    ADT               0.883    0.211    4.180    0.000    1.000    1.000
On eco groups
lavaan 0.6-21 ended normally after 49 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       129

  Number of observations per group:                   
    EEF orientation                                 70
    Combination of EEF and EEC                      72
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               260.132     262.513
  Degrees of freedom                               141         141
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.991
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             70.406      70.406
    Combination of EEF and EEC                  97.476      97.476
    EEC orientation                             94.631      94.631

Model Test Baseline Model:

  Test statistic                              2331.901    1848.415
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.262

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.944       0.926
  Tucker-Lewis Index (TLI)                       0.922       0.897
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.919

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2998.573   -2998.573
  Scaling correction factor                                  1.526
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2868.507   -2868.507
  Scaling correction factor                                  1.247
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6255.147    6255.147
  Bayesian (BIC)                              6689.358    6689.358
  Sample-size adjusted Bayesian (SABIC)       6280.589    6280.589

Root Mean Square Error of Approximation:

  RMSEA                                          0.109       0.110
  90 Percent confidence interval - lower         0.088       0.089
  90 Percent confidence interval - upper         0.129       0.131
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.987       0.989
                                                                  
  Robust RMSEA                                               0.109
  90 Percent confidence interval - lower                     0.089
  90 Percent confidence interval - upper                     0.130
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.078       0.078

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.864    0.681
    EEC2              1.290    0.195    6.622    0.000    1.114    0.838
    EEC3              1.319    0.170    7.751    0.000    1.139    0.906
  EEF =~                                                                
    EEF1              1.000                               0.888    0.855
    EEF2              1.129    0.160    7.061    0.000    1.003    0.887
    EEF3              0.903    0.128    7.079    0.000    0.802    0.809
  IM =~                                                                 
    IM1               1.000                               0.961    0.881
    IM2               0.978    0.142    6.901    0.000    0.940    0.915
    IM3               0.693    0.260    2.664    0.008    0.665    0.570
  ADT =~                                                                
    ADT1              1.000                               0.823    0.793
    ADT2              1.220    0.169    7.233    0.000    1.003    0.914
    ADT3              1.280    0.182    7.017    0.000    1.053    0.905

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.580    0.216    2.685    0.007    0.628    0.628
    EEC               0.061    0.588    0.104    0.917    0.059    0.059
    ADT               0.128    0.199    0.641    0.521    0.118    0.118
  EEC ~                                                                 
    IM                0.263    0.146    1.803    0.071    0.292    0.292
    ADT               0.211    0.155    1.367    0.172    0.201    0.201
  IM ~                                                                  
    ADT               0.613    0.262    2.339    0.019    0.525    0.525

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.072    0.307    0.234    0.815    0.152    0.152

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.143    0.152   27.333    0.000    4.143    3.267
   .EEC2              4.271    0.159   26.868    0.000    4.271    3.211
   .EEC3              4.400    0.150   29.260    0.000    4.400    3.497
   .EEF1              5.471    0.124   44.095    0.000    5.471    5.270
   .EEF2              5.543    0.135   41.042    0.000    5.543    4.905
   .EEF3              5.600    0.118   47.260    0.000    5.600    5.649
   .IM1               5.200    0.130   39.906    0.000    5.200    4.770
   .IM2               5.729    0.123   46.665    0.000    5.729    5.578
   .IM3               5.443    0.139   39.034    0.000    5.443    4.665
   .ADT1              5.457    0.124   44.001    0.000    5.457    5.259
   .ADT2              5.371    0.131   40.941    0.000    5.371    4.893
   .ADT3              5.300    0.139   38.124    0.000    5.300    4.557

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.862    0.170    5.062    0.000    0.862    0.536
   .EEC2              0.527    0.201    2.618    0.009    0.527    0.298
   .EEC3              0.285    0.145    1.968    0.049    0.285    0.180
   .EEF1              0.289    0.105    2.748    0.006    0.289    0.268
   .EEF2              0.271    0.111    2.448    0.014    0.271    0.212
   .EEF3              0.339    0.119    2.850    0.004    0.339    0.345
   .IM1               0.266    0.112    2.372    0.018    0.266    0.224
   .IM2               0.171    0.098    1.757    0.079    0.171    0.163
   .IM3               0.918    0.518    1.774    0.076    0.918    0.675
   .ADT1              0.400    0.123    3.243    0.001    0.400    0.371
   .ADT2              0.198    0.100    1.972    0.049    0.198    0.164
   .ADT3              0.245    0.092    2.648    0.008    0.245    0.181
   .EEC               0.607    0.165    3.681    0.000    0.812    0.812
   .EEF               0.366    0.149    2.453    0.014    0.464    0.464
   .IM                0.669    0.167    3.995    0.000    0.724    0.724
    ADT               0.677    0.137    4.924    0.000    1.000    1.000


Group 2 [Combination of EEF and EEC]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.035    0.759
    EEC2              1.135    0.186    6.119    0.000    1.175    0.868
    EEC3              1.240    0.156    7.946    0.000    1.283    0.944
  EEF =~                                                                
    EEF1              1.000                               1.140    0.940
    EEF2              1.067    0.055   19.496    0.000    1.217    0.967
    EEF3              0.991    0.099    9.968    0.000    1.130    0.938
  IM =~                                                                 
    IM1               1.000                               0.988    0.767
    IM2               1.162    0.304    3.822    0.000    1.148    0.901
    IM3               1.322    0.330    4.010    0.000    1.306    0.948
  ADT =~                                                                
    ADT1              1.000                               0.985    0.956
    ADT2              0.894    0.069   13.004    0.000    0.881    0.907
    ADT3              0.984    0.085   11.591    0.000    0.970    0.831

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.439    0.132    3.317    0.001    0.380    0.380
    EEC               0.234    0.248    0.947    0.344    0.213    0.213
    ADT               0.386    0.147    2.633    0.008    0.334    0.334
  EEC ~                                                                 
    IM                0.389    0.116    3.358    0.001    0.371    0.371
    ADT               0.486    0.121    4.009    0.000    0.463    0.463
  IM ~                                                                  
    ADT               0.248    0.222    1.118    0.263    0.247    0.247

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.128    0.138    0.930    0.352    0.221    0.221

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.028    0.161   25.057    0.000    4.028    2.953
   .EEC2              4.028    0.160   25.247    0.000    4.028    2.975
   .EEC3              4.111    0.160   25.656    0.000    4.111    3.024
   .EEF1              5.000    0.143   34.966    0.000    5.000    4.121
   .EEF2              5.167    0.148   34.841    0.000    5.167    4.106
   .EEF3              5.181    0.142   36.461    0.000    5.181    4.297
   .IM1               4.917    0.152   32.383    0.000    4.917    3.816
   .IM2               5.375    0.150   35.797    0.000    5.375    4.219
   .IM3               5.181    0.162   31.908    0.000    5.181    3.760
   .ADT1              5.278    0.121   43.462    0.000    5.278    5.122
   .ADT2              5.264    0.115   45.965    0.000    5.264    5.417
   .ADT3              5.167    0.137   37.578    0.000    5.167    4.429

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.790    0.164    4.805    0.000    0.790    0.425
   .EEC2              0.453    0.186    2.434    0.015    0.453    0.247
   .EEC3              0.202    0.102    1.991    0.046    0.202    0.109
   .EEF1              0.172    0.052    3.299    0.001    0.172    0.117
   .EEF2              0.103    0.047    2.180    0.029    0.103    0.065
   .EEF3              0.176    0.076    2.302    0.021    0.176    0.121
   .IM1               0.684    0.337    2.028    0.043    0.684    0.412
   .IM2               0.306    0.084    3.635    0.000    0.306    0.189
   .IM3               0.192    0.102    1.874    0.061    0.192    0.101
   .ADT1              0.091    0.052    1.746    0.081    0.091    0.085
   .ADT2              0.168    0.069    2.426    0.015    0.168    0.178
   .ADT3              0.421    0.212    1.985    0.047    0.421    0.309
   .EEC               0.602    0.138    4.366    0.000    0.562    0.562
   .EEF               0.563    0.129    4.369    0.000    0.433    0.433
   .IM                0.916    0.305    3.003    0.003    0.939    0.939
    ADT               0.971    0.269    3.608    0.000    1.000    1.000


Group 3 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.953    0.765
    EEC2              1.459    0.209    6.965    0.000    1.390    0.896
    EEC3              1.474    0.182    8.109    0.000    1.405    0.981
  EEF =~                                                                
    EEF1              1.000                               1.130    0.911
    EEF2              0.983    0.094   10.402    0.000    1.111    0.936
    EEF3              0.953    0.069   13.751    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.832    0.789
    IM2               0.823    0.113    7.296    0.000    0.684    0.846
    IM3               0.844    0.146    5.781    0.000    0.702    0.906
  ADT =~                                                                
    ADT1              1.000                               0.923    0.878
    ADT2              1.062    0.116    9.165    0.000    0.980    0.894
    ADT3              1.231    0.120   10.222    0.000    1.137    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.484    1.058    0.457    0.648    0.356    0.356
    EEC               0.543    1.946    0.279    0.780    0.458    0.458
    ADT               0.079    0.681    0.116    0.908    0.064    0.064
  EEC ~                                                                 
    IM                0.549    0.133    4.125    0.000    0.479    0.479
    ADT               0.345    0.112    3.077    0.002    0.334    0.334
  IM ~                                                                  
    ADT              -0.013    0.126   -0.106    0.916   -0.015   -0.015

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.057    1.177    0.048    0.962    0.098    0.098

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.569    0.147   31.136    0.000    4.569    3.669
   .EEC2              4.583    0.183   25.053    0.000    4.583    2.953
   .EEC3              4.569    0.169   27.075    0.000    4.569    3.191
   .EEF1              5.375    0.146   36.753    0.000    5.375    4.331
   .EEF2              5.583    0.140   39.902    0.000    5.583    4.702
   .EEF3              5.667    0.137   41.214    0.000    5.667    4.857
   .IM1               5.333    0.124   42.933    0.000    5.333    5.060
   .IM2               5.889    0.095   61.774    0.000    5.889    7.280
   .IM3               5.806    0.091   63.540    0.000    5.806    7.488
   .ADT1              5.431    0.124   43.810    0.000    5.431    5.163
   .ADT2              5.361    0.129   41.476    0.000    5.361    4.888
   .ADT3              5.278    0.147   35.836    0.000    5.278    4.223

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.642    0.133    4.838    0.000    0.642    0.414
   .EEC2              0.476    0.124    3.829    0.000    0.476    0.198
   .EEC3              0.076    0.071    1.073    0.283    0.076    0.037
   .EEF1              0.263    0.063    4.190    0.000    0.263    0.171
   .EEF2              0.176    0.062    2.823    0.005    0.176    0.125
   .EEF3              0.201    0.120    1.681    0.093    0.201    0.148
   .IM1               0.419    0.214    1.960    0.050    0.419    0.377
   .IM2               0.186    0.065    2.862    0.004    0.186    0.285
   .IM3               0.108    0.056    1.941    0.052    0.108    0.179
   .ADT1              0.253    0.090    2.828    0.005    0.253    0.229
   .ADT2              0.242    0.094    2.578    0.010    0.242    0.201
   .ADT3              0.269    0.103    2.608    0.009    0.269    0.172
   .EEC               0.603    0.182    3.321    0.001    0.664    0.664
   .EEF               0.560    0.276    2.026    0.043    0.438    0.438
   .IM                0.692    0.193    3.593    0.000    1.000    1.000
    ADT               0.853    0.178    4.791    0.000    1.000    1.000
ADT as categorical variable
SEM

Grouped by reward

Note: High ADT is coded as above 5
lavaan 0.6-21 ended normally after 82 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    no_reward                                      109
    performance_reward                             105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               141.219     154.386
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.915
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    no_reward                                   66.456      66.456
    performance_reward                          87.930      87.930

Model Test Baseline Model:

  Test statistic                              1709.294    1191.994
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.434

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.950       0.914
  Tucker-Lewis Index (TLI)                       0.925       0.872
                                                                  
  Robust Comparative Fit Index (CFI)                         0.945
  Robust Tucker-Lewis Index (TLI)                            0.918

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2330.439   -2330.439
  Scaling correction factor                                  1.818
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2259.830   -2259.830
  Scaling correction factor                                  1.388
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4792.878    4792.878
  Bayesian (BIC)                              5015.033    5015.033
  Sample-size adjusted Bayesian (SABIC)       4805.895    4805.895

Root Mean Square Error of Approximation:

  RMSEA                                          0.112       0.121
  90 Percent confidence interval - lower         0.089       0.097
  90 Percent confidence interval - upper         0.137       0.146
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.986       0.996
                                                                  
  Robust RMSEA                                               0.116
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.139
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.995

Standardized Root Mean Square Residual:

  SRMR                                           0.072       0.072

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [no_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.891    0.724
    EEC2              1.471    0.150    9.787    0.000    1.311    0.891
    EEC3              1.362    0.129   10.541    0.000    1.214    0.933
  EEF =~                                                                
    EEF1              1.000                               1.003    0.895
    EEF2              1.044    0.071   14.641    0.000    1.047    0.908
    EEF3              1.018    0.050   20.224    0.000    1.021    0.920
  IM =~                                                                 
    IM1               1.000                               1.136    0.920
    IM2               0.860    0.076   11.286    0.000    0.977    0.938
    IM3               0.842    0.104    8.079    0.000    0.956    0.802

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.505    0.084    6.042    0.000    0.572    0.572
    ADT_high          0.443    0.168    2.639    0.008    0.442    0.221
  EEC ~                                                                 
    IM                0.133    0.110    1.210    0.226    0.169    0.169
    ADT_high          0.110    0.158    0.698    0.485    0.124    0.062
    EEF               0.443    0.123    3.605    0.000    0.499    0.499
  IM ~                                                                  
    ADT_high          0.680    0.231    2.949    0.003    0.599    0.299

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.334    0.283   11.780    0.000    3.334    2.710
   .EEC2              3.052    0.402    7.589    0.000    3.052    2.076
   .EEC3              3.161    0.368    8.588    0.000    3.161    2.429
   .EEF1              4.002    0.314   12.751    0.000    4.002    3.570
   .EEF2              4.060    0.317   12.816    0.000    4.060    3.520
   .EEF3              4.191    0.313   13.402    0.000    4.191    3.777
   .IM1               4.126    0.395   10.447    0.000    4.126    3.340
   .IM2               4.711    0.337   13.963    0.000    4.711    4.523
   .IM3               4.565    0.359   12.714    0.000    4.565    3.831

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.720    0.129    5.596    0.000    0.720    0.476
   .EEC2              0.445    0.112    3.978    0.000    0.445    0.206
   .EEC3              0.221    0.087    2.546    0.011    0.221    0.130
   .EEF1              0.250    0.070    3.586    0.000    0.250    0.199
   .EEF2              0.234    0.075    3.105    0.002    0.234    0.176
   .EEF3              0.189    0.076    2.488    0.013    0.189    0.153
   .IM1               0.236    0.072    3.282    0.001    0.236    0.154
   .IM2               0.130    0.044    2.965    0.003    0.130    0.120
   .IM3               0.505    0.323    1.565    0.118    0.505    0.356
   .EEC               0.461    0.110    4.196    0.000    0.580    0.580
   .EEF               0.552    0.132    4.188    0.000    0.549    0.549
   .IM                1.175    0.202    5.806    0.000    0.910    0.910


Group 2 [performance_reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.045    0.751
    EEC2              1.162    0.150    7.733    0.000    1.215    0.870
    EEC3              1.302    0.132    9.840    0.000    1.361    0.954
  EEF =~                                                                
    EEF1              1.000                               1.153    0.926
    EEF2              1.034    0.075   13.701    0.000    1.192    0.954
    EEF3              0.909    0.093    9.780    0.000    1.047    0.889
  IM =~                                                                 
    IM1               1.000                               0.737    0.681
    IM2               1.289    0.503    2.561    0.010    0.949    0.858
    IM3               1.295    0.536    2.415    0.016    0.954    0.844

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.825    0.116    7.121    0.000    0.527    0.527
    ADT_high          0.486    0.247    1.969    0.049    0.421    0.211
  EEC ~                                                                 
    IM                0.224    0.135    1.657    0.097    0.158    0.158
    ADT_high          0.505    0.167    3.014    0.003    0.483    0.241
    EEF               0.443    0.093    4.750    0.000    0.489    0.489
  IM ~                                                                  
    ADT_high          0.192    0.230    0.837    0.403    0.261    0.130

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.071    0.329    9.337    0.000    3.071    2.207
   .EEC2              2.848    0.406    7.009    0.000    2.848    2.040
   .EEC3              2.786    0.412    6.763    0.000    2.786    1.953
   .EEF1              4.396    0.417   10.540    0.000    4.396    3.533
   .EEF2              4.553    0.404   11.259    0.000    4.553    3.645
   .EEF3              4.675    0.379   12.324    0.000    4.675    3.967
   .IM1               4.852    0.383   12.681    0.000    4.852    4.485
   .IM2               5.358    0.364   14.715    0.000    5.358    4.843
   .IM3               5.147    0.349   14.734    0.000    5.147    4.553

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.844    0.138    6.127    0.000    0.844    0.436
   .EEC2              0.472    0.152    3.113    0.002    0.472    0.242
   .EEC3              0.184    0.089    2.071    0.038    0.184    0.090
   .EEF1              0.219    0.054    4.036    0.000    0.219    0.142
   .EEF2              0.140    0.051    2.726    0.006    0.140    0.090
   .EEF3              0.292    0.101    2.899    0.004    0.292    0.210
   .IM1               0.627    0.299    2.099    0.036    0.627    0.536
   .IM2               0.323    0.122    2.657    0.008    0.323    0.264
   .IM3               0.368    0.257    1.432    0.152    0.368    0.288
   .EEC               0.565    0.118    4.774    0.000    0.517    0.517
   .EEF               0.862    0.329    2.621    0.009    0.649    0.649
   .IM                0.533    0.285    1.870    0.061    0.983    0.983

Grouped by eco condition

lavaan 0.6-21 ended normally after 90 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    EEF orientation                                 70
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               106.729     104.107
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.025
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             42.202      42.202
    EEC orientation                             61.905      61.905

Model Test Baseline Model:

  Test statistic                              1052.013     807.509
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.303

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.939
  Tucker-Lewis Index (TLI)                       0.927       0.908
                                                                  
  Robust Comparative Fit Index (CFI)                         0.952
  Robust Tucker-Lewis Index (TLI)                            0.927

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1505.216   -1505.216
  Scaling correction factor                                  1.520
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1451.851   -1451.851
  Scaling correction factor                                  1.284
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3142.432    3142.432
  Bayesian (BIC)                              3337.516    3337.516
  Sample-size adjusted Bayesian (SABIC)       3128.688    3128.688

Root Mean Square Error of Approximation:

  RMSEA                                          0.105       0.102
  90 Percent confidence interval - lower         0.071       0.068
  90 Percent confidence interval - upper         0.137       0.134
  P-value H_0: RMSEA <= 0.050                    0.006       0.009
  P-value H_0: RMSEA >= 0.080                    0.896       0.868
                                                                  
  Robust RMSEA                                               0.103
  90 Percent confidence interval - lower                     0.069
  90 Percent confidence interval - upper                     0.136
  P-value H_0: Robust RMSEA <= 0.050                         0.009
  P-value H_0: Robust RMSEA >= 0.080                         0.875

Standardized Root Mean Square Residual:

  SRMR                                           0.067       0.067

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.861    0.679
    EEC2              1.302    0.198    6.570    0.000    1.121    0.843
    EEC3              1.316    0.168    7.834    0.000    1.134    0.901
  EEF =~                                                                
    EEF1              1.000                               0.886    0.854
    EEF2              1.132    0.157    7.221    0.000    1.004    0.888
    EEF3              0.905    0.127    7.102    0.000    0.803    0.810
  IM =~                                                                 
    IM1               1.000                               0.936    0.859
    IM2               1.029    0.132    7.770    0.000    0.963    0.938
    IM3               0.724    0.246    2.943    0.003    0.678    0.581

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.617    0.119    5.180    0.000    0.651    0.651
    ADT_high          0.280    0.197    1.418    0.156    0.316    0.155
  EEC ~                                                                 
    IM                0.139    0.190    0.732    0.464    0.151    0.151
    ADT_high          0.084    0.208    0.405    0.685    0.098    0.048
    EEF               0.313    0.200    1.565    0.118    0.322    0.322
  IM ~                                                                  
    ADT_high          0.680    0.290    2.349    0.019    0.727    0.356

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.506    0.320   10.948    0.000    3.506    2.765
   .EEC2              3.443    0.451    7.638    0.000    3.443    2.588
   .EEC3              3.562    0.433    8.229    0.000    3.562    2.831
   .EEF1              4.352    0.404   10.765    0.000    4.352    4.192
   .EEF2              4.276    0.426   10.039    0.000    4.276    3.784
   .EEF3              4.587    0.364   12.610    0.000    4.587    4.627
   .IM1               4.112    0.495    8.302    0.000    4.112    3.772
   .IM2               4.609    0.476    9.690    0.000    4.609    4.487
   .IM3               4.655    0.397   11.729    0.000    4.655    3.990

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.866    0.171    5.068    0.000    0.866    0.539
   .EEC2              0.511    0.200    2.559    0.011    0.511    0.289
   .EEC3              0.297    0.148    2.014    0.044    0.297    0.188
   .EEF1              0.292    0.107    2.732    0.006    0.292    0.271
   .EEF2              0.270    0.104    2.596    0.009    0.270    0.211
   .EEF3              0.339    0.120    2.831    0.005    0.339    0.345
   .IM1               0.313    0.101    3.105    0.002    0.313    0.263
   .IM2               0.127    0.087    1.457    0.145    0.127    0.120
   .IM3               0.902    0.506    1.781    0.075    0.902    0.663
   .EEC               0.583    0.161    3.624    0.000    0.785    0.785
   .EEF               0.378    0.179    2.111    0.035    0.480    0.480
   .IM                0.765    0.240    3.189    0.001    0.873    0.873


Group 2 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.954    0.766
    EEC2              1.459    0.210    6.962    0.000    1.392    0.897
    EEC3              1.471    0.182    8.102    0.000    1.403    0.980
  EEF =~                                                                
    EEF1              1.000                               1.131    0.911
    EEF2              0.982    0.094   10.471    0.000    1.110    0.935
    EEF3              0.953    0.070   13.695    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.831    0.788
    IM2               0.822    0.114    7.235    0.000    0.683    0.844
    IM3               0.847    0.150    5.652    0.000    0.704    0.908

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.753    0.170    4.417    0.000    0.553    0.553
    ADT_high          0.363    0.240    1.515    0.130    0.321    0.161
  EEC ~                                                                 
    IM                0.130    0.160    0.814    0.416    0.114    0.114
    ADT_high          0.415    0.162    2.565    0.010    0.435    0.218
    EEF               0.496    0.117    4.233    0.000    0.588    0.588
  IM ~                                                                  
    ADT_high          0.196    0.214    0.916    0.360    0.236    0.118

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.529    0.330   10.702    0.000    3.529    2.834
   .EEC2              3.064    0.515    5.953    0.000    3.064    1.974
   .EEC3              3.038    0.514    5.913    0.000    3.038    2.122
   .EEF1              4.609    0.445   10.349    0.000    4.609    3.714
   .EEF2              4.831    0.428   11.287    0.000    4.831    4.069
   .EEF3              4.936    0.426   11.599    0.000    4.936    4.231
   .IM1               5.039    0.345   14.585    0.000    5.039    4.780
   .IM2               5.647    0.288   19.587    0.000    5.647    6.981
   .IM3               5.556    0.276   20.166    0.000    5.556    7.167

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.641    0.131    4.872    0.000    0.641    0.413
   .EEC2              0.472    0.123    3.836    0.000    0.472    0.196
   .EEC3              0.082    0.070    1.175    0.240    0.082    0.040
   .EEF1              0.262    0.062    4.243    0.000    0.262    0.170
   .EEF2              0.177    0.063    2.788    0.005    0.177    0.126
   .EEF3              0.201    0.120    1.674    0.094    0.201    0.147
   .IM1               0.421    0.217    1.939    0.052    0.421    0.378
   .IM2               0.188    0.066    2.831    0.005    0.188    0.287
   .IM3               0.106    0.057    1.865    0.062    0.106    0.176
   .EEC               0.414    0.138    2.988    0.003    0.455    0.455
   .EEF               0.827    0.271    3.056    0.002    0.647    0.647
   .IM                0.681    0.187    3.632    0.000    0.986    0.986
GGplot

Reward

ADT multigroup analysis on dependent variables (reward)

Eco-condition

ADT multigroup analysis on dependent variables (eco-orientation)

EEC - only

IM

ADT with IVs
Moderated mediation of PBP with ADT on IM - H4
lavaan 0.6-21 ended normally after 41 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        26

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               129.773     129.133
  Degrees of freedom                                46          46
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.005
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1639.676    1151.316
  Degrees of freedom                                63          63
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.424

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947       0.924
  Tucker-Lewis Index (TLI)                       0.927       0.895
                                                                  
  Robust Comparative Fit Index (CFI)                         0.946
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2367.012   -2367.012
  Scaling correction factor                                  2.207
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2302.125   -2302.125
  Scaling correction factor                                  1.439
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4786.024    4786.024
  Bayesian (BIC)                              4873.539    4873.539
  Sample-size adjusted Bayesian (SABIC)       4791.152    4791.152

Root Mean Square Error of Approximation:

  RMSEA                                          0.092       0.092
  90 Percent confidence interval - lower         0.074       0.073
  90 Percent confidence interval - upper         0.111       0.111
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.867       0.861
                                                                  
  Robust RMSEA                                               0.092
  90 Percent confidence interval - lower                     0.074
  90 Percent confidence interval - upper                     0.111
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.864

Standardized Root Mean Square Residual:

  SRMR                                           0.080       0.080

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.973    0.740
    EEC2              1.289    0.109   11.868    0.000    1.255    0.874
    EEC3              1.329    0.093   14.345    0.000    1.293    0.946
  EEF =~                                                                
    EEF1              1.000                               1.077    0.908
    EEF2              1.048    0.052   19.977    0.000    1.129    0.934
    EEF3              0.963    0.054   17.765    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.968    0.833
    IM2               0.969    0.172    5.627    0.000    0.938    0.872
    IM3               0.973    0.197    4.948    0.000    0.942    0.810

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    Reward_PBP        0.237    0.223    1.063    0.288    0.245    0.123
    ADT_high          0.660    0.243    2.710    0.007    0.681    0.341
    PBP_ADT          -0.303    0.272   -1.116    0.265   -0.313   -0.136
  EEF ~                                                                 
    IM                0.711    0.077    9.196    0.000    0.639    0.639
    Reward_PBP        0.146    0.123    1.186    0.236    0.135    0.068
  EEC ~                                                                 
    IM                0.516    0.076    6.791    0.000    0.513    0.513
    Reward_PBP        0.048    0.124    0.386    0.700    0.049    0.025

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.326    0.113    2.875    0.004    0.476    0.476

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.782    0.093    8.400    0.000    0.782    0.452
   .EEC2              0.484    0.104    4.641    0.000    0.484    0.235
   .EEC3              0.195    0.062    3.165    0.002    0.195    0.104
   .EEF1              0.248    0.046    5.439    0.000    0.248    0.176
   .EEF2              0.186    0.046    4.077    0.000    0.186    0.128
   .EEF3              0.240    0.063    3.793    0.000    0.240    0.183
   .IM1               0.414    0.175    2.370    0.018    0.414    0.307
   .IM2               0.278    0.100    2.781    0.005    0.278    0.240
   .IM3               0.464    0.247    1.883    0.060    0.464    0.343
   .EEC               0.696    0.120    5.819    0.000    0.735    0.735
   .EEF               0.676    0.168    4.031    0.000    0.583    0.583
   .IM                0.865    0.181    4.789    0.000    0.923    0.923

TR

Continuous TR
On reward groups
lavaan 0.6-21 ended normally after 51 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        84

  Number of observations per group:                   
    Control                                        109
    Performance-based reward                       105

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               203.279     216.274
  Degrees of freedom                                96          96
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    Control                                    100.170     100.170
    Performance-based reward                   116.104     116.104

Model Test Baseline Model:

  Test statistic                              2335.169    1715.730
  Degrees of freedom                               132         132
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.361

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.951       0.924
  Tucker-Lewis Index (TLI)                       0.933       0.896
                                                                  
  Robust Comparative Fit Index (CFI)                         0.948
  Robust Tucker-Lewis Index (TLI)                            0.928

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -3225.606   -3225.606
  Scaling correction factor                                  1.717
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3123.966   -3123.966
  Scaling correction factor                                  1.303
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6619.212    6619.212
  Bayesian (BIC)                              6901.954    6901.954
  Sample-size adjusted Bayesian (SABIC)       6635.779    6635.779

Root Mean Square Error of Approximation:

  RMSEA                                          0.102       0.108
  90 Percent confidence interval - lower         0.083       0.088
  90 Percent confidence interval - upper         0.122       0.128
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.968       0.989
                                                                  
  Robust RMSEA                                               0.105
  90 Percent confidence interval - lower                     0.086
  90 Percent confidence interval - upper                     0.124
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.985

Standardized Root Mean Square Residual:

  SRMR                                           0.073       0.073

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [Control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.892    0.725
    EEC2              1.467    0.150    9.782    0.000    1.309    0.890
    EEC3              1.362    0.129   10.522    0.000    1.215    0.933
  EEF =~                                                                
    EEF1              1.000                               1.003    0.895
    EEF2              1.042    0.071   14.640    0.000    1.046    0.907
    EEF3              1.019    0.050   20.517    0.000    1.022    0.921
  IM =~                                                                 
    IM1               1.000                               1.136    0.919
    IM2               0.860    0.075   11.490    0.000    0.977    0.938
    IM3               0.842    0.103    8.166    0.000    0.957    0.803
  TR =~                                                                 
    TR1               1.000                               1.239    0.876
    TR2               1.149    0.080   14.339    0.000    1.424    0.939
    TR3               1.067    0.084   12.645    0.000    1.322    0.888

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.538    0.082    6.567    0.000    0.609    0.609
    TR                0.095    0.071    1.340    0.180    0.118    0.118
  EEC ~                                                                 
    IM                0.378    0.088    4.314    0.000    0.481    0.481
    TR                0.074    0.078    0.949    0.343    0.102    0.102
  IM ~                                                                  
    TR                0.218    0.112    1.944    0.052    0.237    0.237

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.266    0.078    3.387    0.001    0.455    0.455

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.165    0.118   35.341    0.000    4.165    3.385
   .EEC2              4.275    0.141   30.351    0.000    4.275    2.907
   .EEC3              4.294    0.125   34.445    0.000    4.294    3.299
   .EEF1              5.193    0.107   48.365    0.000    5.193    4.633
   .EEF2              5.303    0.110   47.999    0.000    5.303    4.597
   .EEF3              5.404    0.106   50.837    0.000    5.404    4.869
   .IM1               5.156    0.118   43.574    0.000    5.156    4.174
   .IM2               5.596    0.100   56.098    0.000    5.596    5.373
   .IM3               5.431    0.114   47.591    0.000    5.431    4.558
   .TR1               3.826    0.135   28.263    0.000    3.826    2.707
   .TR2               3.743    0.145   25.763    0.000    3.743    2.468
   .TR3               3.477    0.142   24.404    0.000    3.477    2.337

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.719    0.128    5.625    0.000    0.719    0.475
   .EEC2              0.450    0.113    3.979    0.000    0.450    0.208
   .EEC3              0.218    0.084    2.589    0.010    0.218    0.129
   .EEF1              0.250    0.070    3.576    0.000    0.250    0.199
   .EEF2              0.236    0.076    3.096    0.002    0.236    0.178
   .EEF3              0.186    0.075    2.493    0.013    0.186    0.151
   .IM1               0.236    0.070    3.354    0.001    0.236    0.155
   .IM2               0.130    0.042    3.077    0.002    0.130    0.120
   .IM3               0.504    0.321    1.570    0.116    0.504    0.355
   .TR1               0.463    0.130    3.574    0.000    0.463    0.232
   .TR2               0.274    0.111    2.469    0.014    0.274    0.119
   .TR3               0.466    0.159    2.924    0.003    0.466    0.211
   .EEC               0.584    0.135    4.332    0.000    0.735    0.735
   .EEF               0.585    0.128    4.579    0.000    0.581    0.581
   .IM                1.217    0.214    5.676    0.000    0.944    0.944
    TR                1.534    0.237    6.477    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.525
    EEC2              0.792
    EEC3              0.871
    EEF1              0.801
    EEF2              0.822
    EEF3              0.849
    IM1               0.845
    IM2               0.880
    IM3               0.645
    TR1               0.768
    TR2               0.881
    TR3               0.789
    EEC               0.265
    EEF               0.419
    IM                0.056


Group 2 [Performance-based reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.038    0.746
    EEC2              1.162    0.149    7.793    0.000    1.206    0.864
    EEC3              1.324    0.138    9.623    0.000    1.374    0.963
  EEF =~                                                                
    EEF1              1.000                               1.152    0.926
    EEF2              1.034    0.076   13.661    0.000    1.192    0.954
    EEF3              0.909    0.093    9.773    0.000    1.048    0.889
  IM =~                                                                 
    IM1               1.000                               0.737    0.681
    IM2               1.287    0.509    2.530    0.011    0.949    0.857
    IM3               1.294    0.548    2.364    0.018    0.954    0.844
  TR =~                                                                 
    TR1               1.000                               1.368    0.864
    TR2               1.090    0.080   13.580    0.000    1.491    0.951
    TR3               1.059    0.083   12.715    0.000    1.448    0.949

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.783    0.123    6.382    0.000    0.501    0.501
    TR                0.220    0.116    1.904    0.057    0.261    0.261
  EEC ~                                                                 
    IM                0.534    0.152    3.504    0.000    0.379    0.379
    TR                0.272    0.086    3.150    0.002    0.359    0.359
  IM ~                                                                  
    TR                0.112    0.108    1.035    0.301    0.207    0.207

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.352    0.169    2.083    0.037    0.454    0.454

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.333    0.136   31.909    0.000    4.333    3.114
   .EEC2              4.314    0.136   31.668    0.000    4.314    3.090
   .EEC3              4.429    0.139   31.808    0.000    4.429    3.104
   .EEF1              5.371    0.121   44.242    0.000    5.371    4.318
   .EEF2              5.562    0.122   45.624    0.000    5.562    4.452
   .EEF3              5.562    0.115   48.357    0.000    5.562    4.719
   .IM1               5.143    0.106   48.718    0.000    5.143    4.754
   .IM2               5.733    0.108   53.099    0.000    5.733    5.182
   .IM3               5.524    0.110   50.069    0.000    5.524    4.886
   .TR1               3.762    0.154   24.355    0.000    3.762    2.377
   .TR2               3.781    0.153   24.718    0.000    3.781    2.412
   .TR3               3.476    0.149   23.358    0.000    3.476    2.279

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.859    0.138    6.217    0.000    0.859    0.444
   .EEC2              0.495    0.157    3.161    0.002    0.495    0.254
   .EEC3              0.147    0.093    1.584    0.113    0.147    0.072
   .EEF1              0.220    0.054    4.045    0.000    0.220    0.142
   .EEF2              0.140    0.052    2.702    0.007    0.140    0.090
   .EEF3              0.291    0.100    2.911    0.004    0.291    0.209
   .IM1               0.627    0.305    2.058    0.040    0.627    0.536
   .IM2               0.324    0.122    2.660    0.008    0.324    0.265
   .IM3               0.368    0.262    1.406    0.160    0.368    0.288
   .TR1               0.634    0.164    3.864    0.000    0.634    0.253
   .TR2               0.233    0.078    2.999    0.003    0.233    0.095
   .TR3               0.229    0.084    2.734    0.006    0.229    0.099
   .EEC               0.723    0.155    4.675    0.000    0.671    0.671
   .EEF               0.832    0.296    2.814    0.005    0.626    0.626
   .IM                0.520    0.269    1.933    0.053    0.957    0.957
    TR                1.871    0.291    6.421    0.000    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.556
    EEC2              0.746
    EEC3              0.928
    EEF1              0.858
    EEF2              0.910
    EEF3              0.791
    IM1               0.464
    IM2               0.735
    IM3               0.712
    TR1               0.747
    TR2               0.905
    TR3               0.901
    EEC               0.329
    EEF               0.374
    IM                0.043
On eco groups
lavaan 0.6-21 ended normally after 49 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       129

  Number of observations per group:                   
    EEF orientation                                 70
    Combination of EEF and EEC                      72
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               260.132     262.513
  Degrees of freedom                               141         141
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.991
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             70.406      70.406
    Combination of EEF and EEC                  97.476      97.476
    EEC orientation                             94.631      94.631

Model Test Baseline Model:

  Test statistic                              2331.901    1848.415
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.262

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.944       0.926
  Tucker-Lewis Index (TLI)                       0.922       0.897
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.919

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2998.573   -2998.573
  Scaling correction factor                                  1.526
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2868.507   -2868.507
  Scaling correction factor                                  1.247
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                6255.147    6255.147
  Bayesian (BIC)                              6689.358    6689.358
  Sample-size adjusted Bayesian (SABIC)       6280.589    6280.589

Root Mean Square Error of Approximation:

  RMSEA                                          0.109       0.110
  90 Percent confidence interval - lower         0.088       0.089
  90 Percent confidence interval - upper         0.129       0.131
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.987       0.989
                                                                  
  Robust RMSEA                                               0.109
  90 Percent confidence interval - lower                     0.089
  90 Percent confidence interval - upper                     0.130
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.989

Standardized Root Mean Square Residual:

  SRMR                                           0.078       0.078

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.864    0.681
    EEC2              1.290    0.195    6.622    0.000    1.114    0.838
    EEC3              1.319    0.170    7.751    0.000    1.139    0.906
  EEF =~                                                                
    EEF1              1.000                               0.888    0.855
    EEF2              1.129    0.160    7.061    0.000    1.003    0.887
    EEF3              0.903    0.128    7.079    0.000    0.802    0.809
  IM =~                                                                 
    IM1               1.000                               0.961    0.881
    IM2               0.978    0.142    6.901    0.000    0.940    0.915
    IM3               0.693    0.260    2.664    0.008    0.665    0.570
  ADT =~                                                                
    ADT1              1.000                               0.823    0.793
    ADT2              1.220    0.169    7.233    0.000    1.003    0.914
    ADT3              1.280    0.182    7.017    0.000    1.053    0.905

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.580    0.216    2.685    0.007    0.628    0.628
    EEC               0.061    0.588    0.104    0.917    0.059    0.059
    ADT               0.128    0.199    0.641    0.521    0.118    0.118
  EEC ~                                                                 
    IM                0.263    0.146    1.803    0.071    0.292    0.292
    ADT               0.211    0.155    1.367    0.172    0.201    0.201
  IM ~                                                                  
    ADT               0.613    0.262    2.339    0.019    0.525    0.525

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.072    0.307    0.234    0.815    0.152    0.152

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.143    0.152   27.333    0.000    4.143    3.267
   .EEC2              4.271    0.159   26.868    0.000    4.271    3.211
   .EEC3              4.400    0.150   29.260    0.000    4.400    3.497
   .EEF1              5.471    0.124   44.095    0.000    5.471    5.270
   .EEF2              5.543    0.135   41.042    0.000    5.543    4.905
   .EEF3              5.600    0.118   47.260    0.000    5.600    5.649
   .IM1               5.200    0.130   39.906    0.000    5.200    4.770
   .IM2               5.729    0.123   46.665    0.000    5.729    5.578
   .IM3               5.443    0.139   39.034    0.000    5.443    4.665
   .ADT1              5.457    0.124   44.001    0.000    5.457    5.259
   .ADT2              5.371    0.131   40.941    0.000    5.371    4.893
   .ADT3              5.300    0.139   38.124    0.000    5.300    4.557

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.862    0.170    5.062    0.000    0.862    0.536
   .EEC2              0.527    0.201    2.618    0.009    0.527    0.298
   .EEC3              0.285    0.145    1.968    0.049    0.285    0.180
   .EEF1              0.289    0.105    2.748    0.006    0.289    0.268
   .EEF2              0.271    0.111    2.448    0.014    0.271    0.212
   .EEF3              0.339    0.119    2.850    0.004    0.339    0.345
   .IM1               0.266    0.112    2.372    0.018    0.266    0.224
   .IM2               0.171    0.098    1.757    0.079    0.171    0.163
   .IM3               0.918    0.518    1.774    0.076    0.918    0.675
   .ADT1              0.400    0.123    3.243    0.001    0.400    0.371
   .ADT2              0.198    0.100    1.972    0.049    0.198    0.164
   .ADT3              0.245    0.092    2.648    0.008    0.245    0.181
   .EEC               0.607    0.165    3.681    0.000    0.812    0.812
   .EEF               0.366    0.149    2.453    0.014    0.464    0.464
   .IM                0.669    0.167    3.995    0.000    0.724    0.724
    ADT               0.677    0.137    4.924    0.000    1.000    1.000


Group 2 [Combination of EEF and EEC]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               1.035    0.759
    EEC2              1.135    0.186    6.119    0.000    1.175    0.868
    EEC3              1.240    0.156    7.946    0.000    1.283    0.944
  EEF =~                                                                
    EEF1              1.000                               1.140    0.940
    EEF2              1.067    0.055   19.496    0.000    1.217    0.967
    EEF3              0.991    0.099    9.968    0.000    1.130    0.938
  IM =~                                                                 
    IM1               1.000                               0.988    0.767
    IM2               1.162    0.304    3.822    0.000    1.148    0.901
    IM3               1.322    0.330    4.010    0.000    1.306    0.948
  ADT =~                                                                
    ADT1              1.000                               0.985    0.956
    ADT2              0.894    0.069   13.004    0.000    0.881    0.907
    ADT3              0.984    0.085   11.591    0.000    0.970    0.831

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.439    0.132    3.317    0.001    0.380    0.380
    EEC               0.234    0.248    0.947    0.344    0.213    0.213
    ADT               0.386    0.147    2.633    0.008    0.334    0.334
  EEC ~                                                                 
    IM                0.389    0.116    3.358    0.001    0.371    0.371
    ADT               0.486    0.121    4.009    0.000    0.463    0.463
  IM ~                                                                  
    ADT               0.248    0.222    1.118    0.263    0.247    0.247

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.128    0.138    0.930    0.352    0.221    0.221

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.028    0.161   25.057    0.000    4.028    2.953
   .EEC2              4.028    0.160   25.247    0.000    4.028    2.975
   .EEC3              4.111    0.160   25.656    0.000    4.111    3.024
   .EEF1              5.000    0.143   34.966    0.000    5.000    4.121
   .EEF2              5.167    0.148   34.841    0.000    5.167    4.106
   .EEF3              5.181    0.142   36.461    0.000    5.181    4.297
   .IM1               4.917    0.152   32.383    0.000    4.917    3.816
   .IM2               5.375    0.150   35.797    0.000    5.375    4.219
   .IM3               5.181    0.162   31.908    0.000    5.181    3.760
   .ADT1              5.278    0.121   43.462    0.000    5.278    5.122
   .ADT2              5.264    0.115   45.965    0.000    5.264    5.417
   .ADT3              5.167    0.137   37.578    0.000    5.167    4.429

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.790    0.164    4.805    0.000    0.790    0.425
   .EEC2              0.453    0.186    2.434    0.015    0.453    0.247
   .EEC3              0.202    0.102    1.991    0.046    0.202    0.109
   .EEF1              0.172    0.052    3.299    0.001    0.172    0.117
   .EEF2              0.103    0.047    2.180    0.029    0.103    0.065
   .EEF3              0.176    0.076    2.302    0.021    0.176    0.121
   .IM1               0.684    0.337    2.028    0.043    0.684    0.412
   .IM2               0.306    0.084    3.635    0.000    0.306    0.189
   .IM3               0.192    0.102    1.874    0.061    0.192    0.101
   .ADT1              0.091    0.052    1.746    0.081    0.091    0.085
   .ADT2              0.168    0.069    2.426    0.015    0.168    0.178
   .ADT3              0.421    0.212    1.985    0.047    0.421    0.309
   .EEC               0.602    0.138    4.366    0.000    0.562    0.562
   .EEF               0.563    0.129    4.369    0.000    0.433    0.433
   .IM                0.916    0.305    3.003    0.003    0.939    0.939
    ADT               0.971    0.269    3.608    0.000    1.000    1.000


Group 3 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.953    0.765
    EEC2              1.459    0.209    6.965    0.000    1.390    0.896
    EEC3              1.474    0.182    8.109    0.000    1.405    0.981
  EEF =~                                                                
    EEF1              1.000                               1.130    0.911
    EEF2              0.983    0.094   10.402    0.000    1.111    0.936
    EEF3              0.953    0.069   13.751    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.832    0.789
    IM2               0.823    0.113    7.296    0.000    0.684    0.846
    IM3               0.844    0.146    5.781    0.000    0.702    0.906
  ADT =~                                                                
    ADT1              1.000                               0.923    0.878
    ADT2              1.062    0.116    9.165    0.000    0.980    0.894
    ADT3              1.231    0.120   10.222    0.000    1.137    0.910

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.484    1.058    0.457    0.648    0.356    0.356
    EEC               0.543    1.946    0.279    0.780    0.458    0.458
    ADT               0.079    0.681    0.116    0.908    0.064    0.064
  EEC ~                                                                 
    IM                0.549    0.133    4.125    0.000    0.479    0.479
    ADT               0.345    0.112    3.077    0.002    0.334    0.334
  IM ~                                                                  
    ADT              -0.013    0.126   -0.106    0.916   -0.015   -0.015

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.057    1.177    0.048    0.962    0.098    0.098

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              4.569    0.147   31.136    0.000    4.569    3.669
   .EEC2              4.583    0.183   25.053    0.000    4.583    2.953
   .EEC3              4.569    0.169   27.075    0.000    4.569    3.191
   .EEF1              5.375    0.146   36.753    0.000    5.375    4.331
   .EEF2              5.583    0.140   39.902    0.000    5.583    4.702
   .EEF3              5.667    0.137   41.214    0.000    5.667    4.857
   .IM1               5.333    0.124   42.933    0.000    5.333    5.060
   .IM2               5.889    0.095   61.774    0.000    5.889    7.280
   .IM3               5.806    0.091   63.540    0.000    5.806    7.488
   .ADT1              5.431    0.124   43.810    0.000    5.431    5.163
   .ADT2              5.361    0.129   41.476    0.000    5.361    4.888
   .ADT3              5.278    0.147   35.836    0.000    5.278    4.223

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.642    0.133    4.838    0.000    0.642    0.414
   .EEC2              0.476    0.124    3.829    0.000    0.476    0.198
   .EEC3              0.076    0.071    1.073    0.283    0.076    0.037
   .EEF1              0.263    0.063    4.190    0.000    0.263    0.171
   .EEF2              0.176    0.062    2.823    0.005    0.176    0.125
   .EEF3              0.201    0.120    1.681    0.093    0.201    0.148
   .IM1               0.419    0.214    1.960    0.050    0.419    0.377
   .IM2               0.186    0.065    2.862    0.004    0.186    0.285
   .IM3               0.108    0.056    1.941    0.052    0.108    0.179
   .ADT1              0.253    0.090    2.828    0.005    0.253    0.229
   .ADT2              0.242    0.094    2.578    0.010    0.242    0.201
   .ADT3              0.269    0.103    2.608    0.009    0.269    0.172
   .EEC               0.603    0.182    3.321    0.001    0.664    0.664
   .EEF               0.560    0.276    2.026    0.043    0.438    0.438
   .IM                0.692    0.193    3.593    0.000    1.000    1.000
    ADT               0.853    0.178    4.791    0.000    1.000    1.000
GG plot
`geom_smooth()` using formula = 'y ~ x'

`geom_smooth()` using formula = 'y ~ x'

TR as categorical variable
SEM
Grouped by reward
Note: High trust is defined as answering above 5 on the scale
lavaan 0.6-21 ended normally after 87 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    Control                                         73
    Performance-based reward                        69

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               116.119     132.195
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.878
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    Control                                     65.749      65.749
    Performance-based reward                    66.446      66.446

Model Test Baseline Model:

  Test statistic                              1014.396     750.037
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.352

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.939       0.891
  Tucker-Lewis Index (TLI)                       0.909       0.836
                                                                  
  Robust Comparative Fit Index (CFI)                         0.929
  Robust Tucker-Lewis Index (TLI)                            0.893

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1534.447   -1534.447
  Scaling correction factor                                  1.778
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1476.388   -1476.388
  Scaling correction factor                                  1.349
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3200.895    3200.895
  Bayesian (BIC)                              3395.979    3395.979
  Sample-size adjusted Bayesian (SABIC)       3187.151    3187.151

Root Mean Square Error of Approximation:

  RMSEA                                          0.115       0.130
  90 Percent confidence interval - lower         0.083       0.098
  90 Percent confidence interval - upper         0.146       0.162
  P-value H_0: RMSEA <= 0.050                    0.001       0.000
  P-value H_0: RMSEA >= 0.080                    0.963       0.994
                                                                  
  Robust RMSEA                                               0.122
  90 Percent confidence interval - lower                     0.094
  90 Percent confidence interval - upper                     0.150
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.992

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [Control]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.955    0.766
    EEC2              1.437    0.164    8.744    0.000    1.373    0.878
    EEC3              1.372    0.141    9.751    0.000    1.311    0.957
  EEF =~                                                                
    EEF1              1.000                               0.994    0.879
    EEF2              1.018    0.104    9.828    0.000    1.012    0.884
    EEF3              0.996    0.066   15.055    0.000    0.990    0.900
  IM =~                                                                 
    IM1               1.000                               0.964    0.851
    IM2               1.002    0.091   11.034    0.000    0.966    0.985
    IM3               0.824    0.154    5.355    0.000    0.794    0.730

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.624    0.120    5.207    0.000    0.605    0.605
    TR_high           0.538    0.244    2.203    0.028    0.541    0.200
  EEC ~                                                                 
    IM                0.026    0.166    0.159    0.874    0.027    0.027
    TR_high           0.292    0.241    1.210    0.226    0.306    0.113
    EEF               0.540    0.158    3.415    0.001    0.562    0.562
  IM ~                                                                  
    TR_high          -0.077    0.268   -0.287    0.774   -0.080   -0.030

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.601    0.374    9.637    0.000    3.601    2.887
   .EEC2              3.346    0.533    6.274    0.000    3.346    2.140
   .EEC3              3.484    0.489    7.122    0.000    3.484    2.543
   .EEF1              4.731    0.373   12.671    0.000    4.731    4.184
   .EEF2              4.831    0.369   13.092    0.000    4.831    4.220
   .EEF3              4.926    0.365   13.502    0.000    4.926    4.480
   .IM1               5.336    0.358   14.913    0.000    5.336    4.714
   .IM2               5.761    0.356   16.191    0.000    5.761    5.879
   .IM3               5.581    0.298   18.700    0.000    5.581    5.134

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.644    0.160    4.029    0.000    0.644    0.414
   .EEC2              0.561    0.166    3.384    0.001    0.561    0.229
   .EEC3              0.159    0.095    1.671    0.095    0.159    0.085
   .EEF1              0.291    0.101    2.881    0.004    0.291    0.227
   .EEF2              0.287    0.107    2.673    0.008    0.287    0.219
   .EEF3              0.229    0.105    2.192    0.028    0.229    0.190
   .IM1               0.353    0.092    3.844    0.000    0.353    0.276
   .IM2               0.028    0.050    0.553    0.580    0.028    0.029
   .IM3               0.551    0.440    1.253    0.210    0.551    0.466
   .EEC               0.574    0.158    3.643    0.000    0.629    0.629
   .EEF               0.594    0.190    3.126    0.002    0.601    0.601
   .IM                0.928    0.290    3.200    0.001    0.999    0.999


Group 2 [Performance-based reward]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.869    0.672
    EEC2              1.293    0.250    5.166    0.000    1.123    0.857
    EEC3              1.447    0.244    5.936    0.000    1.257    0.951
  EEF =~                                                                
    EEF1              1.000                               1.032    0.898
    EEF2              1.046    0.152    6.867    0.000    1.079    0.936
    EEF3              0.860    0.118    7.269    0.000    0.888    0.847
  IM =~                                                                 
    IM1               1.000                               0.926    0.919
    IM2               0.613    0.259    2.367    0.018    0.568    0.675
    IM3               0.513    0.239    2.142    0.032    0.475    0.533

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.723    0.156    4.645    0.000    0.649    0.649
    TR_high           0.134    0.262    0.512    0.609    0.130    0.046
  EEC ~                                                                 
    IM                0.184    0.169    1.086    0.278    0.196    0.196
    TR_high           0.468    0.288    1.627    0.104    0.539    0.190
    EEF               0.329    0.147    2.229    0.026    0.391    0.391
  IM ~                                                                  
    TR_high           0.803    0.299    2.681    0.007    0.866    0.305

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.504    0.331   10.575    0.000    3.504    2.712
   .EEC2              3.335    0.400    8.333    0.000    3.335    2.543
   .EEC3              3.200    0.436    7.343    0.000    3.200    2.422
   .EEF1              4.732    0.413   11.448    0.000    4.732    4.119
   .EEF2              4.869    0.409   11.911    0.000    4.869    4.222
   .EEF3              5.079    0.400   12.691    0.000    5.079    4.848
   .IM1               4.371    0.391   11.184    0.000    4.371    4.333
   .IM2               5.393    0.306   17.614    0.000    5.393    6.409
   .IM3               5.282    0.211   25.023    0.000    5.282    5.927

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.915    0.163    5.607    0.000    0.915    0.548
   .EEC2              0.458    0.171    2.674    0.007    0.458    0.266
   .EEC3              0.166    0.135    1.227    0.220    0.166    0.095
   .EEF1              0.255    0.074    3.463    0.001    0.255    0.193
   .EEF2              0.165    0.081    2.042    0.041    0.165    0.124
   .EEF3              0.310    0.133    2.338    0.019    0.310    0.282
   .IM1               0.159    0.169    0.943    0.346    0.159    0.156
   .IM2               0.386    0.179    2.155    0.031    0.386    0.545
   .IM3               0.569    0.305    1.865    0.062    0.569    0.716
   .EEC               0.462    0.161    2.876    0.004    0.613    0.613
   .EEF               0.595    0.222    2.679    0.007    0.559    0.559
   .IM                0.779    0.297    2.625    0.009    0.907    0.907
Grouped by eco condition
lavaan 0.6-21 ended normally after 95 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        66

  Number of observations per group:                   
    EEF orientation                                 70
    EEC orientation                                 72

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               110.974     106.612
  Degrees of freedom                                60          60
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.041
    Yuan-Bentler correction (Mplus variant)                       
  Test statistic for each group:
    EEF orientation                             47.760      47.760
    EEC orientation                             58.853      58.853

Model Test Baseline Model:

  Test statistic                              1046.682     808.080
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.295

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947       0.935
  Tucker-Lewis Index (TLI)                       0.920       0.903
                                                                  
  Robust Comparative Fit Index (CFI)                         0.948
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1510.004   -1510.004
  Scaling correction factor                                  1.495
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1454.517   -1454.517
  Scaling correction factor                                  1.279
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3152.008    3152.008
  Bayesian (BIC)                              3347.092    3347.092
  Sample-size adjusted Bayesian (SABIC)       3138.264    3138.264

Root Mean Square Error of Approximation:

  RMSEA                                          0.109       0.105
  90 Percent confidence interval - lower         0.077       0.072
  90 Percent confidence interval - upper         0.141       0.136
  P-value H_0: RMSEA <= 0.050                    0.003       0.005
  P-value H_0: RMSEA >= 0.080                    0.934       0.899
                                                                  
  Robust RMSEA                                               0.107
  90 Percent confidence interval - lower                     0.073
  90 Percent confidence interval - upper                     0.139
  P-value H_0: Robust RMSEA <= 0.050                         0.005
  P-value H_0: Robust RMSEA >= 0.080                         0.907

Standardized Root Mean Square Residual:

  SRMR                                           0.069       0.069

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian


Group 1 [EEF orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.868    0.684
    EEC2              1.283    0.196    6.555    0.000    1.113    0.837
    EEC3              1.313    0.172    7.640    0.000    1.139    0.905
  EEF =~                                                                
    EEF1              1.000                               0.878    0.846
    EEF2              1.152    0.158    7.300    0.000    1.012    0.895
    EEF3              0.911    0.126    7.238    0.000    0.801    0.808
  IM =~                                                                 
    IM1               1.000                               0.922    0.846
    IM2               1.060    0.123    8.643    0.000    0.977    0.951
    IM3               0.739    0.233    3.171    0.002    0.682    0.584

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.664    0.125    5.322    0.000    0.696    0.696
    TR_high           0.103    0.239    0.431    0.667    0.117    0.044
  EEC ~                                                                 
    IM                0.130    0.185    0.705    0.481    0.138    0.138
    TR_high           0.322    0.272    1.181    0.238    0.371    0.140
    EEF               0.330    0.191    1.732    0.083    0.334    0.334
  IM ~                                                                  
    TR_high           0.268    0.298    0.899    0.369    0.290    0.109

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.617    0.353   10.240    0.000    3.617    2.852
   .EEC2              3.597    0.431    8.352    0.000    3.597    2.704
   .EEC3              3.710    0.431    8.611    0.000    3.710    2.949
   .EEF1              5.143    0.360   14.294    0.000    5.143    4.954
   .EEF2              5.165    0.402   12.853    0.000    5.165    4.571
   .EEF3              5.301    0.346   15.300    0.000    5.301    5.347
   .IM1               4.886    0.377   12.944    0.000    4.886    4.482
   .IM2               5.396    0.383   14.099    0.000    5.396    5.254
   .IM3               5.211    0.298   17.466    0.000    5.211    4.467

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.855    0.172    4.966    0.000    0.855    0.532
   .EEC2              0.531    0.204    2.599    0.009    0.531    0.300
   .EEC3              0.286    0.151    1.892    0.058    0.286    0.181
   .EEF1              0.306    0.109    2.806    0.005    0.306    0.284
   .EEF2              0.253    0.104    2.435    0.015    0.253    0.198
   .EEF3              0.342    0.123    2.774    0.006    0.342    0.348
   .IM1               0.339    0.093    3.652    0.000    0.339    0.285
   .IM2               0.100    0.075    1.335    0.182    0.100    0.095
   .IM3               0.896    0.495    1.811    0.070    0.896    0.659
   .EEC               0.579    0.153    3.776    0.000    0.769    0.769
   .EEF               0.391    0.181    2.158    0.031    0.506    0.506
   .IM                0.840    0.290    2.896    0.004    0.988    0.988


Group 2 [EEC orientation]:

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.956    0.767
    EEC2              1.455    0.208    7.012    0.000    1.391    0.896
    EEC3              1.469    0.182    8.054    0.000    1.404    0.980
  EEF =~                                                                
    EEF1              1.000                               1.131    0.911
    EEF2              0.982    0.094   10.493    0.000    1.110    0.935
    EEF3              0.953    0.069   13.766    0.000    1.077    0.923
  IM =~                                                                 
    IM1               1.000                               0.831    0.788
    IM2               0.822    0.114    7.212    0.000    0.683    0.844
    IM3               0.847    0.150    5.642    0.000    0.704    0.908

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF ~                                                                 
    IM                0.745    0.166    4.475    0.000    0.547    0.547
    TR_high           0.680    0.232    2.930    0.003    0.601    0.208
  EEC ~                                                                 
    IM                0.137    0.165    0.830    0.406    0.119    0.119
    TR_high           0.486    0.210    2.315    0.021    0.508    0.176
    EEF               0.495    0.118    4.180    0.000    0.585    0.585
  IM ~                                                                  
    TR_high           0.287    0.293    0.979    0.327    0.345    0.119

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              3.468    0.340   10.214    0.000    3.468    2.785
   .EEC2              2.981    0.497    6.000    0.000    2.981    1.920
   .EEC3              2.952    0.467    6.323    0.000    2.952    2.061
   .EEF1              4.358    0.393   11.097    0.000    4.358    3.511
   .EEF2              4.584    0.373   12.281    0.000    4.584    3.861
   .EEF3              4.697    0.382   12.290    0.000    4.697    4.026
   .IM1               5.007    0.364   13.756    0.000    5.007    4.750
   .IM2               5.620    0.295   19.045    0.000    5.620    6.948
   .IM3               5.529    0.286   19.337    0.000    5.529    7.131

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.638    0.133    4.776    0.000    0.638    0.411
   .EEC2              0.475    0.123    3.861    0.000    0.475    0.197
   .EEC3              0.080    0.067    1.199    0.231    0.080    0.039
   .EEF1              0.262    0.062    4.230    0.000    0.262    0.170
   .EEF2              0.177    0.063    2.794    0.005    0.177    0.126
   .EEF3              0.200    0.119    1.681    0.093    0.200    0.147
   .IM1               0.421    0.216    1.945    0.052    0.421    0.379
   .IM2               0.188    0.067    2.829    0.005    0.188    0.288
   .IM3               0.105    0.057    1.849    0.064    0.105    0.175
   .EEC               0.430    0.137    3.140    0.002    0.471    0.471
   .EEF               0.805    0.268    3.007    0.003    0.630    0.630
   .IM                0.680    0.187    3.646    0.000    0.986    0.986
GGplot

Reward

Eco-condition

EEF

EEC

Moderators on IM

ADT

The effect of ADT on IM in each condition

TR

The effect of TR on IM in each condition

TR with IVs

Moderated mediation of PBP with TR on IM - H5
lavaan 0.6-21 ended normally after 26 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         9

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                16.649      16.878
  Degrees of freedom                                 6           6
  P-value (Chi-square)                           0.011       0.010
  Scaling correction factor                                  0.986
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               363.768     152.233
  Degrees of freedom                                12          12
  P-value                                        0.000       0.000
  Scaling correction factor                                  2.390

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.970       0.922
  Tucker-Lewis Index (TLI)                       0.939       0.845
                                                                  
  Robust Comparative Fit Index (CFI)                         0.968
  Robust Tucker-Lewis Index (TLI)                            0.936

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -817.597    -817.597
  Scaling correction factor                                  3.229
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -809.273    -809.273
  Scaling correction factor                                  2.332
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1653.195    1653.195
  Bayesian (BIC)                              1683.488    1683.488
  Sample-size adjusted Bayesian (SABIC)       1654.970    1654.970

Root Mean Square Error of Approximation:

  RMSEA                                          0.091       0.092
  90 Percent confidence interval - lower         0.040       0.041
  90 Percent confidence interval - upper         0.144       0.146
  P-value H_0: RMSEA <= 0.050                    0.083       0.080
  P-value H_0: RMSEA >= 0.080                    0.684       0.694
                                                                  
  Robust RMSEA                                               0.091
  90 Percent confidence interval - lower                     0.041
  90 Percent confidence interval - upper                     0.144
  P-value H_0: Robust RMSEA <= 0.050                         0.080
  P-value H_0: Robust RMSEA >= 0.080                         0.689

Standardized Root Mean Square Residual:

  SRMR                                           0.044       0.044

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM =~                                                                 
    IM1               1.000                               0.891    0.766
    IM2               1.123    0.163    6.874    0.000    1.001    0.930
    IM3               1.070    0.162    6.625    0.000    0.954    0.820

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    Reward_PBP        0.115    0.137    0.842    0.400    0.129    0.065
    TR_high           0.190    0.227    0.836    0.403    0.213    0.074
    PBP_TR           -0.163    0.361   -0.450    0.652   -0.182   -0.048

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM1               0.557    0.157    3.554    0.000    0.557    0.413
   .IM2               0.156    0.050    3.150    0.002    0.156    0.135
   .IM3               0.443    0.201    2.206    0.027    0.443    0.327
   .IM                0.790    0.185    4.273    0.000    0.995    0.995
Moderated mediation of PBP x eco_ori with TR on IM - H6
lavaan 0.6-21 ended normally after 65 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        25

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               238.865     244.280
  Degrees of freedom                                74          74
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.978
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1661.572    1360.606
  Degrees of freedom                                90          90
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.221

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.895       0.866
  Tucker-Lewis Index (TLI)                       0.872       0.837
                                                                  
  Robust Comparative Fit Index (CFI)                         0.893
  Robust Tucker-Lewis Index (TLI)                            0.869

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2410.610   -2410.610
  Scaling correction factor                                  2.057
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2291.178   -2291.178
  Scaling correction factor                                  1.250
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4871.220    4871.220
  Bayesian (BIC)                              4955.369    4955.369
  Sample-size adjusted Bayesian (SABIC)       4876.151    4876.151

Root Mean Square Error of Approximation:

  RMSEA                                          0.102       0.104
  90 Percent confidence interval - lower         0.088       0.089
  90 Percent confidence interval - upper         0.117       0.118
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    0.994       0.996
                                                                  
  Robust RMSEA                                               0.103
  90 Percent confidence interval - lower                     0.088
  90 Percent confidence interval - upper                     0.117
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.995

Standardized Root Mean Square Residual:

  SRMR                                           0.194       0.194

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.968    0.736
    EEC2              1.290    0.107   11.999    0.000    1.248    0.870
    EEC3              1.345    0.094   14.376    0.000    1.302    0.953
  EEF =~                                                                
    EEF1              1.000                               1.086    0.916
    EEF2              1.033    0.052   19.874    0.000    1.122    0.929
    EEF3              0.953    0.056   17.139    0.000    1.035    0.903
  IM =~                                                                 
    IM1               1.000                               0.885    0.761
    IM2               1.141    0.185    6.163    0.000    1.010    0.938
    IM3               1.070    0.162    6.616    0.000    0.947    0.814

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    TR_high          -0.094    0.226   -0.418    0.676   -0.107   -0.037
    reward1_ec1_TR    0.909    0.343    2.652    0.008    1.027    0.139
    reward0_ec2_TR    0.285    0.438    0.650    0.516    0.322    0.044
    reward1_ec2_TR    0.618    0.280    2.207    0.027    0.699    0.115
    reward0_ec3_TR    0.962    0.417    2.306    0.021    1.087    0.105
    reward1_ec3_TR   -0.758    0.505   -1.503    0.133   -0.857   -0.141

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
    EEF               0.671    0.120    5.580    0.000    0.639    0.639

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.792    0.093    8.518    0.000    0.792    0.458
   .EEC2              0.500    0.104    4.819    0.000    0.500    0.243
   .EEC3              0.172    0.059    2.925    0.003    0.172    0.092
   .EEF1              0.228    0.045    5.071    0.000    0.228    0.162
   .EEF2              0.201    0.050    4.024    0.000    0.201    0.138
   .EEF3              0.243    0.064    3.802    0.000    0.243    0.185
   .IM1               0.569    0.166    3.426    0.001    0.569    0.421
   .IM2               0.139    0.060    2.296    0.022    0.139    0.120
   .IM3               0.456    0.210    2.167    0.030    0.456    0.337
    EEC               0.937    0.147    6.361    0.000    1.000    1.000
    EEF               1.180    0.185    6.392    0.000    1.000    1.000
   .IM                0.734    0.204    3.599    0.000    0.938    0.938
Differential strength of trust on dependent variables - H7
$stat
[1] 0.1886436

$df
[1] 1

$p.value
[1] 0.664048

$se
[1] "robust.huber.white"

Structral model based on individual items

Complete theoretical model with dummy moderators and partial mediation
lavaan 0.6-21 ended normally after 115 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        52

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               207.274     218.981
  Degrees of freedom                               146         146
  P-value (Chi-square)                           0.001       0.000
  Scaling correction factor                                  0.947
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1771.294    1633.267
  Degrees of freedom                               189         189
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.085

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.961       0.949
  Tucker-Lewis Index (TLI)                       0.950       0.935
                                                                  
  Robust Comparative Fit Index (CFI)                         0.956
  Robust Tucker-Lewis Index (TLI)                            0.943

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2339.953   -2339.953
  Scaling correction factor                                  1.551
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2236.316   -2236.316
  Scaling correction factor                                  1.105
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4783.907    4783.907
  Bayesian (BIC)                              4958.937    4958.937
  Sample-size adjusted Bayesian (SABIC)       4794.162    4794.162

Root Mean Square Error of Approximation:

  RMSEA                                          0.044       0.048
  90 Percent confidence interval - lower         0.029       0.034
  90 Percent confidence interval - upper         0.058       0.061
  P-value H_0: RMSEA <= 0.050                    0.748       0.567
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.047
  90 Percent confidence interval - lower                     0.034
  90 Percent confidence interval - upper                     0.059
  P-value H_0: Robust RMSEA <= 0.050                         0.638
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.036       0.036

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.975    0.742
    EEC2              1.289    0.108   11.927    0.000    1.257    0.876
    EEC3              1.322    0.092   14.310    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.079    0.909
    EEF2              1.044    0.052   20.069    0.000    1.126    0.932
    EEF3              0.962    0.054   17.743    0.000    1.038    0.905
  IM =~                                                                 
    IM1               1.000                               0.937    0.806
    IM2               1.027    0.166    6.171    0.000    0.963    0.895
    IM3               1.023    0.180    5.694    0.000    0.959    0.825

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.130    0.400    0.325    0.745    0.139    0.050
    reward0_eco2      0.403    0.392    1.027    0.304    0.430    0.161
    reward1_eco2      0.582    0.339    1.716    0.086    0.621    0.232
    reward0_eco3     -0.198    0.397   -0.498    0.618   -0.211   -0.079
    reward1_eco3     -0.033    0.435   -0.075    0.940   -0.035   -0.013
    ADT_high_num      0.491    0.335    1.464    0.143    0.524    0.262
    TR_high_num      -0.121    0.281   -0.429    0.668   -0.129   -0.045
    reward1_c1_ADT    0.082    0.442    0.186    0.852    0.088    0.027
    reward0_c2_ADT   -0.256    0.449   -0.571    0.568   -0.274   -0.083
    reward1_c2_ADT   -0.484    0.418   -1.157    0.247   -0.516   -0.128
    reward0_c3_ADT    0.314    0.483    0.651    0.515    0.335    0.083
    reward1_c3_ADT   -0.160    0.512   -0.313    0.754   -0.171   -0.048
    reward1_ec1_TR    0.527    0.470    1.121    0.262    0.562    0.076
    reward0_ec2_TR    0.117    0.542    0.216    0.829    0.125    0.017
    reward1_ec2_TR    0.470    0.404    1.164    0.245    0.501    0.083
    reward0_ec3_TR    0.866    0.505    1.714    0.086    0.924    0.089
    reward1_ec3_TR   -0.600    0.598   -1.003    0.316   -0.641   -0.106
  EEF ~                                                                 
    IM                0.642    0.075    8.564    0.000    0.558    0.558
    reward1_eco1      0.107    0.182    0.588    0.557    0.099    0.036
    reward0_eco2     -0.147    0.195   -0.755    0.450   -0.136   -0.051
    reward1_eco2      0.098    0.186    0.528    0.597    0.091    0.034
    reward0_eco3     -0.121    0.171   -0.706    0.480   -0.112   -0.042
    reward1_eco3     -0.055    0.194   -0.281    0.779   -0.051   -0.019
    ADT_high_num      0.357    0.138    2.592    0.010    0.331    0.165
    TR_high_num       0.406    0.177    2.290    0.022    0.377    0.131
  EEC ~                                                                 
    IM                0.426    0.077    5.531    0.000    0.410    0.410
    reward1_eco1      0.179    0.207    0.861    0.389    0.183    0.066
    reward0_eco2      0.190    0.215    0.884    0.377    0.195    0.073
    reward1_eco2      0.292    0.198    1.478    0.139    0.300    0.112
    reward0_eco3      0.192    0.182    1.056    0.291    0.197    0.074
    reward1_eco3      0.025    0.200    0.126    0.900    0.026    0.010
    ADT_high_num      0.391    0.134    2.912    0.004    0.401    0.200
    TR_high_num       0.559    0.180    3.102    0.002    0.573    0.199

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.285    0.087    3.269    0.001    0.447    0.447

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.778    0.093    8.377    0.000    0.778    0.450
   .EEC2              0.478    0.102    4.679    0.000    0.478    0.232
   .EEC3              0.204    0.063    3.238    0.001    0.204    0.109
   .EEF1              0.244    0.046    5.345    0.000    0.244    0.173
   .EEF2              0.192    0.046    4.143    0.000    0.192    0.131
   .EEF3              0.238    0.063    3.791    0.000    0.238    0.181
   .IM1               0.473    0.170    2.779    0.005    0.473    0.350
   .IM2               0.231    0.061    3.814    0.000    0.231    0.200
   .IM3               0.432    0.206    2.103    0.035    0.432    0.320
   .EEC               0.625    0.097    6.416    0.000    0.657    0.657
   .EEF               0.649    0.144    4.500    0.000    0.558    0.558
   .IM                0.743    0.186    3.993    0.000    0.846    0.846

R-Square:
                   Estimate
    EEC1              0.550
    EEC2              0.768
    EEC3              0.891
    EEF1              0.827
    EEF2              0.869
    EEF3              0.819
    IM1               0.650
    IM2               0.800
    IM3               0.680
    EEC               0.343
    EEF               0.442
    IM                0.154

Control fit

With control
Entire model with control
lavaan 0.6-21 ended normally after 92 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        55

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               210.943     219.567
  Degrees of freedom                               152         152
  P-value (Chi-square)                           0.001       0.000
  Scaling correction factor                                  0.961
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1831.915    1680.083
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.090

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.964       0.954
  Tucker-Lewis Index (TLI)                       0.953       0.941
                                                                  
  Robust Comparative Fit Index (CFI)                         0.960
  Robust Tucker-Lewis Index (TLI)                            0.948

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2311.477   -2311.477
  Scaling correction factor                                  1.523
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2206.006   -2206.006
  Scaling correction factor                                  1.110
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4732.955    4732.955
  Bayesian (BIC)                              4918.083    4918.083
  Sample-size adjusted Bayesian (SABIC)       4743.802    4743.802

Root Mean Square Error of Approximation:

  RMSEA                                          0.043       0.046
  90 Percent confidence interval - lower         0.028       0.031
  90 Percent confidence interval - upper         0.056       0.059
  P-value H_0: RMSEA <= 0.050                    0.812       0.696
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.045
  90 Percent confidence interval - lower                     0.031
  90 Percent confidence interval - upper                     0.057
  P-value H_0: Robust RMSEA <= 0.050                         0.744
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.035       0.035

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.975    0.742
    EEC2              1.289    0.108   11.951    0.000    1.257    0.876
    EEC3              1.322    0.092   14.318    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.081    0.911
    EEF2              1.041    0.051   20.547    0.000    1.125    0.931
    EEF3              0.960    0.054   17.691    0.000    1.037    0.905
  IM =~                                                                 
    IM1               1.000                               0.938    0.807
    IM2               1.022    0.158    6.469    0.000    0.959    0.891
    IM3               1.026    0.174    5.889    0.000    0.962    0.828

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.089    0.365    0.243    0.808    0.095    0.034
    reward0_eco2      0.330    0.361    0.914    0.361    0.351    0.131
    reward1_eco2      0.639    0.295    2.168    0.030    0.681    0.255
    reward0_eco3     -0.147    0.364   -0.404    0.686   -0.157   -0.059
    reward1_eco3      0.082    0.354    0.233    0.816    0.088    0.033
    reward1_c1_ADT    0.407    0.405    1.005    0.315    0.434    0.132
    reward0_c2_ADT   -0.009    0.392   -0.024    0.981   -0.010   -0.003
    reward1_c2_ADT   -0.470    0.358   -1.312    0.189   -0.501   -0.124
    reward0_c3_ADT    0.633    0.415    1.527    0.127    0.675    0.167
    reward1_c3_ADT   -0.079    0.415   -0.191    0.849   -0.084   -0.023
    reward1_ec1_TR    0.024    0.444    0.054    0.957    0.025    0.003
    reward0_ec2_TR   -0.017    0.448   -0.038    0.969   -0.018   -0.002
    reward1_ec2_TR    0.355    0.320    1.111    0.267    0.379    0.062
    reward0_ec3_TR    0.287    0.435    0.660    0.509    0.306    0.029
    reward1_ec3_TR   -0.681    0.581   -1.174    0.240   -0.726   -0.120
    PEB_yes           0.985    0.214    4.601    0.000    1.050    0.447
    ADT_high_num      0.325    0.275    1.183    0.237    0.347    0.173
    TR_high_num       0.043    0.220    0.195    0.845    0.046    0.016
  EEF ~                                                                 
    IM                0.555    0.083    6.671    0.000    0.482    0.482
    reward1_eco1      0.163    0.187    0.870    0.384    0.150    0.054
    reward0_eco2     -0.114    0.188   -0.604    0.546   -0.105   -0.039
    reward1_eco2      0.161    0.189    0.852    0.394    0.149    0.056
    reward0_eco3     -0.068    0.171   -0.399    0.690   -0.063   -0.024
    reward1_eco3     -0.017    0.195   -0.087    0.931   -0.016   -0.006
    PEB_yes           0.406    0.199    2.042    0.041    0.376    0.160
    ADT_high_num      0.391    0.135    2.886    0.004    0.362    0.181
    TR_high_num       0.391    0.163    2.408    0.016    0.362    0.126
  EEC ~                                                                 
    IM                0.375    0.087    4.302    0.000    0.361    0.361
    reward1_eco1      0.211    0.209    1.009    0.313    0.216    0.078
    reward0_eco2      0.210    0.218    0.967    0.334    0.216    0.081
    reward1_eco2      0.329    0.202    1.626    0.104    0.337    0.126
    reward0_eco3      0.223    0.179    1.241    0.214    0.228    0.085
    reward1_eco3      0.048    0.199    0.240    0.810    0.049    0.018
    PEB_yes           0.235    0.168    1.401    0.161    0.241    0.103
    ADT_high_num      0.410    0.134    3.054    0.002    0.420    0.210
    TR_high_num       0.549    0.177    3.098    0.002    0.564    0.196

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.271    0.083    3.258    0.001    0.435    0.435

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.778    0.093    8.390    0.000    0.778    0.450
   .EEC2              0.479    0.102    4.709    0.000    0.479    0.233
   .EEC3              0.203    0.063    3.221    0.001    0.203    0.109
   .EEF1              0.239    0.045    5.274    0.000    0.239    0.170
   .EEF2              0.195    0.045    4.312    0.000    0.195    0.133
   .EEF3              0.239    0.062    3.824    0.000    0.239    0.182
   .IM1               0.471    0.164    2.868    0.004    0.471    0.348
   .IM2               0.239    0.058    4.136    0.000    0.239    0.206
   .IM3               0.426    0.204    2.089    0.037    0.426    0.315
   .EEC               0.617    0.095    6.518    0.000    0.649    0.649
   .EEF               0.627    0.137    4.569    0.000    0.537    0.537
   .IM                0.577    0.126    4.566    0.000    0.656    0.656

R-Square:
                   Estimate
    EEC1              0.550
    EEC2              0.767
    EEC3              0.891
    EEF1              0.830
    EEF2              0.867
    EEF3              0.818
    IM1               0.652
    IM2               0.794
    IM3               0.685
    EEC               0.351
    EEF               0.463
    IM                0.344
Entire model with control with EEF --> EEC
lavaan 0.6-21 ended normally after 89 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        51

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               243.470     255.179
  Degrees of freedom                               156         156
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.954
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1831.915    1680.083
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.090

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.933
  Tucker-Lewis Index (TLI)                       0.932       0.915
                                                                  
  Robust Comparative Fit Index (CFI)                         0.941
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2327.741   -2327.741
  Scaling correction factor                                  1.587
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2206.006   -2206.006
  Scaling correction factor                                  1.110
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4757.482    4757.482
  Bayesian (BIC)                              4929.147    4929.147
  Sample-size adjusted Bayesian (SABIC)       4767.540    4767.540

Root Mean Square Error of Approximation:

  RMSEA                                          0.051       0.055
  90 Percent confidence interval - lower         0.038       0.042
  90 Percent confidence interval - upper         0.063       0.067
  P-value H_0: RMSEA <= 0.050                    0.425       0.266
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.053
  90 Percent confidence interval - lower                     0.041
  90 Percent confidence interval - upper                     0.065
  P-value H_0: Robust RMSEA <= 0.050                         0.315
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.055       0.055

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.847    0.000    1.257    0.876
    EEC3              1.324    0.093   14.305    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.079    0.910
    EEF2              1.044    0.051   20.480    0.000    1.127    0.933
    EEF3              0.960    0.054   17.744    0.000    1.036    0.904
  IM =~                                                                 
    IM1               1.000                               0.957    0.824
    IM2               0.985    0.167    5.888    0.000    0.943    0.876
    IM3               0.994    0.188    5.292    0.000    0.951    0.818

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.089    0.372    0.239    0.811    0.093    0.034
    reward0_eco2      0.339    0.368    0.922    0.357    0.354    0.132
    reward1_eco2      0.658    0.297    2.215    0.027    0.688    0.257
    reward0_eco3     -0.126    0.371   -0.340    0.734   -0.132   -0.049
    reward1_eco3      0.080    0.359    0.222    0.825    0.083    0.031
    ADT_high_num      0.390    0.290    1.343    0.179    0.407    0.203
    TR_high_num       0.102    0.228    0.450    0.653    0.107    0.037
    reward1_c1_ADT    0.405    0.410    0.989    0.323    0.423    0.129
    reward0_c2_ADT   -0.012    0.400   -0.029    0.976   -0.012   -0.004
    reward1_c2_ADT   -0.486    0.367   -1.324    0.185   -0.507   -0.125
    reward0_c3_ADT    0.624    0.421    1.481    0.139    0.651    0.161
    reward1_c3_ADT   -0.080    0.416   -0.191    0.848   -0.083   -0.023
    reward1_ec1_TR    0.015    0.453    0.034    0.973    0.016    0.002
    reward0_ec2_TR   -0.006    0.460   -0.013    0.989   -0.006   -0.001
    reward1_ec2_TR    0.364    0.328    1.110    0.267    0.380    0.063
    reward0_ec3_TR    0.304    0.440    0.691    0.490    0.318    0.031
    reward1_ec3_TR   -0.651    0.583   -1.116    0.265   -0.680   -0.112
    PEB_yes           1.014    0.220    4.616    0.000    1.059    0.451
  EEF ~                                                                 
    IM                0.643    0.096    6.672    0.000    0.571    0.571
    reward1_eco1      0.140    0.189    0.740    0.459    0.130    0.047
    reward0_eco2     -0.161    0.198   -0.813    0.416   -0.149   -0.056
    reward1_eco2      0.042    0.198    0.210    0.834    0.039    0.014
    reward0_eco3     -0.192    0.179   -1.077    0.282   -0.178   -0.067
    reward1_eco3     -0.038    0.208   -0.184    0.854   -0.035   -0.013
    PEB_yes           0.315    0.236    1.336    0.181    0.292    0.124
  EEC ~                                                                 
    IM                0.154    0.106    1.458    0.145    0.151    0.151
    reward1_eco1      0.104    0.207    0.502    0.615    0.107    0.039
    reward0_eco2      0.225    0.199    1.129    0.259    0.231    0.086
    reward1_eco2      0.174    0.193    0.903    0.366    0.179    0.067
    reward0_eco3      0.165    0.177    0.930    0.352    0.169    0.063
    reward1_eco3      0.035    0.202    0.176    0.861    0.036    0.014
    PEB_yes          -0.009    0.151   -0.059    0.953   -0.009   -0.004
    EEF               0.493    0.084    5.860    0.000    0.546    0.546

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.412    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.599    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.289    0.001    0.204    0.109
   .EEF1              0.242    0.046    5.314    0.000    0.242    0.172
   .EEF2              0.190    0.045    4.266    0.000    0.190    0.130
   .EEF3              0.241    0.063    3.830    0.000    0.241    0.183
   .IM1               0.435    0.172    2.527    0.011    0.435    0.322
   .IM2               0.269    0.082    3.275    0.001    0.269    0.232
   .IM3               0.447    0.228    1.964    0.049    0.447    0.331
   .EEC               0.532    0.084    6.370    0.000    0.561    0.561
   .EEF               0.666    0.162    4.110    0.000    0.572    0.572
   .IM                0.586    0.125    4.695    0.000    0.639    0.639

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.828
    EEF2              0.870
    EEF3              0.817
    IM1               0.678
    IM2               0.768
    IM3               0.669
    EEC               0.439
    EEF               0.428
    IM                0.361
Without PEB control
Complete theoretical model with dummy moderators and partial mediation
lavaan 0.6-21 ended normally after 105 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        48

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               237.626     252.700
  Degrees of freedom                               150         150
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1771.294    1633.267
  Degrees of freedom                               189         189
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.085

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.929
  Tucker-Lewis Index (TLI)                       0.930       0.910
                                                                  
  Robust Comparative Fit Index (CFI)                         0.938
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2355.129   -2355.129
  Scaling correction factor                                  1.621
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2236.316   -2236.316
  Scaling correction factor                                  1.105
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4806.259    4806.259
  Bayesian (BIC)                              4967.826    4967.826
  Sample-size adjusted Bayesian (SABIC)       4815.726    4815.726

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.057
  90 Percent confidence interval - lower         0.039       0.044
  90 Percent confidence interval - upper         0.065       0.069
  P-value H_0: RMSEA <= 0.050                    0.372       0.189
  P-value H_0: RMSEA >= 0.080                    0.000       0.001
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.043
  90 Percent confidence interval - upper                     0.066
  P-value H_0: Robust RMSEA <= 0.050                         0.241
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.056       0.056

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.843    0.000    1.257    0.876
    EEC3              1.324    0.093   14.306    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.051    0.000    1.128    0.933
    EEF3              0.962    0.054   17.777    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.955    0.822
    IM2               0.992    0.178    5.589    0.000    0.948    0.881
    IM3               0.994    0.196    5.066    0.000    0.949    0.816

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.130    0.406    0.321    0.748    0.136    0.049
    reward0_eco2      0.415    0.398    1.042    0.297    0.434    0.162
    reward1_eco2      0.600    0.342    1.755    0.079    0.628    0.235
    reward0_eco3     -0.179    0.404   -0.444    0.657   -0.188   -0.070
    reward1_eco3     -0.037    0.442   -0.084    0.933   -0.039   -0.015
    ADT_high_num      0.557    0.352    1.582    0.114    0.583    0.291
    TR_high_num      -0.062    0.287   -0.217    0.828   -0.065   -0.023
    reward1_c1_ADT    0.074    0.448    0.166    0.868    0.078    0.024
    reward0_c2_ADT   -0.265    0.458   -0.579    0.562   -0.277   -0.084
    reward1_c2_ADT   -0.500    0.428   -1.169    0.243   -0.523   -0.129
    reward0_c3_ADT    0.300    0.494    0.607    0.544    0.314    0.078
    reward1_c3_ADT   -0.165    0.517   -0.319    0.750   -0.172   -0.048
    reward1_ec1_TR    0.530    0.482    1.099    0.272    0.555    0.075
    reward0_ec2_TR    0.129    0.554    0.234    0.815    0.135    0.018
    reward1_ec2_TR    0.481    0.415    1.158    0.247    0.503    0.083
    reward0_ec3_TR    0.895    0.517    1.733    0.083    0.937    0.090
    reward1_ec3_TR   -0.572    0.606   -0.944    0.345   -0.598   -0.099
  EEF ~                                                                 
    IM                0.463    0.088    5.238    0.000    0.410    0.410
    reward1_eco1      0.021    0.190    0.111    0.912    0.020    0.007
    reward0_eco2     -0.252    0.184   -1.369    0.171   -0.234   -0.088
    reward1_eco2     -0.086    0.181   -0.474    0.635   -0.080   -0.030
    reward0_eco3     -0.256    0.171   -1.502    0.133   -0.238   -0.089
    reward1_eco3     -0.069    0.186   -0.371    0.711   -0.064   -0.024
    EEC               0.484    0.126    3.848    0.000    0.437    0.437
  EEC ~                                                                 
    IM                0.499    0.078    6.403    0.000    0.489    0.489
    reward1_eco1      0.152    0.206    0.739    0.460    0.156    0.056
    reward0_eco2      0.133    0.221    0.604    0.546    0.137    0.051
    reward1_eco2      0.175    0.214    0.821    0.412    0.180    0.067
    reward0_eco3      0.051    0.185    0.277    0.782    0.053    0.020
    reward1_eco3      0.002    0.222    0.008    0.994    0.002    0.001

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.412    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.591    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.303    0.001    0.204    0.109
   .EEF1              0.246    0.046    5.370    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.120    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.803    0.000    0.240    0.183
   .IM1               0.439    0.182    2.415    0.016    0.439    0.324
   .IM2               0.259    0.084    3.084    0.002    0.259    0.224
   .IM3               0.451    0.229    1.970    0.049    0.451    0.333
   .EEC               0.701    0.120    5.835    0.000    0.739    0.739
   .EEF               0.520    0.095    5.454    0.000    0.448    0.448
   .IM                0.761    0.189    4.021    0.000    0.834    0.834

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.676
    IM2               0.776
    IM3               0.667
    EEC               0.261
    EEF               0.552
    IM                0.166
Comparing baseline model fits with and without PEB control
Baseline model without PEB as control
     aic      bic     srmr    rmsea      cfi      tli 
4806.259 4967.826    0.056    0.052    0.945    0.930 
Baseline model with PEB as control
     aic      bic     srmr    rmsea      cfi      tli 
4732.955 4918.083    0.035    0.043    0.964    0.953 

Derived model (only interactions on IM)

lavaan 0.6-21 ended normally after 89 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        55

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               210.943     219.567
  Degrees of freedom                               152         152
  P-value (Chi-square)                           0.001       0.000
  Scaling correction factor                                  0.961
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1831.915    1680.083
  Degrees of freedom                               198         198
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.090

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.964       0.954
  Tucker-Lewis Index (TLI)                       0.953       0.941
                                                                  
  Robust Comparative Fit Index (CFI)                         0.960
  Robust Tucker-Lewis Index (TLI)                            0.948

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2311.477   -2311.477
  Scaling correction factor                                  1.523
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2206.006   -2206.006
  Scaling correction factor                                  1.110
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4732.955    4732.955
  Bayesian (BIC)                              4918.083    4918.083
  Sample-size adjusted Bayesian (SABIC)       4743.802    4743.802

Root Mean Square Error of Approximation:

  RMSEA                                          0.043       0.046
  90 Percent confidence interval - lower         0.028       0.031
  90 Percent confidence interval - upper         0.056       0.059
  P-value H_0: RMSEA <= 0.050                    0.812       0.696
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.045
  90 Percent confidence interval - lower                     0.031
  90 Percent confidence interval - upper                     0.057
  P-value H_0: Robust RMSEA <= 0.050                         0.744
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.035       0.035

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.975    0.742
    EEC2              1.289    0.108   11.951    0.000    1.257    0.876
    EEC3              1.322    0.092   14.318    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.081    0.911
    EEF2              1.041    0.051   20.547    0.000    1.125    0.931
    EEF3              0.960    0.054   17.691    0.000    1.037    0.905
  IM =~                                                                 
    IM1               1.000                               0.938    0.807
    IM2               1.022    0.158    6.469    0.000    0.959    0.891
    IM3               1.026    0.174    5.889    0.000    0.962    0.828

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.089    0.365    0.243    0.808    0.095    0.034
    reward0_eco2      0.330    0.361    0.914    0.361    0.351    0.131
    reward1_eco2      0.639    0.295    2.168    0.030    0.681    0.255
    reward0_eco3     -0.147    0.364   -0.404    0.686   -0.157   -0.059
    reward1_eco3      0.082    0.354    0.233    0.816    0.088    0.033
    reward1_c1_ADT    0.407    0.405    1.005    0.315    0.434    0.132
    reward0_c2_ADT   -0.009    0.392   -0.023    0.981   -0.010   -0.003
    reward1_c2_ADT   -0.470    0.358   -1.312    0.189   -0.501   -0.124
    reward0_c3_ADT    0.633    0.415    1.527    0.127    0.675    0.167
    reward1_c3_ADT   -0.079    0.415   -0.191    0.849   -0.084   -0.023
    reward1_ec1_TR    0.024    0.444    0.054    0.957    0.025    0.003
    reward0_ec2_TR   -0.017    0.448   -0.038    0.969   -0.018   -0.002
    reward1_ec2_TR    0.355    0.320    1.111    0.267    0.379    0.062
    reward0_ec3_TR    0.287    0.435    0.660    0.509    0.306    0.029
    reward1_ec3_TR   -0.681    0.581   -1.174    0.240   -0.726   -0.120
    PEB_yes           0.985    0.214    4.601    0.000    1.050    0.447
    ADT_high_num      0.325    0.275    1.183    0.237    0.347    0.173
    TR_high_num       0.043    0.220    0.195    0.845    0.046    0.016
  EEF ~                                                                 
    IM                0.390    0.090    4.341    0.000    0.339    0.339
    EEC               0.439    0.115    3.818    0.000    0.396    0.396
    reward1_eco1      0.070    0.193    0.363    0.716    0.065    0.023
    reward0_eco2     -0.206    0.176   -1.169    0.242   -0.190   -0.071
    reward1_eco2      0.017    0.182    0.092    0.926    0.016    0.006
    reward0_eco3     -0.166    0.171   -0.973    0.330   -0.154   -0.057
    reward1_eco3     -0.038    0.188   -0.202    0.840   -0.035   -0.013
    PEB_yes           0.303    0.169    1.791    0.073    0.280    0.120
    ADT_high_num      0.211    0.119    1.769    0.077    0.195    0.098
    TR_high_num       0.150    0.140    1.076    0.282    0.139    0.048
  EEC ~                                                                 
    IM                0.375    0.087    4.302    0.000    0.361    0.361
    reward1_eco1      0.211    0.209    1.009    0.313    0.216    0.078
    reward0_eco2      0.210    0.218    0.967    0.334    0.216    0.081
    reward1_eco2      0.329    0.202    1.626    0.104    0.337    0.126
    reward0_eco3      0.223    0.179    1.241    0.214    0.228    0.085
    reward1_eco3      0.048    0.199    0.240    0.810    0.049    0.018
    PEB_yes           0.235    0.168    1.401    0.161    0.241    0.103
    ADT_high_num      0.410    0.134    3.054    0.002    0.420    0.210
    TR_high_num       0.549    0.177    3.098    0.002    0.564    0.196

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.778    0.093    8.390    0.000    0.778    0.450
   .EEC2              0.479    0.102    4.709    0.000    0.479    0.233
   .EEC3              0.203    0.063    3.221    0.001    0.203    0.109
   .EEF1              0.239    0.045    5.274    0.000    0.239    0.170
   .EEF2              0.195    0.045    4.312    0.000    0.195    0.133
   .EEF3              0.239    0.062    3.824    0.000    0.239    0.182
   .IM1               0.471    0.164    2.868    0.004    0.471    0.348
   .IM2               0.239    0.058    4.136    0.000    0.239    0.206
   .IM3               0.426    0.204    2.089    0.037    0.426    0.315
   .EEC               0.617    0.095    6.518    0.000    0.649    0.649
   .EEF               0.508    0.089    5.701    0.000    0.435    0.435
   .IM                0.577    0.126    4.566    0.000    0.656    0.656

R-Square:
                   Estimate
    EEC1              0.550
    EEC2              0.767
    EEC3              0.891
    EEF1              0.830
    EEF2              0.867
    EEF3              0.818
    IM1               0.652
    IM2               0.794
    IM3               0.685
    EEC               0.351
    EEF               0.565
    IM                0.344
                 lhs              rhs op           est         se           z
1       ADT_high_num     ADT_high_num ~~  0.2498034763 0.00000000          NA
2       ADT_high_num      TR_high_num ~~  0.0587824264 0.00000000          NA
3                EEC     ADT_high_num  ~  0.4099660395 0.13423920  3.05399647
4                EEC              EEC ~~  0.6169227387 0.09465192  6.51780505
5                EEC             EEC1 =~  1.0000000000 0.00000000          NA
6                EEC             EEC2 =~  1.2888479465 0.10784217 11.95124283
7                EEC             EEC3 =~  1.3224070038 0.09235868 14.31816701
8                EEC               IM  ~  0.3749306014 0.08714615  4.30231954
9                EEC          PEB_yes  ~  0.2354385849 0.16805668  1.40094746
10               EEC     reward0_eco2  ~  0.2103582880 0.21752250  0.96706451
11               EEC     reward0_eco3  ~  0.2225564180 0.17927508  1.24142420
12               EEC     reward1_eco1  ~  0.2108686713 0.20901841  1.00885212
13               EEC     reward1_eco2  ~  0.3289448830 0.20233495  1.62574426
14               EEC     reward1_eco3  ~  0.0477876526 0.19922253  0.23987072
15               EEC      TR_high_num  ~  0.5494195395 0.17732675  3.09834553
16              EEC1             EEC1 ~~  0.7777674502 0.09270177  8.38999604
17              EEC2             EEC2 ~~  0.4791002677 0.10174836  4.70867808
18              EEC3             EEC3 ~~  0.2034657356 0.06317101  3.22087200
19               EEF     ADT_high_num  ~  0.2108501656 0.11917941  1.76918283
20               EEF              EEC  ~  0.4388572214 0.11494705  3.81790769
21               EEF              EEF ~~  0.5079978615 0.08910827  5.70090611
22               EEF             EEF1 =~  1.0000000000 0.00000000          NA
23               EEF             EEF2 =~  1.0408492719 0.05065593 20.54743366
24               EEF             EEF3 =~  0.9599268899 0.05426161 17.69071966
25               EEF               IM  ~  0.3904261781 0.08993994  4.34096549
26               EEF          PEB_yes  ~  0.3031422036 0.16922914  1.79131212
27               EEF     reward0_eco2  ~ -0.2058194520 0.17605607 -1.16905627
28               EEF     reward0_eco3  ~ -0.1660349201 0.17059946 -0.97324412
29               EEF     reward1_eco1  ~  0.0701093116 0.19304660  0.36317300
30               EEF     reward1_eco2  ~  0.0167726231 0.18166424  0.09232760
31               EEF     reward1_eco3  ~ -0.0379111446 0.18764438 -0.20203720
32               EEF      TR_high_num  ~  0.1503196890 0.13976646  1.07550615
33              EEF1             EEF1 ~~  0.2393823162 0.04538776  5.27415975
34              EEF2             EEF2 ~~  0.1946787827 0.04514821  4.31199314
35              EEF3             EEF3 ~~  0.2388164149 0.06244513  3.82442008
36                IM     ADT_high_num  ~  0.3253097884 0.27508360  1.18258520
37                IM               IM ~~  0.5773515452 0.12643470  4.56640101
38                IM              IM1 =~  1.0000000000 0.00000000          NA
39                IM              IM2 =~  1.0216009851 0.15793073  6.46866482
40                IM              IM3 =~  1.0255724901 0.17413775  5.88943245
41                IM          PEB_yes  ~  0.9850171573 0.21408823  4.60098696
42                IM     reward0_eco2  ~  0.3297655214 0.36095813  0.91358386
43                IM reward0_eco2_ADT  ~ -0.0091979258 0.39205256 -0.02346095
44                IM  reward0_eco2_TR  ~ -0.0171985702 0.44790809 -0.03839754
45                IM     reward0_eco3  ~ -0.1471425724 0.36382331 -0.40443416
46                IM reward0_eco3_ADT  ~  0.6330963761 0.41467046  1.52674579
47                IM  reward0_eco3_TR  ~  0.2873735333 0.43516521  0.66037801
48                IM     reward1_eco1  ~  0.0888859591 0.36546126  0.24321582
49                IM reward1_eco1_ADT  ~  0.4074576555 0.40533275  1.00524238
50                IM  reward1_eco1_TR  ~  0.0238083123 0.44401522  0.05362049
51                IM     reward1_eco2  ~  0.6393298107 0.29483398  2.16844006
52                IM reward1_eco2_ADT  ~ -0.4700751342 0.35825665 -1.31211837
53                IM  reward1_eco2_TR  ~  0.3552365095 0.31970194  1.11114907
54                IM     reward1_eco3  ~  0.0824400408 0.35440989  0.23261214
55                IM reward1_eco3_ADT  ~ -0.0792095507 0.41519017 -0.19077896
56                IM  reward1_eco3_TR  ~ -0.6814329196 0.58055401 -1.17376318
57                IM      TR_high_num  ~  0.0429624582 0.22025114  0.19506123
58               IM1              IM1 ~~  0.4709202979 0.16421214  2.86775562
59               IM2              IM2 ~~  0.2388265815 0.05774884  4.13560829
60               IM3              IM3 ~~  0.4260948940 0.20393948  2.08932031
61           PEB_yes     ADT_high_num ~~  0.0056773517 0.00000000          NA
62           PEB_yes          PEB_yes ~~  0.1815224037 0.00000000          NA
63           PEB_yes      TR_high_num ~~  0.0053716482 0.00000000          NA
64      reward0_eco2     ADT_high_num ~~  0.0163333042 0.00000000          NA
65      reward0_eco2          PEB_yes ~~  0.0073805573 0.00000000          NA
66      reward0_eco2     reward0_eco2 ~~  0.1399248843 0.00000000          NA
67      reward0_eco2 reward0_eco2_ADT ~~  0.0855096515 0.00000000          NA
68      reward0_eco2  reward0_eco2_TR ~~  0.0155472094 0.00000000          NA
69      reward0_eco2     reward0_eco3 ~~ -0.0282994148 0.00000000          NA
70      reward0_eco2 reward0_eco3_ADT ~~ -0.0110053280 0.00000000          NA
71      reward0_eco2  reward0_eco3_TR ~~ -0.0015721897 0.00000000          NA
72      reward0_eco2 reward1_eco1_ADT ~~ -0.0172940868 0.00000000          NA
73      reward0_eco2  reward1_eco1_TR ~~ -0.0031443794 0.00000000          NA
74      reward0_eco2     reward1_eco2 ~~ -0.0282994148 0.00000000          NA
75      reward0_eco2 reward1_eco2_ADT ~~ -0.0110053280 0.00000000          NA
76      reward0_eco2  reward1_eco2_TR ~~ -0.0047165691 0.00000000          NA
77      reward0_eco2     reward1_eco3 ~~ -0.0282994148 0.00000000          NA
78      reward0_eco2 reward1_eco3_ADT ~~ -0.0141497074 0.00000000          NA
79      reward0_eco2  reward1_eco3_TR ~~ -0.0047165691 0.00000000          NA
80      reward0_eco2      TR_high_num ~~ -0.0048912569 0.00000000          NA
81  reward0_eco2_ADT     ADT_high_num ~~  0.0499606953 0.00000000          NA
82  reward0_eco2_ADT          PEB_yes ~~  0.0011354703 0.00000000          NA
83  reward0_eco2_ADT reward0_eco2_ADT ~~  0.0922351297 0.00000000          NA
84  reward0_eco2_ADT  reward0_eco2_TR ~~  0.0167700236 0.00000000          NA
85  reward0_eco2_ADT reward0_eco3_ADT ~~ -0.0067254782 0.00000000          NA
86  reward0_eco2_ADT  reward0_eco3_TR ~~ -0.0009607826 0.00000000          NA
87  reward0_eco2_ADT  reward1_eco1_TR ~~ -0.0019215652 0.00000000          NA
88  reward0_eco2_ADT reward1_eco2_ADT ~~ -0.0067254782 0.00000000          NA
89  reward0_eco2_ADT  reward1_eco2_TR ~~ -0.0028823478 0.00000000          NA
90  reward0_eco2_ADT reward1_eco3_ADT ~~ -0.0086470434 0.00000000          NA
91  reward0_eco2_ADT  reward1_eco3_TR ~~ -0.0028823478 0.00000000          NA
92  reward0_eco2_ADT      TR_high_num ~~  0.0042798498 0.00000000          NA
93   reward0_eco2_TR     ADT_high_num ~~  0.0090837628 0.00000000          NA
94   reward0_eco2_TR          PEB_yes ~~ -0.0002183597 0.00000000          NA
95   reward0_eco2_TR  reward0_eco2_TR ~~  0.0183422133 0.00000000          NA
96   reward0_eco2_TR  reward0_eco3_TR ~~ -0.0001746877 0.00000000          NA
97   reward0_eco2_TR  reward1_eco2_TR ~~ -0.0005240632 0.00000000          NA
98   reward0_eco2_TR  reward1_eco3_TR ~~ -0.0005240632 0.00000000          NA
99   reward0_eco2_TR      TR_high_num ~~  0.0160712726 0.00000000          NA
100     reward0_eco3     ADT_high_num ~~ -0.0210498734 0.00000000          NA
101     reward0_eco3          PEB_yes ~~ -0.0113110315 0.00000000          NA
102     reward0_eco3 reward0_eco2_ADT ~~ -0.0172940868 0.00000000          NA
103     reward0_eco3  reward0_eco2_TR ~~ -0.0031443794 0.00000000          NA
104     reward0_eco3     reward0_eco3 ~~  0.1399248843 0.00000000          NA
105     reward0_eco3 reward0_eco3_ADT ~~  0.0544152328 0.00000000          NA
106     reward0_eco3  reward0_eco3_TR ~~  0.0077736047 0.00000000          NA
107     reward0_eco3 reward1_eco1_ADT ~~ -0.0172940868 0.00000000          NA
108     reward0_eco3  reward1_eco1_TR ~~ -0.0031443794 0.00000000          NA
109     reward0_eco3 reward1_eco2_ADT ~~ -0.0110053280 0.00000000          NA
110     reward0_eco3  reward1_eco2_TR ~~ -0.0047165691 0.00000000          NA
111     reward0_eco3     reward1_eco3 ~~ -0.0282994148 0.00000000          NA
112     reward0_eco3 reward1_eco3_ADT ~~ -0.0141497074 0.00000000          NA
113     reward0_eco3  reward1_eco3_TR ~~ -0.0047165691 0.00000000          NA
114     reward0_eco3      TR_high_num ~~ -0.0142370513 0.00000000          NA
115 reward0_eco3_ADT     ADT_high_num ~~  0.0317931697 0.00000000          NA
116 reward0_eco3_ADT          PEB_yes ~~ -0.0077736047 0.00000000          NA
117 reward0_eco3_ADT  reward0_eco2_TR ~~ -0.0012228142 0.00000000          NA
118 reward0_eco3_ADT reward0_eco3_ADT ~~  0.0611407110 0.00000000          NA
119 reward0_eco3_ADT  reward0_eco3_TR ~~  0.0087343873 0.00000000          NA
120 reward0_eco3_ADT  reward1_eco1_TR ~~ -0.0012228142 0.00000000          NA
121 reward0_eco3_ADT  reward1_eco2_TR ~~ -0.0018342213 0.00000000          NA
122 reward0_eco3_ADT reward1_eco3_ADT ~~ -0.0055026640 0.00000000          NA
123 reward0_eco3_ADT  reward1_eco3_TR ~~ -0.0018342213 0.00000000          NA
124 reward0_eco3_ADT      TR_high_num ~~  0.0001746877 0.00000000          NA
125  reward0_eco3_TR     ADT_high_num ~~  0.0045418814 0.00000000          NA
126  reward0_eco3_TR          PEB_yes ~~  0.0022272688 0.00000000          NA
127  reward0_eco3_TR  reward0_eco3_TR ~~  0.0092584505 0.00000000          NA
128  reward0_eco3_TR  reward1_eco3_TR ~~ -0.0002620316 0.00000000          NA
129  reward0_eco3_TR      TR_high_num ~~  0.0080356363 0.00000000          NA
130     reward1_eco1     ADT_high_num ~~  0.0235391737 0.00000000          NA
131     reward1_eco1          PEB_yes ~~ -0.0006332431 0.00000000          NA
132     reward1_eco1     reward0_eco2 ~~ -0.0259411302 0.00000000          NA
133     reward1_eco1 reward0_eco2_ADT ~~ -0.0158529129 0.00000000          NA
134     reward1_eco1  reward0_eco2_TR ~~ -0.0028823478 0.00000000          NA
135     reward1_eco1     reward0_eco3 ~~ -0.0259411302 0.00000000          NA
136     reward1_eco1 reward0_eco3_ADT ~~ -0.0100882173 0.00000000          NA
137     reward1_eco1  reward0_eco3_TR ~~ -0.0014411739 0.00000000          NA
138     reward1_eco1     reward1_eco1 ~~  0.1304262381 0.00000000          NA
139     reward1_eco1 reward1_eco1_ADT ~~  0.0869508254 0.00000000          NA
140     reward1_eco1  reward1_eco1_TR ~~  0.0158092410 0.00000000          NA
141     reward1_eco1     reward1_eco2 ~~ -0.0259411302 0.00000000          NA
142     reward1_eco1 reward1_eco2_ADT ~~ -0.0100882173 0.00000000          NA
143     reward1_eco1  reward1_eco2_TR ~~ -0.0043235217 0.00000000          NA
144     reward1_eco1     reward1_eco3 ~~ -0.0259411302 0.00000000          NA
145     reward1_eco1 reward1_eco3_ADT ~~ -0.0129705651 0.00000000          NA
146     reward1_eco1  reward1_eco3_TR ~~ -0.0043235217 0.00000000          NA
147     reward1_eco1      TR_high_num ~~ -0.0029260197 0.00000000          NA
148 reward1_eco1_ADT     ADT_high_num ~~  0.0499606953 0.00000000          NA
149 reward1_eco1_ADT          PEB_yes ~~ -0.0035374268 0.00000000          NA
150 reward1_eco1_ADT reward0_eco2_ADT ~~ -0.0105686086 0.00000000          NA
151 reward1_eco1_ADT  reward0_eco2_TR ~~ -0.0019215652 0.00000000          NA
152 reward1_eco1_ADT reward0_eco3_ADT ~~ -0.0067254782 0.00000000          NA
153 reward1_eco1_ADT  reward0_eco3_TR ~~ -0.0009607826 0.00000000          NA
154 reward1_eco1_ADT reward1_eco1_ADT ~~  0.0922351297 0.00000000          NA
155 reward1_eco1_ADT  reward1_eco1_TR ~~  0.0167700236 0.00000000          NA
156 reward1_eco1_ADT reward1_eco2_ADT ~~ -0.0067254782 0.00000000          NA
157 reward1_eco1_ADT  reward1_eco2_TR ~~ -0.0028823478 0.00000000          NA
158 reward1_eco1_ADT reward1_eco3_ADT ~~ -0.0086470434 0.00000000          NA
159 reward1_eco1_ADT  reward1_eco3_TR ~~ -0.0028823478 0.00000000          NA
160 reward1_eco1_ADT      TR_high_num ~~  0.0042798498 0.00000000          NA
161  reward1_eco1_TR     ADT_high_num ~~  0.0090837628 0.00000000          NA
162  reward1_eco1_TR          PEB_yes ~~  0.0044545375 0.00000000          NA
163  reward1_eco1_TR  reward0_eco2_TR ~~ -0.0003493755 0.00000000          NA
164  reward1_eco1_TR  reward0_eco3_TR ~~ -0.0001746877 0.00000000          NA
165  reward1_eco1_TR  reward1_eco1_TR ~~  0.0183422133 0.00000000          NA
166  reward1_eco1_TR  reward1_eco2_TR ~~ -0.0005240632 0.00000000          NA
167  reward1_eco1_TR  reward1_eco3_TR ~~ -0.0005240632 0.00000000          NA
168  reward1_eco1_TR      TR_high_num ~~  0.0160712726 0.00000000          NA
169     reward1_eco2     ADT_high_num ~~ -0.0210498734 0.00000000          NA
170     reward1_eco2          PEB_yes ~~  0.0027076601 0.00000000          NA
171     reward1_eco2 reward0_eco2_ADT ~~ -0.0172940868 0.00000000          NA
172     reward1_eco2  reward0_eco2_TR ~~ -0.0031443794 0.00000000          NA
173     reward1_eco2     reward0_eco3 ~~ -0.0282994148 0.00000000          NA
174     reward1_eco2 reward0_eco3_ADT ~~ -0.0110053280 0.00000000          NA
175     reward1_eco2  reward0_eco3_TR ~~ -0.0015721897 0.00000000          NA
176     reward1_eco2 reward1_eco1_ADT ~~ -0.0172940868 0.00000000          NA
177     reward1_eco2  reward1_eco1_TR ~~ -0.0031443794 0.00000000          NA
178     reward1_eco2     reward1_eco2 ~~  0.1399248843 0.00000000          NA
179     reward1_eco2 reward1_eco2_ADT ~~  0.0544152328 0.00000000          NA
180     reward1_eco2  reward1_eco2_TR ~~  0.0233208140 0.00000000          NA
181     reward1_eco2     reward1_eco3 ~~ -0.0282994148 0.00000000          NA
182     reward1_eco2 reward1_eco3_ADT ~~ -0.0141497074 0.00000000          NA
183     reward1_eco2  reward1_eco3_TR ~~ -0.0047165691 0.00000000          NA
184     reward1_eco2      TR_high_num ~~  0.0044545375 0.00000000          NA
185 reward1_eco2_ADT     ADT_high_num ~~  0.0317931697 0.00000000          NA
186 reward1_eco2_ADT          PEB_yes ~~  0.0062450869 0.00000000          NA
187 reward1_eco2_ADT  reward0_eco2_TR ~~ -0.0012228142 0.00000000          NA
188 reward1_eco2_ADT reward0_eco3_ADT ~~ -0.0042798498 0.00000000          NA
189 reward1_eco2_ADT  reward0_eco3_TR ~~ -0.0006114071 0.00000000          NA
190 reward1_eco2_ADT  reward1_eco1_TR ~~ -0.0012228142 0.00000000          NA
191 reward1_eco2_ADT reward1_eco2_ADT ~~  0.0611407110 0.00000000          NA
192 reward1_eco2_ADT  reward1_eco2_TR ~~  0.0262031618 0.00000000          NA
193 reward1_eco2_ADT reward1_eco3_ADT ~~ -0.0055026640 0.00000000          NA
194 reward1_eco2_ADT  reward1_eco3_TR ~~ -0.0018342213 0.00000000          NA
195 reward1_eco2_ADT      TR_high_num ~~  0.0188662765 0.00000000          NA
196  reward1_eco2_TR     ADT_high_num ~~  0.0136256442 0.00000000          NA
197  reward1_eco2_TR          PEB_yes ~~  0.0020089091 0.00000000          NA
198  reward1_eco2_TR  reward0_eco3_TR ~~ -0.0002620316 0.00000000          NA
199  reward1_eco2_TR  reward1_eco2_TR ~~  0.0272512883 0.00000000          NA
200  reward1_eco2_TR  reward1_eco3_TR ~~ -0.0007860949 0.00000000          NA
201  reward1_eco2_TR      TR_high_num ~~  0.0241069089 0.00000000          NA
202     reward1_eco3     ADT_high_num ~~ -0.0023582846 0.00000000          NA
203     reward1_eco3          PEB_yes ~~ -0.0113110315 0.00000000          NA
204     reward1_eco3 reward0_eco2_ADT ~~ -0.0172940868 0.00000000          NA
205     reward1_eco3  reward0_eco2_TR ~~ -0.0031443794 0.00000000          NA
206     reward1_eco3 reward0_eco3_ADT ~~ -0.0110053280 0.00000000          NA
207     reward1_eco3  reward0_eco3_TR ~~ -0.0015721897 0.00000000          NA
208     reward1_eco3 reward1_eco1_ADT ~~ -0.0172940868 0.00000000          NA
209     reward1_eco3  reward1_eco1_TR ~~ -0.0031443794 0.00000000          NA
210     reward1_eco3 reward1_eco2_ADT ~~ -0.0110053280 0.00000000          NA
211     reward1_eco3  reward1_eco2_TR ~~ -0.0047165691 0.00000000          NA
212     reward1_eco3     reward1_eco3 ~~  0.1399248843 0.00000000          NA
213     reward1_eco3 reward1_eco3_ADT ~~  0.0699624421 0.00000000          NA
214     reward1_eco3  reward1_eco3_TR ~~  0.0233208140 0.00000000          NA
215     reward1_eco3      TR_high_num ~~  0.0044545375 0.00000000          NA
216 reward1_eco3_ADT     ADT_high_num ~~  0.0408769325 0.00000000          NA
217 reward1_eco3_ADT          PEB_yes ~~ -0.0033190672 0.00000000          NA
218 reward1_eco3_ADT  reward0_eco2_TR ~~ -0.0015721897 0.00000000          NA
219 reward1_eco3_ADT  reward0_eco3_TR ~~ -0.0007860949 0.00000000          NA
220 reward1_eco3_ADT  reward1_eco1_TR ~~ -0.0015721897 0.00000000          NA
221 reward1_eco3_ADT  reward1_eco2_TR ~~ -0.0023582846 0.00000000          NA
222 reward1_eco3_ADT reward1_eco3_ADT ~~  0.0770372958 0.00000000          NA
223 reward1_eco3_ADT  reward1_eco3_TR ~~  0.0256790986 0.00000000          NA
224 reward1_eco3_ADT      TR_high_num ~~  0.0162459603 0.00000000          NA
225  reward1_eco3_TR     ADT_high_num ~~  0.0136256442 0.00000000          NA
226  reward1_eco3_TR          PEB_yes ~~ -0.0026639881 0.00000000          NA
227  reward1_eco3_TR  reward1_eco3_TR ~~  0.0272512883 0.00000000          NA
228  reward1_eco3_TR      TR_high_num ~~  0.0241069089 0.00000000          NA
229      TR_high_num      TR_high_num ~~  0.1205345445 0.00000000          NA
          pvalue      ci.lower      ci.upper      est.std     se.std
1             NA  0.2498034763  0.2498034763  1.000000000 0.00000000
2             NA  0.0587824264  0.0587824264  0.338760297 0.00000000
3   2.258147e-03  0.1468620444  0.6730700345  0.210157533 0.06868486
4   7.134360e-11  0.4314083915  0.8024370859  0.648972745 0.06109572
5             NA  1.0000000000  1.0000000000  0.741621532 0.03708057
6   0.000000e+00  1.0774811796  1.5002147134  0.875912603 0.02969626
7   0.000000e+00  1.1413873176  1.5034266900  0.943903333 0.01876057
8   1.690193e-05  0.2041272780  0.5457339248  0.360849349 0.08932181
9   1.612298e-01 -0.0939464646  0.5648236344  0.102882284 0.07319247
10  3.335118e-01 -0.2159779753  0.6366945513  0.080705837 0.08361052
11  2.144491e-01 -0.1288162742  0.5739291103  0.085385759 0.06865325
12  3.130456e-01 -0.1987998931  0.6205372358  0.078107437 0.07750739
13  1.040041e-01 -0.0676243306  0.7255140966  0.126202644 0.07654477
14  8.104305e-01 -0.3426813379  0.4382566430  0.018334160 0.07646022
15  1.946044e-03  0.2018654978  0.8969735812  0.195640023 0.06090159
16  0.000000e+00  0.5960753275  0.9594595729  0.449997504 0.05499949
17  2.493285e-06  0.2796771485  0.6785233870  0.232777112 0.05202266
18  1.278012e-03  0.0796528321  0.3272786392  0.109046498 0.03541633
19  7.686337e-02 -0.0227371860  0.4444375172  0.097511031 0.05480827
20  1.345883e-04  0.2135651456  0.6641492971  0.395918660 0.08685720
21  1.191723e-08  0.3333488682  0.6826468547  0.434933648 0.05430897
22            NA  1.0000000000  1.0000000000  0.910992998 0.01848654
23  0.000000e+00  0.9415654820  1.1401330618  0.930946847 0.01776027
24  0.000000e+00  0.8535760931  1.0662776867  0.904654865 0.02883191
25  1.418580e-05  0.2141471338  0.5667052223  0.338997651 0.09843195
26  7.324322e-02 -0.0285408099  0.6348252171  0.119506653 0.06669344
27  2.423810e-01 -0.5508830070  0.1392441029 -0.071238449 0.05973098
28  3.304320e-01 -0.5004037157  0.1683338755 -0.057468185 0.05893193
29  7.164757e-01 -0.3082550681  0.4484736912  0.023428191 0.06470442
30  9.264378e-01 -0.3392827433  0.3728279895  0.005805358 0.06296524
31  8.398876e-01 -0.4056873745  0.3298650852 -0.013121846 0.06468259
32  2.821482e-01 -0.1236175413  0.4242569192  0.048289443 0.04535928
33  1.333657e-07  0.1504239342  0.3283406983  0.170091757 0.03368222
34  1.617895e-05  0.1061899122  0.2831676533  0.133337968 0.03306774
35  1.310803e-04  0.1164262060  0.3612066237  0.181599575 0.05216586
36  2.369736e-01 -0.2138441509  0.8644637277  0.173268323 0.13752937
37  4.961692e-06  0.3295440854  0.8251590049  0.655670944 0.05958702
38            NA  1.0000000000  1.0000000000  0.807186376 0.07503330
39  9.887269e-11  0.7120624338  1.3311395363  0.890914754 0.03202873
40  3.875242e-09  0.6842687802  1.3668761999  0.827587462 0.08168028
41  4.204938e-06  0.5654119358  1.4046223788  0.447230810 0.06283427
42  3.609355e-01 -0.3776994115  1.0372304543  0.131454521 0.14124721
43  9.812826e-01 -0.7776068147  0.7592109632 -0.002976877 0.12683551
44  9.693707e-01 -0.8950822989  0.8606851585 -0.002482224 0.06465219
45  6.858935e-01 -0.8602231506  0.5659380058 -0.058655484 0.14595463
46  1.268242e-01 -0.1796427855  1.4458355376  0.166823747 0.11061316
47  5.090113e-01 -0.5655346049  1.1402816714  0.029467190 0.04479310
48  8.078382e-01 -0.6274049464  0.8051768646  0.034208848 0.14043083
49  3.147802e-01 -0.3869799320  1.2018952430  0.131872265 0.13159048
50  9.572375e-01 -0.8464455187  0.8940621432  0.003436191 0.06411270
51  3.012522e-02  0.0614658320  1.2171937894  0.254856219 0.10827277
52  1.894802e-01 -1.1722452670  0.2320949986 -0.123866916 0.08928541
53  2.665042e-01 -0.2713677729  0.9818407918  0.062493366 0.05606749
54  8.160626e-01 -0.6121905745  0.7770706560  0.032863096 0.14066118
55  8.486988e-01 -0.8929673319  0.7345482304 -0.023428844 0.12244624
56  2.404899e-01 -1.8192978645  0.4564320253 -0.119877984 0.10904762
57  8.453450e-01 -0.3887218473  0.4746467637  0.015895262 0.08108427
58  4.133947e-03  0.1490704103  0.7927701854  0.348450155 0.12113170
59  3.540156e-05  0.1256409350  0.3520122280  0.206270900 0.05706974
60  3.667890e-02  0.0263808609  0.8258089271  0.315098993 0.13519515
61            NA  0.0056773517  0.0056773517  0.026661308 0.00000000
62            NA  0.1815224037  0.1815224037  1.000000000 0.00000000
63            NA  0.0053716482  0.0053716482  0.036315053 0.00000000
64            NA  0.0163333042  0.0163333042  0.087362959 0.00000000
65            NA  0.0073805573  0.0073805573  0.046310190 0.00000000
66            NA  0.1399248843  0.1399248843  1.000000000 0.00000000
67            NA  0.0855096515  0.0855096515  0.752695772 0.00000000
68            NA  0.0155472094  0.0155472094  0.306887429 0.00000000
69            NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
70            NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
71            NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
72            NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
73            NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
74            NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
75            NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
76            NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
77            NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
78            NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
79            NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
80            NA -0.0048912569 -0.0048912569 -0.037663201 0.00000000
81            NA  0.0499606953  0.0499606953  0.329140294 0.00000000
82            NA  0.0011354703  0.0011354703  0.008775311 0.00000000
83            NA  0.0922351297  0.0922351297  1.000000000 0.00000000
84            NA  0.0167700236  0.0167700236  0.407717753 0.00000000
85            NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
86            NA -0.0009607826 -0.0009607826 -0.032878182 0.00000000
87            NA -0.0019215652 -0.0019215652 -0.046717659 0.00000000
88            NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
89            NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
90            NA -0.0086470434 -0.0086470434 -0.102581476 0.00000000
91            NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
92            NA  0.0042798498  0.0042798498  0.040590517 0.00000000
93            NA  0.0090837628  0.0090837628  0.134196341 0.00000000
94            NA -0.0002183597 -0.0002183597 -0.003784264 0.00000000
95            NA  0.0183422133  0.0183422133  1.000000000 0.00000000
96            NA -0.0001746877 -0.0001746877 -0.013405018 0.00000000
97            NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
98            NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
99            NA  0.0160712726  0.0160712726  0.341797304 0.00000000
100           NA -0.0210498734 -0.0210498734 -0.112590765 0.00000000
101           NA -0.0113110315 -0.0113110315 -0.070972421 0.00000000
102           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
103           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
104           NA  0.1399248843  0.1399248843  1.000000000 0.00000000
105           NA  0.0544152328  0.0544152328  0.588312086 0.00000000
106           NA  0.0077736047  0.0077736047  0.215976161 0.00000000
107           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
108           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
109           NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
110           NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
111           NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
112           NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
113           NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
114           NA -0.0142370513 -0.0142370513 -0.109626817 0.00000000
115           NA  0.0317931697  0.0317931697  0.257258271 0.00000000
116           NA -0.0077736047 -0.0077736047 -0.073789079 0.00000000
117           NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
118           NA  0.0611407110  0.0611407110  1.000000000 0.00000000
119           NA  0.0087343873  0.0087343873  0.367111549 0.00000000
120           NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
121           NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
122           NA -0.0055026640 -0.0055026640 -0.080178373 0.00000000
123           NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
124           NA  0.0001746877  0.0001746877  0.002034892 0.00000000
125           NA  0.0045418814  0.0045418814  0.094442483 0.00000000
126           NA  0.0022272688  0.0022272688  0.054329831 0.00000000
127           NA  0.0092584505  0.0092584505  1.000000000 0.00000000
128           NA -0.0002620316 -0.0002620316 -0.016496470 0.00000000
129           NA  0.0080356363  0.0080356363  0.240544456 0.00000000
130           NA  0.0235391737  0.0235391737  0.130409579 0.00000000
131           NA -0.0006332431 -0.0006332431 -0.004115502 0.00000000
132           NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
133           NA -0.0158529129 -0.0158529129 -0.144536791 0.00000000
134           NA -0.0028823478 -0.0028823478 -0.058930216 0.00000000
135           NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
136           NA -0.0100882173 -0.0100882173 -0.112970930 0.00000000
137           NA -0.0014411739 -0.0014411739 -0.041472933 0.00000000
138           NA  0.1304262381  0.1304262381  1.000000000 0.00000000
139           NA  0.0869508254  0.0869508254  0.792762400 0.00000000
140           NA  0.0158092410  0.0158092410  0.323223304 0.00000000
141           NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
142           NA -0.0100882173 -0.0100882173 -0.112970930 0.00000000
143           NA -0.0043235217 -0.0043235217 -0.072520642 0.00000000
144           NA -0.0259411302 -0.0259411302 -0.192025512 0.00000000
145           NA -0.0129705651 -0.0129705651 -0.129397504 0.00000000
146           NA -0.0043235217 -0.0043235217 -0.072520642 0.00000000
147           NA -0.0029260197 -0.0029260197 -0.023336676 0.00000000
148           NA  0.0499606953  0.0499606953  0.329140294 0.00000000
149           NA -0.0035374268 -0.0035374268 -0.027338468 0.00000000
150           NA -0.0105686086 -0.0105686086 -0.114583333 0.00000000
151           NA -0.0019215652 -0.0019215652 -0.046717659 0.00000000
152           NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
153           NA -0.0009607826 -0.0009607826 -0.032878182 0.00000000
154           NA  0.0922351297  0.0922351297  1.000000000 0.00000000
155           NA  0.0167700236  0.0167700236  0.407717753 0.00000000
156           NA -0.0067254782 -0.0067254782 -0.089559105 0.00000000
157           NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
158           NA -0.0086470434 -0.0086470434 -0.102581476 0.00000000
159           NA -0.0028823478 -0.0028823478 -0.057491638 0.00000000
160           NA  0.0042798498  0.0042798498  0.040590517 0.00000000
161           NA  0.0090837628  0.0090837628  0.134196341 0.00000000
162           NA  0.0044545375  0.0044545375  0.077198993 0.00000000
163           NA -0.0003493755 -0.0003493755 -0.019047619 0.00000000
164           NA -0.0001746877 -0.0001746877 -0.013405018 0.00000000
165           NA  0.0183422133  0.0183422133  1.000000000 0.00000000
166           NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
167           NA -0.0005240632 -0.0005240632 -0.023440362 0.00000000
168           NA  0.0160712726  0.0160712726  0.341797304 0.00000000
169           NA -0.0210498734 -0.0210498734 -0.112590765 0.00000000
170           NA  0.0027076601  0.0027076601  0.016989537 0.00000000
171           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
172           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
173           NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
174           NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
175           NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
176           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
177           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
178           NA  0.1399248843  0.1399248843  1.000000000 0.00000000
179           NA  0.0544152328  0.0544152328  0.588312086 0.00000000
180           NA  0.0233208140  0.0233208140  0.377661495 0.00000000
181           NA -0.0282994148 -0.0282994148 -0.202247191 0.00000000
182           NA -0.0141497074 -0.0141497074 -0.136285442 0.00000000
183           NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
184           NA  0.0044545375  0.0044545375  0.034300415 0.00000000
185           NA  0.0317931697  0.0317931697  0.257258271 0.00000000
186           NA  0.0062450869  0.0062450869  0.059279991 0.00000000
187           NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
188           NA -0.0042798498 -0.0042798498 -0.070000000 0.00000000
189           NA -0.0006114071 -0.0006114071 -0.025697808 0.00000000
190           NA -0.0012228142 -0.0012228142 -0.036514837 0.00000000
191           NA  0.0611407110  0.0611407110  1.000000000 0.00000000
192           NA  0.0262031618  0.0262031618  0.641940739 0.00000000
193           NA -0.0055026640 -0.0055026640 -0.080178373 0.00000000
194           NA -0.0018342213 -0.0018342213 -0.044935852 0.00000000
195           NA  0.0188662765  0.0188662765  0.219768370 0.00000000
196           NA  0.0136256442  0.0136256442  0.165144565 0.00000000
197           NA  0.0020089091  0.0020089091  0.028562857 0.00000000
198           NA -0.0002620316 -0.0002620316 -0.016496470 0.00000000
199           NA  0.0272512883  0.0272512883  1.000000000 0.00000000
200           NA -0.0007860949 -0.0007860949 -0.028846154 0.00000000
201           NA  0.0241069089  0.0241069089  0.420622250 0.00000000
202           NA -0.0023582846 -0.0023582846 -0.012613903 0.00000000
203           NA -0.0113110315 -0.0113110315 -0.070972421 0.00000000
204           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
205           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
206           NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
207           NA -0.0015721897 -0.0015721897 -0.043680572 0.00000000
208           NA -0.0172940868 -0.0172940868 -0.152230606 0.00000000
209           NA -0.0031443794 -0.0031443794 -0.062067121 0.00000000
210           NA -0.0110053280 -0.0110053280 -0.118984467 0.00000000
211           NA -0.0047165691 -0.0047165691 -0.076380977 0.00000000
212           NA  0.1399248843  0.1399248843  1.000000000 0.00000000
213           NA  0.0699624421  0.0699624421  0.673855795 0.00000000
214           NA  0.0233208140  0.0233208140  0.377661495 0.00000000
215           NA  0.0044545375  0.0044545375  0.034300415 0.00000000
216           NA  0.0408769325  0.0408769325  0.294664993 0.00000000
217           NA -0.0033190672 -0.0033190672 -0.028067285 0.00000000
218           NA -0.0015721897 -0.0015721897 -0.041824289 0.00000000
219           NA -0.0007860949 -0.0007860949 -0.029434407 0.00000000
220           NA -0.0015721897 -0.0015721897 -0.041824289 0.00000000
221           NA -0.0023582846 -0.0023582846 -0.051469764 0.00000000
222           NA  0.0770372958  0.0770372958  1.000000000 0.00000000
223           NA  0.0256790986  0.0256790986  0.560448538 0.00000000
224           NA  0.0162459603  0.0162459603  0.168592833 0.00000000
225           NA  0.0136256442  0.0136256442  0.165144565 0.00000000
226           NA -0.0026639881 -0.0026639881 -0.037876832 0.00000000
227           NA  0.0272512883  0.0272512883  1.000000000 0.00000000
228           NA  0.0241069089  0.0241069089  0.420622250 0.00000000
229           NA  0.1205345445  0.1205345445  1.000000000 0.00000000
          z.std   pvalue.std ci.lower.std ci.upper.std
1            NA           NA  1.000000000  1.000000000
2            NA           NA  0.338760297  0.338760297
3    3.05973601 2.215322e-03  0.075537685  0.344777381
4   10.62222860 0.000000e+00  0.529227327  0.768718163
5   20.00027422 0.000000e+00  0.668944954  0.814298110
6   29.49571996 0.000000e+00  0.817709000  0.934116205
7   50.31314523 0.000000e+00  0.907133290  0.980673377
8    4.03987962 5.347864e-05  0.185781824  0.535916874
9    1.40564019 1.598310e-01 -0.040572330  0.246336898
10   0.96525931 3.344149e-01 -0.083167780  0.244579454
11   1.24372488 2.136008e-01 -0.049172145  0.219943662
12   1.00774185 3.135784e-01 -0.073804248  0.230019122
13   1.64874281 9.920034e-02 -0.023822354  0.276227642
14   0.23978691 8.104955e-01 -0.131525120  0.168193440
15   3.21239590 1.316328e-03  0.076275097  0.315004950
16   8.18184800 2.220446e-16  0.342200475  0.557794532
17   4.47453331 7.657839e-06  0.130814578  0.334739647
18   3.07898933 2.077041e-03  0.039631769  0.178461226
19   1.77912987 7.521847e-02 -0.009911205  0.204933267
20   4.55827115 5.157642e-06  0.225681680  0.566155639
21   8.00850547 1.110223e-15  0.328490031  0.541377265
22  49.27872014 0.000000e+00  0.874760047  0.947225950
23  52.41737136 0.000000e+00  0.896137351  0.965756344
24  31.37686031 0.000000e+00  0.848145356  0.961164373
25   3.44397996 5.732182e-04  0.146074581  0.531920721
26   1.79188009 7.315218e-02 -0.011210093  0.250223399
27  -1.19265496 2.330045e-01 -0.188309018  0.045832120
28  -0.97516213 3.294798e-01 -0.172972642  0.058036273
29   0.36208020 7.172921e-01 -0.103390148  0.150246529
30   0.09219942 9.265396e-01 -0.117604243  0.129214959
31  -0.20286518 8.392404e-01 -0.139897398  0.113653706
32   1.06459909 2.870574e-01 -0.040613103  0.137191989
33   5.04989818 4.420456e-07  0.104075828  0.236107685
34   4.03226683 5.524141e-05  0.068526380  0.198149555
35   3.48119588 4.991803e-04  0.079356369  0.283842781
36   1.25986414 2.077184e-01 -0.096284291  0.442820938
37  11.00358610 0.000000e+00  0.538882524  0.772459364
38  10.75770877 0.000000e+00  0.660123813  0.954248939
39  27.81611423 0.000000e+00  0.828139601  0.953689908
40  10.13203557 0.000000e+00  0.667497063  0.987677861
41   7.11762611 1.098011e-12  0.324077912  0.570383708
42   0.93066986 3.520244e-01 -0.145384923  0.408293965
43  -0.02347038 9.812751e-01 -0.251569902  0.245616148
44  -0.03839351 9.693739e-01 -0.129198180  0.124233731
45  -0.40187477 6.877762e-01 -0.344721305  0.227410337
46   1.50817275 1.315103e-01 -0.049974054  0.383621549
47   0.65785117 5.106338e-01 -0.058325664  0.117260044
48   0.24359928 8.075412e-01 -0.241030516  0.309448212
49   1.00214139 3.162753e-01 -0.126040333  0.389784864
50   0.05359610 9.572570e-01 -0.122222389  0.129094771
51   2.35383489 1.858086e-02  0.042645493  0.467066946
52  -1.38731418 1.653460e-01 -0.298863104  0.051129273
53   1.11460963 2.650177e-01 -0.047396898  0.172383630
54   0.23363302 8.152699e-01 -0.242827754  0.308553946
55  -0.19133984 8.482594e-01 -0.263419075  0.216561386
56  -1.09931779 2.716295e-01 -0.333607385  0.093851416
57   0.19603385 8.445837e-01 -0.143026991  0.174817515
58   2.87662223 4.019565e-03  0.111036376  0.585863934
59   3.61436568 3.010839e-04  0.094416270  0.318125530
60   2.33069752 1.976932e-02  0.050121375  0.580076611
61           NA           NA  0.026661308  0.026661308
62           NA           NA  1.000000000  1.000000000
63           NA           NA  0.036315053  0.036315053
64           NA           NA  0.087362959  0.087362959
65           NA           NA  0.046310190  0.046310190
66           NA           NA  1.000000000  1.000000000
67           NA           NA  0.752695772  0.752695772
68           NA           NA  0.306887429  0.306887429
69           NA           NA -0.202247191 -0.202247191
70           NA           NA -0.118984467 -0.118984467
71           NA           NA -0.043680572 -0.043680572
72           NA           NA -0.152230606 -0.152230606
73           NA           NA -0.062067121 -0.062067121
74           NA           NA -0.202247191 -0.202247191
75           NA           NA -0.118984467 -0.118984467
76           NA           NA -0.076380977 -0.076380977
77           NA           NA -0.202247191 -0.202247191
78           NA           NA -0.136285442 -0.136285442
79           NA           NA -0.076380977 -0.076380977
80           NA           NA -0.037663201 -0.037663201
81           NA           NA  0.329140294  0.329140294
82           NA           NA  0.008775311  0.008775311
83           NA           NA  1.000000000  1.000000000
84           NA           NA  0.407717753  0.407717753
85           NA           NA -0.089559105 -0.089559105
86           NA           NA -0.032878182 -0.032878182
87           NA           NA -0.046717659 -0.046717659
88           NA           NA -0.089559105 -0.089559105
89           NA           NA -0.057491638 -0.057491638
90           NA           NA -0.102581476 -0.102581476
91           NA           NA -0.057491638 -0.057491638
92           NA           NA  0.040590517  0.040590517
93           NA           NA  0.134196341  0.134196341
94           NA           NA -0.003784264 -0.003784264
95           NA           NA  1.000000000  1.000000000
96           NA           NA -0.013405018 -0.013405018
97           NA           NA -0.023440362 -0.023440362
98           NA           NA -0.023440362 -0.023440362
99           NA           NA  0.341797304  0.341797304
100          NA           NA -0.112590765 -0.112590765
101          NA           NA -0.070972421 -0.070972421
102          NA           NA -0.152230606 -0.152230606
103          NA           NA -0.062067121 -0.062067121
104          NA           NA  1.000000000  1.000000000
105          NA           NA  0.588312086  0.588312086
106          NA           NA  0.215976161  0.215976161
107          NA           NA -0.152230606 -0.152230606
108          NA           NA -0.062067121 -0.062067121
109          NA           NA -0.118984467 -0.118984467
110          NA           NA -0.076380977 -0.076380977
111          NA           NA -0.202247191 -0.202247191
112          NA           NA -0.136285442 -0.136285442
113          NA           NA -0.076380977 -0.076380977
114          NA           NA -0.109626817 -0.109626817
115          NA           NA  0.257258271  0.257258271
116          NA           NA -0.073789079 -0.073789079
117          NA           NA -0.036514837 -0.036514837
118          NA           NA  1.000000000  1.000000000
119          NA           NA  0.367111549  0.367111549
120          NA           NA -0.036514837 -0.036514837
121          NA           NA -0.044935852 -0.044935852
122          NA           NA -0.080178373 -0.080178373
123          NA           NA -0.044935852 -0.044935852
124          NA           NA  0.002034892  0.002034892
125          NA           NA  0.094442483  0.094442483
126          NA           NA  0.054329831  0.054329831
127          NA           NA  1.000000000  1.000000000
128          NA           NA -0.016496470 -0.016496470
129          NA           NA  0.240544456  0.240544456
130          NA           NA  0.130409579  0.130409579
131          NA           NA -0.004115502 -0.004115502
132          NA           NA -0.192025512 -0.192025512
133          NA           NA -0.144536791 -0.144536791
134          NA           NA -0.058930216 -0.058930216
135          NA           NA -0.192025512 -0.192025512
136          NA           NA -0.112970930 -0.112970930
137          NA           NA -0.041472933 -0.041472933
138          NA           NA  1.000000000  1.000000000
139          NA           NA  0.792762400  0.792762400
140          NA           NA  0.323223304  0.323223304
141          NA           NA -0.192025512 -0.192025512
142          NA           NA -0.112970930 -0.112970930
143          NA           NA -0.072520642 -0.072520642
144          NA           NA -0.192025512 -0.192025512
145          NA           NA -0.129397504 -0.129397504
146          NA           NA -0.072520642 -0.072520642
147          NA           NA -0.023336676 -0.023336676
148          NA           NA  0.329140294  0.329140294
149          NA           NA -0.027338468 -0.027338468
150          NA           NA -0.114583333 -0.114583333
151          NA           NA -0.046717659 -0.046717659
152          NA           NA -0.089559105 -0.089559105
153          NA           NA -0.032878182 -0.032878182
154          NA           NA  1.000000000  1.000000000
155          NA           NA  0.407717753  0.407717753
156          NA           NA -0.089559105 -0.089559105
157          NA           NA -0.057491638 -0.057491638
158          NA           NA -0.102581476 -0.102581476
159          NA           NA -0.057491638 -0.057491638
160          NA           NA  0.040590517  0.040590517
161          NA           NA  0.134196341  0.134196341
162          NA           NA  0.077198993  0.077198993
163          NA           NA -0.019047619 -0.019047619
164          NA           NA -0.013405018 -0.013405018
165          NA           NA  1.000000000  1.000000000
166          NA           NA -0.023440362 -0.023440362
167          NA           NA -0.023440362 -0.023440362
168          NA           NA  0.341797304  0.341797304
169          NA           NA -0.112590765 -0.112590765
170          NA           NA  0.016989537  0.016989537
171          NA           NA -0.152230606 -0.152230606
172          NA           NA -0.062067121 -0.062067121
173          NA           NA -0.202247191 -0.202247191
174          NA           NA -0.118984467 -0.118984467
175          NA           NA -0.043680572 -0.043680572
176          NA           NA -0.152230606 -0.152230606
177          NA           NA -0.062067121 -0.062067121
178          NA           NA  1.000000000  1.000000000
179          NA           NA  0.588312086  0.588312086
180          NA           NA  0.377661495  0.377661495
181          NA           NA -0.202247191 -0.202247191
182          NA           NA -0.136285442 -0.136285442
183          NA           NA -0.076380977 -0.076380977
184          NA           NA  0.034300415  0.034300415
185          NA           NA  0.257258271  0.257258271
186          NA           NA  0.059279991  0.059279991
187          NA           NA -0.036514837 -0.036514837
188          NA           NA -0.070000000 -0.070000000
189          NA           NA -0.025697808 -0.025697808
190          NA           NA -0.036514837 -0.036514837
191          NA           NA  1.000000000  1.000000000
192          NA           NA  0.641940739  0.641940739
193          NA           NA -0.080178373 -0.080178373
194          NA           NA -0.044935852 -0.044935852
195          NA           NA  0.219768370  0.219768370
196          NA           NA  0.165144565  0.165144565
197          NA           NA  0.028562857  0.028562857
198          NA           NA -0.016496470 -0.016496470
199          NA           NA  1.000000000  1.000000000
200          NA           NA -0.028846154 -0.028846154
201          NA           NA  0.420622250  0.420622250
202          NA           NA -0.012613903 -0.012613903
203          NA           NA -0.070972421 -0.070972421
204          NA           NA -0.152230606 -0.152230606
205          NA           NA -0.062067121 -0.062067121
206          NA           NA -0.118984467 -0.118984467
207          NA           NA -0.043680572 -0.043680572
208          NA           NA -0.152230606 -0.152230606
209          NA           NA -0.062067121 -0.062067121
210          NA           NA -0.118984467 -0.118984467
211          NA           NA -0.076380977 -0.076380977
212          NA           NA  1.000000000  1.000000000
213          NA           NA  0.673855795  0.673855795
214          NA           NA  0.377661495  0.377661495
215          NA           NA  0.034300415  0.034300415
216          NA           NA  0.294664993  0.294664993
217          NA           NA -0.028067285 -0.028067285
218          NA           NA -0.041824289 -0.041824289
219          NA           NA -0.029434407 -0.029434407
220          NA           NA -0.041824289 -0.041824289
221          NA           NA -0.051469764 -0.051469764
222          NA           NA  1.000000000  1.000000000
223          NA           NA  0.560448538  0.560448538
224          NA           NA  0.168592833  0.168592833
225          NA           NA  0.165144565  0.165144565
226          NA           NA -0.037876832 -0.037876832
227          NA           NA  1.000000000  1.000000000
228          NA           NA  0.420622250  0.420622250
229          NA           NA  1.000000000  1.000000000

Derived model (including interactions on DVS)

Comparing fits from baseline to derived
Derived model without PEB as control
     aic      bic     srmr    rmsea      cfi      tli 
4732.955 4918.083    0.035    0.043    0.964    0.953 
Derived model with PEB as control
     aic      bic     srmr    rmsea      cfi      tli 
4732.955 4918.083    0.035    0.043    0.964    0.953 
Comparing the effect of EEF vs. EEC on IM
Difference between IM -> EEC and IM -> EEF: -0.01549558 
Standard Error of the Difference: 0.1252344 
Z-score: -0.1237326 
p-value: 0.901527 
The difference is not statistically significant at the 0.05 level.
Indirect effect analysis
Effects of reward0_eco2 on EEC through IM using standardized loadings:
Indirect Effect: 0.04743528 
Standard Error (Indirect): 0.05230396 
Z-score (Indirect): 0.9069156 
p-value (Indirect): 0.3644514 
Direct Effect: 0.08070584 
Total Effect: 0.1281411 
Standard Error (Total): 0.09862263 
Z-score (Total): 1.299307 
p-value (Total): 0.1938385 

Effects of reward1_eco1 on EEF through IM using standardized loadings:
Indirect Effect: 0.01159672 
Standard Error (Indirect): 0.04772466 
Z-score (Indirect): 0.2429922 
p-value (Indirect): 0.8080114 
Direct Effect: 0.02342819 
Total Effect: 0.03502491 
Standard Error (Total): 0.0804009 
Z-score (Total): 0.4356283 
p-value (Total): 0.6631064 

Effects of reward1_eco2 on EEC through IM using standardized loadings:
Indirect Effect: 0.0919647 
Standard Error (Indirect): 0.04521821 
Z-score (Indirect): 2.033798 
p-value (Indirect): 0.04197199 
Direct Effect: 0.1262026 
Total Effect: 0.2181673 
Standard Error (Total): 0.08890326 
Z-score (Total): 2.453986 
p-value (Total): 0.01412825 

Effects of reward1_eco3 on EEF through IM using standardized loadings:
Indirect Effect: 0.01114051 
Standard Error (Indirect): 0.0477934 
Z-score (Indirect): 0.2330973 
p-value (Indirect): 0.8156859 
Direct Effect: -0.01312185 
Total Effect: -0.001981334 
Standard Error (Total): 0.08042417 
Z-score (Total): -0.02463605 
p-value (Total): 0.9803453 

Effects of reward1_eco3 on EEC through IM using standardized loadings:
Indirect Effect: 0.01185863 
Standard Error (Indirect): 0.0508423 
Z-score (Indirect): 0.2332433 
p-value (Indirect): 0.8155725 
Direct Effect: 0.01833416 
Total Effect: 0.03019279 
Standard Error (Total): 0.09182105 
Z-score (Total): 0.3288221 
p-value (Total): 0.7422902 

Effects of ADT_high_num on EEF through IM using standardized loadings:
Indirect Effect: 0.05873755 
Standard Error (Indirect): 0.04964374 
Z-score (Indirect): 1.183181 
p-value (Indirect): 0.2367372 
Direct Effect: 0.09751103 
Total Effect: 0.1562486 
Standard Error (Total): 0.07394895 
Z-score (Total): 2.112925 
p-value (Total): 0.03460719 

Effects of ADT_high_num on EEC through IM using standardized loadings:
Indirect Effect: 0.06252376 
Standard Error (Indirect): 0.05198465 
Z-score (Indirect): 1.202735 
p-value (Indirect): 0.2290788 
Direct Effect: 0.2101575 
Total Effect: 0.2726813 
Standard Error (Total): 0.0861395 
Z-score (Total): 3.165578 
p-value (Total): 0.001547752 

Derived model - Seidali

Full mediation

Complete theoretical model with dummy moderators and full mediation
lavaan 0.6-21 ended normally after 111 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        48

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               237.626     252.700
  Degrees of freedom                               150         150
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.940
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1771.294    1633.267
  Degrees of freedom                               189         189
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.085

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.929
  Tucker-Lewis Index (TLI)                       0.930       0.910
                                                                  
  Robust Comparative Fit Index (CFI)                         0.938
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2355.129   -2355.129
  Scaling correction factor                                  1.621
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2236.316   -2236.316
  Scaling correction factor                                  1.105
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4806.259    4806.259
  Bayesian (BIC)                              4967.826    4967.826
  Sample-size adjusted Bayesian (SABIC)       4815.726    4815.726

Root Mean Square Error of Approximation:

  RMSEA                                          0.052       0.057
  90 Percent confidence interval - lower         0.039       0.044
  90 Percent confidence interval - upper         0.065       0.069
  P-value H_0: RMSEA <= 0.050                    0.372       0.189
  P-value H_0: RMSEA >= 0.080                    0.000       0.001
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.043
  90 Percent confidence interval - upper                     0.066
  P-value H_0: Robust RMSEA <= 0.050                         0.241
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.056       0.056

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.843    0.000    1.257    0.876
    EEC3              1.324    0.093   14.306    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.051    0.000    1.128    0.933
    EEF3              0.962    0.054   17.777    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.955    0.822
    IM2               0.992    0.178    5.589    0.000    0.948    0.881
    IM3               0.994    0.196    5.066    0.000    0.949    0.816

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.130    0.406    0.321    0.748    0.136    0.049
    reward0_eco2      0.415    0.398    1.042    0.297    0.434    0.162
    reward1_eco2      0.600    0.342    1.755    0.079    0.628    0.235
    reward0_eco3     -0.179    0.404   -0.444    0.657   -0.188   -0.070
    reward1_eco3     -0.037    0.442   -0.084    0.933   -0.039   -0.015
    ADT_high_num      0.557    0.352    1.582    0.114    0.583    0.291
    TR_high_num      -0.062    0.287   -0.217    0.828   -0.065   -0.023
    reward1_c1_ADT    0.074    0.448    0.166    0.868    0.078    0.024
    reward0_c2_ADT   -0.265    0.458   -0.579    0.562   -0.277   -0.084
    reward1_c2_ADT   -0.500    0.428   -1.169    0.243   -0.523   -0.129
    reward0_c3_ADT    0.300    0.494    0.607    0.544    0.314    0.078
    reward1_c3_ADT   -0.165    0.517   -0.319    0.750   -0.172   -0.048
    reward1_ec1_TR    0.530    0.482    1.099    0.272    0.555    0.075
    reward0_ec2_TR    0.129    0.554    0.234    0.815    0.135    0.018
    reward1_ec2_TR    0.481    0.415    1.158    0.247    0.503    0.083
    reward0_ec3_TR    0.895    0.517    1.733    0.083    0.937    0.090
    reward1_ec3_TR   -0.572    0.606   -0.944    0.345   -0.598   -0.099
  EEF ~                                                                 
    IM                0.704    0.077    9.097    0.000    0.624    0.624
    reward1_eco1      0.095    0.185    0.513    0.608    0.088    0.032
    reward0_eco2     -0.188    0.203   -0.925    0.355   -0.174   -0.065
    reward1_eco2     -0.001    0.194   -0.005    0.996   -0.001   -0.000
    reward0_eco3     -0.231    0.179   -1.292    0.196   -0.215   -0.080
    reward1_eco3     -0.068    0.203   -0.336    0.737   -0.063   -0.024
  EEC ~                                                                 
    IM                0.499    0.078    6.403    0.000    0.489    0.489
    reward1_eco1      0.152    0.206    0.739    0.460    0.156    0.056
    reward0_eco2      0.133    0.221    0.604    0.546    0.137    0.051
    reward1_eco2      0.175    0.214    0.821    0.412    0.180    0.067
    reward0_eco3      0.051    0.185    0.277    0.782    0.053    0.020
    reward1_eco3      0.002    0.222    0.008    0.994    0.002    0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.339    0.115    2.940    0.003    0.490    0.490

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.412    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.591    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.303    0.001    0.204    0.109
   .EEF1              0.246    0.046    5.370    0.000    0.246    0.174
   .EEF2              0.188    0.046    4.120    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.803    0.000    0.240    0.183
   .IM1               0.439    0.182    2.415    0.016    0.439    0.324
   .IM2               0.259    0.084    3.084    0.002    0.259    0.224
   .IM3               0.451    0.229    1.970    0.049    0.451    0.333
   .EEC               0.701    0.120    5.835    0.000    0.739    0.739
   .EEF               0.684    0.171    3.994    0.000    0.589    0.589
   .IM                0.761    0.189    4.021    0.000    0.834    0.834

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.676
    IM2               0.776
    IM3               0.667
    EEC               0.261
    EEF               0.411
    IM                0.166

One moderator at a time

ADT
Partial mediation
ADT moderation using dummy and partial mediation
lavaan 0.6-21 ended normally after 71 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        42

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               188.840     197.001
  Degrees of freedom                               102         102
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.959
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1717.814    1476.651
  Degrees of freedom                               135         135
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.163

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.929
  Tucker-Lewis Index (TLI)                       0.927       0.906
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.923

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2357.476   -2357.476
  Scaling correction factor                                  1.742
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2263.056   -2263.056
  Scaling correction factor                                  1.187
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4798.952    4798.952
  Bayesian (BIC)                              4940.323    4940.323
  Sample-size adjusted Bayesian (SABIC)       4807.236    4807.236

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.066
  90 Percent confidence interval - lower         0.049       0.052
  90 Percent confidence interval - upper         0.077       0.080
  P-value H_0: RMSEA <= 0.050                    0.064       0.034
  P-value H_0: RMSEA >= 0.080                    0.022       0.050
                                                                  
  Robust RMSEA                                               0.065
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.078
  P-value H_0: Robust RMSEA <= 0.050                         0.040
  P-value H_0: Robust RMSEA >= 0.080                         0.029

Standardized Root Mean Square Residual:

  SRMR                                           0.055       0.055

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.842    0.000    1.257    0.876
    EEC3              1.324    0.092   14.313    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.047    0.052   20.040    0.000    1.128    0.934
    EEF3              0.962    0.054   17.784    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.957    0.824
    IM2               0.987    0.166    5.955    0.000    0.945    0.878
    IM3               0.992    0.188    5.281    0.000    0.950    0.817

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.137    0.399    0.344    0.731    0.143    0.052
    reward0_eco2      0.423    0.390    1.084    0.279    0.442    0.165
    reward1_eco2      0.608    0.333    1.829    0.067    0.635    0.238
    reward0_eco3     -0.172    0.398   -0.432    0.666   -0.179   -0.067
    reward1_eco3     -0.031    0.437   -0.072    0.943   -0.033   -0.012
    ADT_high_num      0.549    0.360    1.525    0.127    0.573    0.286
    reward1_c1_ADT    0.170    0.451    0.376    0.707    0.177    0.054
    reward0_c2_ADT   -0.242    0.454   -0.532    0.595   -0.252   -0.077
    reward1_c2_ADT   -0.309    0.400   -0.773    0.439   -0.323   -0.080
    reward0_c3_ADT    0.430    0.488    0.882    0.378    0.449    0.111
    reward1_c3_ADT   -0.363    0.509   -0.712    0.477   -0.379   -0.105
  EEF ~                                                                 
    IM                0.705    0.077    9.102    0.000    0.626    0.626
    reward1_eco1      0.095    0.185    0.514    0.608    0.088    0.032
    reward0_eco2     -0.189    0.203   -0.931    0.352   -0.175   -0.066
    reward1_eco2     -0.001    0.194   -0.007    0.994   -0.001   -0.000
    reward0_eco3     -0.231    0.179   -1.291    0.197   -0.214   -0.080
    reward1_eco3     -0.068    0.204   -0.332    0.740   -0.063   -0.023
  EEC ~                                                                 
    IM                0.499    0.077    6.467    0.000    0.491    0.491
    reward1_eco1      0.152    0.206    0.739    0.460    0.156    0.056
    reward0_eco2      0.133    0.221    0.602    0.547    0.136    0.051
    reward1_eco2      0.175    0.214    0.820    0.412    0.180    0.067
    reward0_eco3      0.052    0.185    0.279    0.781    0.053    0.020
    reward1_eco3      0.002    0.222    0.009    0.993    0.002    0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.337    0.111    3.029    0.002    0.489    0.489

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.411    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.590    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.303    0.001    0.204    0.109
   .EEF1              0.246    0.046    5.372    0.000    0.246    0.175
   .EEF2              0.188    0.046    4.114    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.804    0.000    0.240    0.183
   .IM1               0.435    0.170    2.553    0.011    0.435    0.322
   .IM2               0.264    0.083    3.179    0.001    0.264    0.228
   .IM3               0.450    0.229    1.969    0.049    0.450    0.333
   .EEC               0.700    0.118    5.922    0.000    0.737    0.737
   .EEF               0.681    0.167    4.090    0.000    0.587    0.587
   .IM                0.783    0.178    4.388    0.000    0.854    0.854

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.825
    EEF2              0.871
    EEF3              0.817
    IM1               0.678
    IM2               0.772
    IM3               0.667
    EEC               0.263
    EEF               0.413
    IM                0.146

Full mediation

ADT moderation using dummy and full mediation
lavaan 0.6-21 ended normally after 71 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        42

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               188.840     197.001
  Degrees of freedom                               102         102
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.959
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1717.814    1476.651
  Degrees of freedom                               135         135
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.163

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.929
  Tucker-Lewis Index (TLI)                       0.927       0.906
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.923

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2357.476   -2357.476
  Scaling correction factor                                  1.742
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2263.056   -2263.056
  Scaling correction factor                                  1.187
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4798.952    4798.952
  Bayesian (BIC)                              4940.323    4940.323
  Sample-size adjusted Bayesian (SABIC)       4807.236    4807.236

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.066
  90 Percent confidence interval - lower         0.049       0.052
  90 Percent confidence interval - upper         0.077       0.080
  P-value H_0: RMSEA <= 0.050                    0.064       0.034
  P-value H_0: RMSEA >= 0.080                    0.022       0.050
                                                                  
  Robust RMSEA                                               0.065
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.078
  P-value H_0: Robust RMSEA <= 0.050                         0.040
  P-value H_0: Robust RMSEA >= 0.080                         0.029

Standardized Root Mean Square Residual:

  SRMR                                           0.055       0.055

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.842    0.000    1.257    0.876
    EEC3              1.324    0.092   14.313    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.047    0.052   20.040    0.000    1.128    0.934
    EEF3              0.962    0.054   17.784    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.957    0.824
    IM2               0.987    0.166    5.955    0.000    0.945    0.878
    IM3               0.992    0.188    5.281    0.000    0.950    0.817

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.137    0.399    0.344    0.731    0.143    0.052
    reward0_eco2      0.423    0.390    1.084    0.279    0.442    0.165
    reward1_eco2      0.608    0.333    1.829    0.067    0.635    0.238
    reward0_eco3     -0.172    0.398   -0.432    0.666   -0.179   -0.067
    reward1_eco3     -0.031    0.437   -0.072    0.943   -0.033   -0.012
    ADT_high_num      0.549    0.360    1.525    0.127    0.573    0.286
    reward1_c1_ADT    0.170    0.451    0.376    0.707    0.177    0.054
    reward0_c2_ADT   -0.242    0.454   -0.532    0.595   -0.252   -0.077
    reward1_c2_ADT   -0.309    0.400   -0.773    0.439   -0.323   -0.080
    reward0_c3_ADT    0.430    0.488    0.882    0.378    0.449    0.111
    reward1_c3_ADT   -0.363    0.509   -0.712    0.477   -0.379   -0.105
  EEF ~                                                                 
    IM                0.705    0.077    9.102    0.000    0.626    0.626
    reward1_eco1      0.095    0.185    0.514    0.608    0.088    0.032
    reward0_eco2     -0.189    0.203   -0.931    0.352   -0.175   -0.066
    reward1_eco2     -0.001    0.194   -0.007    0.994   -0.001   -0.000
    reward0_eco3     -0.231    0.179   -1.291    0.197   -0.214   -0.080
    reward1_eco3     -0.068    0.204   -0.332    0.740   -0.063   -0.023
  EEC ~                                                                 
    IM                0.499    0.077    6.467    0.000    0.491    0.491
    reward1_eco1      0.152    0.206    0.739    0.460    0.156    0.056
    reward0_eco2      0.133    0.221    0.602    0.547    0.136    0.051
    reward1_eco2      0.175    0.214    0.820    0.412    0.180    0.067
    reward0_eco3      0.052    0.185    0.279    0.781    0.053    0.020
    reward1_eco3      0.002    0.222    0.009    0.993    0.002    0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.337    0.111    3.029    0.002    0.489    0.489

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.411    0.000    0.780    0.451
   .EEC2              0.477    0.104    4.590    0.000    0.477    0.232
   .EEC3              0.204    0.062    3.303    0.001    0.204    0.109
   .EEF1              0.246    0.046    5.372    0.000    0.246    0.175
   .EEF2              0.188    0.046    4.114    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.804    0.000    0.240    0.183
   .IM1               0.435    0.170    2.553    0.011    0.435    0.322
   .IM2               0.264    0.083    3.179    0.001    0.264    0.228
   .IM3               0.450    0.229    1.969    0.049    0.450    0.333
   .EEC               0.700    0.118    5.922    0.000    0.737    0.737
   .EEF               0.681    0.167    4.090    0.000    0.587    0.587
   .IM                0.783    0.178    4.388    0.000    0.854    0.854

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.825
    EEF2              0.871
    EEF3              0.817
    IM1               0.678
    IM2               0.772
    IM3               0.667
    EEC               0.263
    EEF               0.413
    IM                0.146
TR

Partial mediation

TR moderation using dummy and partial mediation
lavaan 0.6-21 ended normally after 88 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        42

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               185.577     192.266
  Degrees of freedom                               102         102
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.965
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1705.021    1473.950
  Degrees of freedom                               135         135
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.157

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947       0.933
  Tucker-Lewis Index (TLI)                       0.930       0.911
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2362.241   -2362.241
  Scaling correction factor                                  1.704
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2269.453   -2269.453
  Scaling correction factor                                  1.181
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4808.483    4808.483
  Bayesian (BIC)                              4949.854    4949.854
  Sample-size adjusted Bayesian (SABIC)       4816.766    4816.766

Root Mean Square Error of Approximation:

  RMSEA                                          0.062       0.064
  90 Percent confidence interval - lower         0.048       0.050
  90 Percent confidence interval - upper         0.076       0.078
  P-value H_0: RMSEA <= 0.050                    0.084       0.051
  P-value H_0: RMSEA >= 0.080                    0.016       0.033
                                                                  
  Robust RMSEA                                               0.063
  90 Percent confidence interval - lower                     0.049
  90 Percent confidence interval - upper                     0.077
  P-value H_0: Robust RMSEA <= 0.050                         0.058
  P-value H_0: Robust RMSEA >= 0.080                         0.020

Standardized Root Mean Square Residual:

  SRMR                                           0.059       0.059

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.846    0.000    1.257    0.876
    EEC3              1.324    0.093   14.300    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.045    0.000    1.128    0.933
    EEF3              0.962    0.054   17.771    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.948    0.816
    IM2               1.006    0.175    5.758    0.000    0.954    0.887
    IM3               1.006    0.190    5.294    0.000    0.954    0.821

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.254    0.249    1.019    0.308    0.268    0.097
    reward0_eco2      0.308    0.252    1.220    0.222    0.324    0.121
    reward1_eco2      0.347    0.230    1.510    0.131    0.366    0.137
    reward0_eco3     -0.144    0.287   -0.502    0.616   -0.152   -0.057
    reward1_eco3     -0.144    0.295   -0.488    0.626   -0.152   -0.057
    TR_high_num       0.079    0.303    0.260    0.795    0.083    0.029
    reward1_ec1_TR    0.618    0.487    1.267    0.205    0.651    0.088
    reward0_ec2_TR    0.102    0.541    0.188    0.851    0.107    0.015
    reward1_ec2_TR    0.367    0.380    0.968    0.333    0.387    0.064
    reward0_ec3_TR    1.286    0.504    2.550    0.011    1.356    0.130
    reward1_ec3_TR   -0.501    0.613   -0.816    0.414   -0.528   -0.087
  EEF ~                                                                 
    IM                0.698    0.076    9.212    0.000    0.614    0.614
    reward1_eco1      0.096    0.185    0.520    0.603    0.089    0.032
    reward0_eco2     -0.184    0.203   -0.908    0.364   -0.171   -0.064
    reward1_eco2      0.001    0.195    0.007    0.994    0.001    0.000
    reward0_eco3     -0.233    0.179   -1.307    0.191   -0.217   -0.081
    reward1_eco3     -0.072    0.205   -0.352    0.725   -0.067   -0.025
  EEC ~                                                                 
    IM                0.493    0.077    6.426    0.000    0.480    0.480
    reward1_eco1      0.153    0.206    0.746    0.456    0.157    0.057
    reward0_eco2      0.136    0.221    0.615    0.538    0.140    0.052
    reward1_eco2      0.177    0.214    0.829    0.407    0.182    0.068
    reward0_eco3      0.050    0.184    0.269    0.788    0.051    0.019
    reward1_eco3     -0.001    0.221   -0.004    0.996   -0.001   -0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.349    0.113    3.092    0.002    0.497    0.497

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.414    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.601    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.295    0.001    0.203    0.109
   .EEF1              0.245    0.046    5.369    0.000    0.245    0.174
   .EEF2              0.188    0.046    4.109    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.804    0.000    0.240    0.183
   .IM1               0.452    0.179    2.528    0.011    0.452    0.335
   .IM2               0.248    0.074    3.336    0.001    0.248    0.214
   .IM3               0.442    0.217    2.034    0.042    0.442    0.327
   .EEC               0.709    0.118    5.991    0.000    0.747    0.747
   .EEF               0.698    0.171    4.091    0.000    0.601    0.601
   .IM                0.809    0.212    3.808    0.000    0.900    0.900

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.665
    IM2               0.786
    IM3               0.673
    EEC               0.253
    EEF               0.399
    IM                0.100

Full mediation

TR moderation using dummy and full mediation
lavaan 0.6-21 ended normally after 88 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        42

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               185.577     192.266
  Degrees of freedom                               102         102
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.965
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1705.021    1473.950
  Degrees of freedom                               135         135
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.157

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.947       0.933
  Tucker-Lewis Index (TLI)                       0.930       0.911
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2362.241   -2362.241
  Scaling correction factor                                  1.704
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2269.453   -2269.453
  Scaling correction factor                                  1.181
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                4808.483    4808.483
  Bayesian (BIC)                              4949.854    4949.854
  Sample-size adjusted Bayesian (SABIC)       4816.766    4816.766

Root Mean Square Error of Approximation:

  RMSEA                                          0.062       0.064
  90 Percent confidence interval - lower         0.048       0.050
  90 Percent confidence interval - upper         0.076       0.078
  P-value H_0: RMSEA <= 0.050                    0.084       0.051
  P-value H_0: RMSEA >= 0.080                    0.016       0.033
                                                                  
  Robust RMSEA                                               0.063
  90 Percent confidence interval - lower                     0.049
  90 Percent confidence interval - upper                     0.077
  P-value H_0: Robust RMSEA <= 0.050                         0.058
  P-value H_0: Robust RMSEA >= 0.080                         0.020

Standardized Root Mean Square Residual:

  SRMR                                           0.059       0.059

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.974    0.741
    EEC2              1.291    0.109   11.846    0.000    1.257    0.876
    EEC3              1.324    0.093   14.300    0.000    1.289    0.944
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.045    0.000    1.128    0.933
    EEF3              0.962    0.054   17.771    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.948    0.816
    IM2               1.006    0.175    5.758    0.000    0.954    0.887
    IM3               1.006    0.190    5.294    0.000    0.954    0.821

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.254    0.249    1.019    0.308    0.268    0.097
    reward0_eco2      0.308    0.252    1.220    0.222    0.324    0.121
    reward1_eco2      0.347    0.230    1.510    0.131    0.366    0.137
    reward0_eco3     -0.144    0.287   -0.502    0.616   -0.152   -0.057
    reward1_eco3     -0.144    0.295   -0.488    0.626   -0.152   -0.057
    TR_high_num       0.079    0.303    0.260    0.795    0.083    0.029
    reward1_ec1_TR    0.618    0.487    1.267    0.205    0.651    0.088
    reward0_ec2_TR    0.102    0.541    0.188    0.851    0.107    0.015
    reward1_ec2_TR    0.367    0.380    0.968    0.333    0.387    0.064
    reward0_ec3_TR    1.286    0.504    2.550    0.011    1.356    0.130
    reward1_ec3_TR   -0.501    0.613   -0.816    0.414   -0.528   -0.087
  EEF ~                                                                 
    IM                0.698    0.076    9.212    0.000    0.614    0.614
    reward1_eco1      0.096    0.185    0.520    0.603    0.089    0.032
    reward0_eco2     -0.184    0.203   -0.908    0.364   -0.171   -0.064
    reward1_eco2      0.001    0.195    0.007    0.994    0.001    0.000
    reward0_eco3     -0.233    0.179   -1.307    0.191   -0.217   -0.081
    reward1_eco3     -0.072    0.205   -0.352    0.725   -0.067   -0.025
  EEC ~                                                                 
    IM                0.493    0.077    6.426    0.000    0.480    0.480
    reward1_eco1      0.153    0.206    0.746    0.456    0.157    0.057
    reward0_eco2      0.136    0.221    0.615    0.538    0.140    0.052
    reward1_eco2      0.177    0.214    0.829    0.407    0.182    0.068
    reward0_eco3      0.050    0.184    0.269    0.788    0.051    0.019
    reward1_eco3     -0.001    0.221   -0.004    0.996   -0.001   -0.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.349    0.113    3.092    0.002    0.497    0.497

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.780    0.093    8.414    0.000    0.780    0.451
   .EEC2              0.478    0.104    4.601    0.000    0.478    0.232
   .EEC3              0.203    0.062    3.295    0.001    0.203    0.109
   .EEF1              0.245    0.046    5.369    0.000    0.245    0.174
   .EEF2              0.188    0.046    4.109    0.000    0.188    0.129
   .EEF3              0.240    0.063    3.804    0.000    0.240    0.183
   .IM1               0.452    0.179    2.528    0.011    0.452    0.335
   .IM2               0.248    0.074    3.336    0.001    0.248    0.214
   .IM3               0.442    0.217    2.034    0.042    0.442    0.327
   .EEC               0.709    0.118    5.991    0.000    0.747    0.747
   .EEF               0.698    0.171    4.091    0.000    0.601    0.601
   .IM                0.809    0.212    3.808    0.000    0.900    0.900

R-Square:
                   Estimate
    EEC1              0.549
    EEC2              0.768
    EEC3              0.891
    EEF1              0.826
    EEF2              0.871
    EEF3              0.817
    IM1               0.665
    IM2               0.786
    IM3               0.673
    EEC               0.253
    EEF               0.399
    IM                0.100
Only EEF as DV
Complete theoretical model with partial mediation
lavaan 0.6-21 ended normally after 94 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               140.264     159.618
  Degrees of freedom                                93          93
  P-value (Chi-square)                           0.001       0.000
  Scaling correction factor                                  0.879
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1168.896    1068.412
  Degrees of freedom                               117         117
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.094

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.955       0.930
  Tucker-Lewis Index (TLI)                       0.943       0.912
                                                                  
  Robust Comparative Fit Index (CFI)                         0.944
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1494.166   -1494.166
  Scaling correction factor                                  1.923
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1424.034   -1424.034
  Scaling correction factor                                  1.133
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3048.332    3048.332
  Bayesian (BIC)                              3149.311    3149.311
  Sample-size adjusted Bayesian (SABIC)       3054.249    3054.249

Root Mean Square Error of Approximation:

  RMSEA                                          0.049       0.058
  90 Percent confidence interval - lower         0.031       0.041
  90 Percent confidence interval - upper         0.065       0.074
  P-value H_0: RMSEA <= 0.050                    0.534       0.205
  P-value H_0: RMSEA >= 0.080                    0.000       0.010
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.040
  90 Percent confidence interval - upper                     0.068
  P-value H_0: Robust RMSEA <= 0.050                         0.300
  P-value H_0: Robust RMSEA >= 0.080                         0.001

Standardized Root Mean Square Residual:

  SRMR                                           0.043       0.043

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEF =~                                                                
    EEF1              1.000                               1.078    0.909
    EEF2              1.046    0.052   20.221    0.000    1.128    0.933
    EEF3              0.962    0.055   17.480    0.000    1.037    0.904
  IM =~                                                                 
    IM1               1.000                               0.946    0.813
    IM2               1.012    0.168    6.023    0.000    0.957    0.889
    IM3               1.006    0.185    5.445    0.000    0.951    0.818

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.135    0.404    0.335    0.738    0.143    0.052
    reward0_eco2      0.397    0.393    1.009    0.313    0.420    0.157
    reward1_eco2      0.600    0.338    1.773    0.076    0.635    0.237
    reward0_eco3     -0.207    0.395   -0.524    0.601   -0.219   -0.082
    reward1_eco3     -0.027    0.437   -0.062    0.950   -0.029   -0.011
    ADT_high_num      0.544    0.344    1.582    0.114    0.575    0.288
    TR_high_num      -0.082    0.283   -0.288    0.773   -0.086   -0.030
    reward1_c1_ADT    0.080    0.444    0.180    0.857    0.085    0.026
    reward0_c2_ADT   -0.275    0.452   -0.608    0.543   -0.290   -0.088
    reward1_c2_ADT   -0.506    0.422   -1.200    0.230   -0.536   -0.132
    reward0_c3_ADT    0.307    0.486    0.630    0.528    0.324    0.080
    reward1_c3_ADT   -0.192    0.512   -0.375    0.708   -0.203   -0.056
    reward1_ec1_TR    0.541    0.481    1.125    0.261    0.573    0.078
    reward0_ec2_TR    0.129    0.545    0.237    0.812    0.137    0.019
    reward1_ec2_TR    0.472    0.409    1.154    0.249    0.500    0.082
    reward0_ec3_TR    0.883    0.513    1.719    0.086    0.934    0.090
    reward1_ec3_TR   -0.577    0.603   -0.958    0.338   -0.611   -0.101
  EEF ~                                                                 
    IM                0.715    0.077    9.307    0.000    0.627    0.627

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEF1              0.245    0.046    5.291    0.000    0.245    0.174
   .EEF2              0.188    0.047    4.037    0.000    0.188    0.129
   .EEF3              0.240    0.065    3.679    0.000    0.240    0.183
   .IM1               0.457    0.171    2.679    0.007    0.457    0.338
   .IM2               0.242    0.070    3.454    0.001    0.242    0.209
   .IM3               0.448    0.218    2.049    0.040    0.448    0.331
   .EEF               0.706    0.168    4.199    0.000    0.607    0.607
   .IM                0.745    0.181    4.123    0.000    0.833    0.833
Only EEC as DV
Complete theoretical model
lavaan 0.6-21 ended normally after 92 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        30

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               159.838     165.561
  Degrees of freedom                                93          93
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  0.965
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               980.770     868.817
  Degrees of freedom                               117         117
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.129

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.923       0.903
  Tucker-Lewis Index (TLI)                       0.903       0.879
                                                                  
  Robust Comparative Fit Index (CFI)                         0.917
  Robust Tucker-Lewis Index (TLI)                            0.896

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1694.172   -1694.172
  Scaling correction factor                                  1.702
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -1614.253   -1614.253
  Scaling correction factor                                  1.145
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                3448.345    3448.345
  Bayesian (BIC)                              3549.324    3549.324
  Sample-size adjusted Bayesian (SABIC)       3454.261    3454.261

Root Mean Square Error of Approximation:

  RMSEA                                          0.058       0.060
  90 Percent confidence interval - lower         0.042       0.045
  90 Percent confidence interval - upper         0.073       0.075
  P-value H_0: RMSEA <= 0.050                    0.189       0.129
  P-value H_0: RMSEA >= 0.080                    0.007       0.015
                                                                  
  Robust RMSEA                                               0.059
  90 Percent confidence interval - lower                     0.044
  90 Percent confidence interval - upper                     0.074
  P-value H_0: Robust RMSEA <= 0.050                         0.145
  P-value H_0: Robust RMSEA >= 0.080                         0.009

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.967    0.736
    EEC2              1.292    0.109   11.800    0.000    1.249    0.871
    EEC3              1.345    0.096   14.069    0.000    1.301    0.952
  IM =~                                                                 
    IM1               1.000                               0.922    0.793
    IM2               1.049    0.162    6.484    0.000    0.968    0.899
    IM3               1.046    0.172    6.095    0.000    0.965    0.830

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.137    0.387    0.355    0.723    0.149    0.054
    reward0_eco2      0.400    0.384    1.044    0.297    0.434    0.162
    reward1_eco2      0.582    0.334    1.742    0.081    0.631    0.236
    reward0_eco3     -0.184    0.389   -0.473    0.636   -0.199   -0.074
    reward1_eco3     -0.033    0.427   -0.077    0.938   -0.036   -0.013
    ADT_high_num      0.483    0.326    1.483    0.138    0.524    0.262
    TR_high_num      -0.064    0.275   -0.233    0.816   -0.069   -0.024
    reward1_c1_ADT    0.098    0.429    0.229    0.819    0.107    0.032
    reward0_c2_ADT   -0.224    0.437   -0.514    0.607   -0.243   -0.074
    reward1_c2_ADT   -0.445    0.405   -1.098    0.272   -0.482   -0.119
    reward0_c3_ADT    0.322    0.473    0.680    0.497    0.349    0.086
    reward1_c3_ADT   -0.127    0.503   -0.253    0.800   -0.138   -0.038
    reward1_ec1_TR    0.501    0.445    1.126    0.260    0.543    0.074
    reward0_ec2_TR    0.063    0.525    0.121    0.904    0.069    0.009
    reward1_ec2_TR    0.446    0.388    1.149    0.250    0.484    0.080
    reward0_ec3_TR    0.802    0.501    1.599    0.110    0.869    0.084
    reward1_ec3_TR   -0.654    0.594   -1.102    0.271   -0.709   -0.117
  EEC ~                                                                 
    IM                0.507    0.082    6.207    0.000    0.483    0.483

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.793    0.092    8.618    0.000    0.793    0.459
   .EEC2              0.497    0.114    4.362    0.000    0.497    0.241
   .EEC3              0.174    0.069    2.527    0.011    0.174    0.093
   .IM1               0.501    0.164    3.053    0.002    0.501    0.370
   .IM2               0.221    0.055    4.057    0.000    0.221    0.191
   .IM3               0.421    0.194    2.166    0.030    0.421    0.311
   .EEC               0.717    0.115    6.220    0.000    0.767    0.767
   .IM                0.713    0.175    4.065    0.000    0.838    0.838
With moderators as latent variables

Derived model

Derived model
lavaan 0.6-21 ended normally after 70 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        50

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               807.145     793.458
  Degrees of freedom                               205         205
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.017
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              3407.498    2919.599
  Degrees of freedom                               238         238
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.167

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.810       0.781
  Tucker-Lewis Index (TLI)                       0.779       0.745
                                                                  
  Robust Comparative Fit Index (CFI)                         0.809
  Robust Tucker-Lewis Index (TLI)                            0.778

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4202.458   -4202.458
  Scaling correction factor                                  1.816
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -3798.885   -3798.885
  Scaling correction factor                                  1.174
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                8504.915    8504.915
  Bayesian (BIC)                              8673.214    8673.214
  Sample-size adjusted Bayesian (SABIC)       8514.776    8514.776

Root Mean Square Error of Approximation:

  RMSEA                                          0.117       0.116
  90 Percent confidence interval - lower         0.109       0.107
  90 Percent confidence interval - upper         0.126       0.124
  P-value H_0: RMSEA <= 0.050                    0.000       0.000
  P-value H_0: RMSEA >= 0.080                    1.000       1.000
                                                                  
  Robust RMSEA                                               0.117
  90 Percent confidence interval - lower                     0.108
  90 Percent confidence interval - upper                     0.125
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         1.000

Standardized Root Mean Square Residual:

  SRMR                                           0.195       0.195

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.958    0.729
    EEC2              1.290    0.106   12.130    0.000    1.236    0.862
    EEC3              1.375    0.096   14.294    0.000    1.318    0.965
  EEF =~                                                                
    EEF1              1.000                               0.992    0.896
    EEF2              1.044    0.053   19.814    0.000    1.035    0.921
    EEF3              0.961    0.055   17.397    0.000    0.953    0.890
  IM =~                                                                 
    IM1               1.000                               0.918    0.790
    IM2               1.066    0.158    6.760    0.000    0.978    0.909
    IM3               1.044    0.169    6.175    0.000    0.958    0.824
  ADT =~                                                                
    ADT1              1.000                               0.917    0.879
    ADT2              1.040    0.068   15.275    0.000    0.954    0.901
    ADT3              1.146    0.075   15.340    0.000    1.051    0.879
  TR =~                                                                 
    TR1               1.000                               1.308    0.872
    TR2               1.110    0.055   20.197    0.000    1.452    0.942
    TR3               1.060    0.058   18.217    0.000    1.387    0.921

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    Reward_PBP        0.090    0.139    0.645    0.519    0.098    0.049
    ADT_high_num      0.448    0.286    1.565    0.118    0.488    0.244
    Condition_EEF     0.149    0.281    0.530    0.596    0.162    0.076
    Condition_EEC     0.609    0.243    2.511    0.012    0.664    0.314
    ADT_EEF           0.134    0.347    0.387    0.699    0.146    0.058
    ADT_EEC          -0.273    0.333   -0.820    0.412   -0.298   -0.111
    Reward_TR        -0.166    0.366   -0.454    0.650   -0.181   -0.048
    TR_high_num       0.024    0.244    0.100    0.920    0.027    0.009
  EEF ~                                                                 
    IM                0.444    0.078    5.672    0.000    0.411    0.411
    Reward_PBP        0.137    0.109    1.260    0.208    0.138    0.069
    Condition_EEF     0.173    0.129    1.348    0.178    0.175    0.082
    Condition_EEC     0.032    0.136    0.238    0.812    0.033    0.015
    EEC               0.863    0.211    4.092    0.000    0.834    0.834

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC ~~                                                                
   .EEF              -0.310    0.150   -2.070    0.038   -0.401   -0.401
  Reward_PBP ~~                                                         
    TR_high_num       0.006    0.012    0.504    0.614    0.006    0.034
  EEC ~~                                                                
    ADT               0.359    0.083    4.311    0.000    0.408    0.408
    TR                0.400    0.099    4.025    0.000    0.319    0.319
  ADT ~~                                                                
    TR                0.634    0.106    6.009    0.000    0.529    0.529

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.810    0.092    8.808    0.000    0.810    0.469
   .EEC2              0.530    0.106    5.004    0.000    0.530    0.258
   .EEC3              0.129    0.059    2.179    0.029    0.129    0.069
   .EEF1              0.242    0.045    5.348    0.000    0.242    0.198
   .EEF2              0.191    0.047    4.052    0.000    0.191    0.151
   .EEF3              0.240    0.063    3.833    0.000    0.240    0.209
   .IM1               0.509    0.161    3.151    0.002    0.509    0.376
   .IM2               0.201    0.049    4.080    0.000    0.201    0.173
   .IM3               0.434    0.202    2.144    0.032    0.434    0.321
   .ADT1              0.247    0.057    4.339    0.000    0.247    0.227
   .ADT2              0.210    0.052    4.002    0.000    0.210    0.187
   .ADT3              0.325    0.088    3.692    0.000    0.325    0.227
   .TR1               0.537    0.101    5.336    0.000    0.537    0.239
   .TR2               0.268    0.068    3.923    0.000    0.268    0.113
   .TR3               0.345    0.087    3.956    0.000    0.345    0.152
    Reward_PBP        0.250    0.001  391.251    0.000    0.250    1.000
    TR_high_num       0.121    0.017    7.058    0.000    0.121    1.000
    EEC               0.918    0.145    6.315    0.000    1.000    1.000
   .EEF               0.652    0.162    4.030    0.000    0.662    0.662
   .IM                0.755    0.168    4.504    0.000    0.896    0.896
    ADT               0.841    0.124    6.799    0.000    1.000    1.000
    TR                1.710    0.185    9.239    0.000    1.000    1.000

Entire model based on composite

With bootstrapping
Complete theoretical model with partial mediation
lavaan 0.6-21 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        33

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                49.175      60.142
  Degrees of freedom                                24          24
  P-value (Chi-square)                           0.002       0.000
  Scaling correction factor                                  0.818
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               290.659     324.975
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.894

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.894       0.867
  Tucker-Lewis Index (TLI)                       0.761       0.700
                                                                  
  Robust Comparative Fit Index (CFI)                         0.878
  Robust Tucker-Lewis Index (TLI)                            0.726

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -861.722    -861.722
  Scaling correction factor                                  1.009
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -837.134    -837.134
  Scaling correction factor                                  0.928
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1789.443    1789.443
  Bayesian (BIC)                              1900.521    1900.521
  Sample-size adjusted Bayesian (SABIC)       1795.952    1795.952

Root Mean Square Error of Approximation:

  RMSEA                                          0.070       0.084
  90 Percent confidence interval - lower         0.042       0.055
  90 Percent confidence interval - upper         0.098       0.114
  P-value H_0: RMSEA <= 0.050                    0.113       0.029
  P-value H_0: RMSEA >= 0.080                    0.299       0.615
                                                                  
  Robust RMSEA                                               0.076
  90 Percent confidence interval - lower                     0.052
  90 Percent confidence interval - upper                     0.100
  P-value H_0: Robust RMSEA <= 0.050                         0.038
  P-value H_0: Robust RMSEA >= 0.080                         0.412

Standardized Root Mean Square Residual:

  SRMR                                           0.040       0.040

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.105    0.394    0.266    0.790    0.105    0.037
    reward0_eco2      0.430    0.396    1.084    0.278    0.430    0.158
    reward1_eco2      0.590    0.340    1.733    0.083    0.590    0.218
    reward0_eco3     -0.183    0.409   -0.447    0.655   -0.183   -0.068
    reward1_eco3     -0.028    0.434   -0.065    0.948   -0.028   -0.010
    ADT_high_num      0.522    0.322    1.621    0.105    0.522    0.257
    TR_high_num      -0.063    0.297   -0.214    0.831   -0.063   -0.022
    reward1_c1_ADT    0.104    0.440    0.236    0.813    0.104    0.031
    reward0_c2_ADT   -0.258    0.456   -0.565    0.572   -0.258   -0.077
    reward1_c2_ADT   -0.492    0.409   -1.202    0.229   -0.492   -0.120
    reward0_c3_ADT    0.308    0.502    0.614    0.539    0.308    0.075
    reward1_c3_ADT   -0.180    0.507   -0.355    0.723   -0.180   -0.049
    reward1_ec1_TR    0.452    0.552    0.820    0.412    0.452    0.060
    reward0_ec2_TR    0.073    0.549    0.133    0.895    0.073    0.010
    reward1_ec2_TR    0.452    0.419    1.079    0.281    0.452    0.074
    reward0_ec3_TR    0.869    0.537    1.619    0.105    0.869    0.082
    reward1_ec3_TR   -0.575    0.572   -1.005    0.315   -0.575   -0.094
  EEF_composite ~                                                       
    IM_composite      0.625    0.068    9.145    0.000    0.625    0.568
    reward1_eco1      0.132    0.186    0.707    0.480    0.132    0.043
    reward0_eco2     -0.173    0.205   -0.843    0.399   -0.173   -0.058
    reward1_eco2      0.031    0.191    0.161    0.872    0.031    0.010
    reward0_eco3     -0.242    0.180   -1.346    0.178   -0.242   -0.081
    reward1_eco3     -0.104    0.205   -0.504    0.614   -0.104   -0.035
  EEC_composite ~                                                       
    IM_composite      0.592    0.072    8.179    0.000    0.592    0.486
    reward1_eco1      0.206    0.246    0.839    0.401    0.206    0.060
    reward0_eco2      0.227    0.262    0.868    0.386    0.227    0.069
    reward1_eco2      0.313    0.239    1.313    0.189    0.313    0.095
    reward0_eco3      0.098    0.212    0.464    0.643    0.098    0.030
    reward1_eco3      0.020    0.261    0.075    0.940    0.020    0.006

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.444    0.096    4.625    0.000    0.444    0.466

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.886    0.110    8.034    0.000    0.886    0.862
   .EEF_composite     0.810    0.124    6.525    0.000    0.810    0.651
   .EEC_composite     1.123    0.116    9.704    0.000    1.123    0.736

R-Square:
                   Estimate
    IM_composite      0.138
    EEF_composite     0.349
    EEC_composite     0.264

Entire model based on latent interaction - product indicators

Based on ADT as a latent variable
lavaan 0.6-21 ended normally after 67 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        74

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                               597.087     501.179
  Degrees of freedom                               262         262
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.191
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              3736.116    2567.883
  Degrees of freedom                               315         315
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.455

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.902       0.894
  Tucker-Lewis Index (TLI)                       0.882       0.872
                                                                  
  Robust Comparative Fit Index (CFI)                         0.913
  Robust Tucker-Lewis Index (TLI)                            0.895

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -6244.962   -6244.962
  Scaling correction factor                                  2.963
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -5946.419   -5946.419
  Scaling correction factor                                  1.582
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               12637.924   12637.924
  Bayesian (BIC)                             12887.006   12887.006
  Sample-size adjusted Bayesian (SABIC)      12652.519   12652.519

Root Mean Square Error of Approximation:

  RMSEA                                          0.077       0.065
  90 Percent confidence interval - lower         0.069       0.057
  90 Percent confidence interval - upper         0.086       0.073
  P-value H_0: RMSEA <= 0.050                    0.000       0.001
  P-value H_0: RMSEA >= 0.080                    0.301       0.001
                                                                  
  Robust RMSEA                                               0.071
  90 Percent confidence interval - lower                     0.062
  90 Percent confidence interval - upper                     0.081
  P-value H_0: Robust RMSEA <= 0.050                         0.000
  P-value H_0: Robust RMSEA >= 0.080                         0.064

Standardized Root Mean Square Residual:

  SRMR                                           0.068       0.068

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  EEC =~                                                                
    EEC1              1.000                               0.971    0.740
    EEC2              1.289    0.108   11.900    0.000    1.251    0.874
    EEC3              1.326    0.093   14.262    0.000    1.287    0.945
  EEF =~                                                                
    EEF1              1.000                               1.076    0.909
    EEF2              1.044    0.053   19.745    0.000    1.124    0.932
    EEF3              0.960    0.055   17.380    0.000    1.033    0.903
  ADT =~                                                                
    ADT1              1.000                               0.916    0.878
    ADT2              1.039    0.068   15.207    0.000    0.952    0.900
    ADT3              1.151    0.079   14.549    0.000    1.054    0.882
  TR =~                                                                 
    TR1               1.000                               1.308    0.872
    TR2               1.110    0.054   20.418    0.000    1.452    0.942
    TR3               1.061    0.058   18.211    0.000    1.387    0.921
  IM =~                                                                 
    IM1               1.000                               0.949    0.819
    IM2               0.995    0.158    6.291    0.000    0.945    0.881
    IM3               0.999    0.181    5.530    0.000    0.948    0.818
  IM_ADT =~                                                             
    IM1.ADT1          1.000                               0.806    0.514
    IM2.ADT2          1.240    0.380    3.266    0.001    0.999    0.738
    IM3.ADT3          1.987    0.790    2.514    0.012    1.601    0.877
  IM_TR =~                                                              
    IM1.TR1           1.000                               1.092    0.537
    IM2.TR2           1.317    0.479    2.751    0.006    1.438    0.776
    IM3.TR3           1.515    0.903    1.677    0.094    1.654    0.827

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM ~                                                                  
    reward1_eco1      0.303    0.188    1.614    0.106    0.319    0.115
    reward0_eco2      0.211    0.205    1.029    0.303    0.223    0.083
    reward1_eco2      0.373    0.167    2.229    0.026    0.393    0.147
    reward0_eco3     -0.033    0.229   -0.146    0.884   -0.035   -0.013
    reward1_eco3     -0.247    0.211   -1.174    0.241   -0.261   -0.097
    TR                0.164    0.074    2.219    0.027    0.226    0.226
    ADT               0.094    0.108    0.863    0.388    0.090    0.090
    IM_ADT           -0.823    0.538   -1.529    0.126   -0.699   -0.699
    IM_TR             0.447    0.519    0.860    0.390    0.514    0.514
  EEF ~                                                                 
    IM                0.607    0.079    7.661    0.000    0.536    0.536
    reward1_eco1      0.090    0.180    0.501    0.616    0.084    0.030
    reward0_eco2     -0.187    0.198   -0.946    0.344   -0.174   -0.065
    reward1_eco2      0.064    0.182    0.351    0.726    0.059    0.022
    reward0_eco3     -0.227    0.174   -1.305    0.192   -0.211   -0.079
    reward1_eco3     -0.057    0.185   -0.309    0.757   -0.053   -0.020
    TR                0.050    0.059    0.850    0.395    0.061    0.061
    ADT               0.275    0.098    2.792    0.005    0.234    0.234
  EEC ~                                                                 
    IM                0.395    0.081    4.873    0.000    0.386    0.386
    reward1_eco1      0.148    0.206    0.718    0.473    0.152    0.055
    reward0_eco2      0.140    0.219    0.641    0.521    0.144    0.054
    reward1_eco2      0.246    0.192    1.280    0.201    0.253    0.095
    reward0_eco3      0.057    0.179    0.318    0.750    0.059    0.022
    reward1_eco3      0.015    0.194    0.076    0.939    0.015    0.006
    TR                0.077    0.056    1.385    0.166    0.104    0.104
    ADT               0.263    0.086    3.057    0.002    0.248    0.248

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEC ~~                                                                
   .EEF               0.265    0.082    3.255    0.001    0.428    0.428
  ADT ~~                                                                
    TR                0.633    0.105    6.009    0.000    0.529    0.529
    IM_ADT           -0.106    0.105   -1.008    0.314   -0.144   -0.144
    IM_TR            -0.089    0.127   -0.703    0.482   -0.089   -0.089
  TR ~~                                                                 
    IM_ADT           -0.093    0.110   -0.842    0.400   -0.088   -0.088
    IM_TR            -0.247    0.199   -1.239    0.215   -0.173   -0.173
  IM_ADT ~~                                                             
    IM_TR             0.737    0.565    1.305    0.192    0.838    0.838

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .EEC1              0.779    0.092    8.436    0.000    0.779    0.452
   .EEC2              0.483    0.103    4.689    0.000    0.483    0.236
   .EEC3              0.198    0.061    3.238    0.001    0.198    0.107
   .EEF1              0.242    0.045    5.362    0.000    0.242    0.173
   .EEF2              0.190    0.047    4.067    0.000    0.190    0.131
   .EEF3              0.241    0.063    3.818    0.000    0.241    0.184
   .ADT1              0.249    0.058    4.322    0.000    0.249    0.229
   .ADT2              0.213    0.053    4.009    0.000    0.213    0.190
   .ADT3              0.318    0.090    3.527    0.000    0.318    0.222
   .TR1               0.537    0.100    5.349    0.000    0.537    0.239
   .TR2               0.270    0.067    3.995    0.000    0.270    0.113
   .TR3               0.344    0.088    3.908    0.000    0.344    0.151
   .IM1               0.442    0.167    2.647    0.008    0.442    0.329
   .IM2               0.257    0.074    3.455    0.001    0.257    0.223
   .IM3               0.445    0.217    2.052    0.040    0.445    0.331
   .IM1.ADT1          1.812    1.036    1.749    0.080    1.812    0.736
   .IM2.ADT2          0.835    0.269    3.101    0.002    0.835    0.456
   .IM3.ADT3          0.773    0.659    1.172    0.241    0.773    0.231
   .IM1.TR1           2.942    1.108    2.654    0.008    2.942    0.712
   .IM2.TR2           1.369    0.702    1.951    0.051    1.369    0.399
   .IM3.TR3           1.264    0.911    1.388    0.165    1.264    0.316
   .EEC               0.622    0.097    6.395    0.000    0.660    0.660
   .EEF               0.618    0.133    4.656    0.000    0.534    0.534
    ADT               0.839    0.125    6.731    0.000    1.000    1.000
    TR                1.710    0.185    9.258    0.000    1.000    1.000
   .IM                0.649    0.133    4.895    0.000    0.720    0.720
    IM_ADT            0.649    0.368    1.763    0.078    1.000    1.000
    IM_TR             1.192    1.069    1.116    0.265    1.000    1.000

R-Square:
                   Estimate
    EEC1              0.548
    EEC2              0.764
    EEC3              0.893
    EEF1              0.827
    EEF2              0.869
    EEF3              0.816
    ADT1              0.771
    ADT2              0.810
    ADT3              0.778
    TR1               0.761
    TR2               0.887
    TR3               0.849
    IM1               0.671
    IM2               0.777
    IM3               0.669
    IM1.ADT1          0.264
    IM2.ADT2          0.544
    IM3.ADT3          0.769
    IM1.TR1           0.288
    IM2.TR2           0.601
    IM3.TR3           0.684
    EEC               0.340
    EEF               0.466
    IM                0.280
R square
    EEC1     EEC2     EEC3     EEF1     EEF2     EEF3     ADT1     ADT2 
   0.548    0.764    0.893    0.827    0.869    0.816    0.771    0.810 
    ADT3      TR1      TR2      TR3      IM1      IM2      IM3 IM1.ADT1 
   0.778    0.761    0.887    0.849    0.671    0.777    0.669    0.264 
IM2.ADT2 IM3.ADT3  IM1.TR1  IM2.TR2  IM3.TR3      EEC      EEF       IM 
   0.544    0.769    0.288    0.601    0.684    0.340    0.466    0.280 
Complete theoretical model with full mediation
lavaan 0.6-21 ended normally after 9 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        23

  Number of observations                           214

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                56.516      64.619
  Degrees of freedom                                34          34
  P-value (Chi-square)                           0.009       0.001
  Scaling correction factor                                  0.875
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                               290.659     324.975
  Degrees of freedom                                54          54
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.894

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.905       0.887
  Tucker-Lewis Index (TLI)                       0.849       0.821
                                                                  
  Robust Comparative Fit Index (CFI)                         0.890
  Robust Tucker-Lewis Index (TLI)                            0.825

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -865.392    -865.392
  Scaling correction factor                                  1.008
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)       -837.134    -837.134
  Scaling correction factor                                  0.928
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                1776.784    1776.784
  Bayesian (BIC)                              1854.202    1854.202
  Sample-size adjusted Bayesian (SABIC)       1781.321    1781.321

Root Mean Square Error of Approximation:

  RMSEA                                          0.056       0.065
  90 Percent confidence interval - lower         0.028       0.038
  90 Percent confidence interval - upper         0.081       0.090
  P-value H_0: RMSEA <= 0.050                    0.335       0.161
  P-value H_0: RMSEA >= 0.080                    0.054       0.176
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.038
  90 Percent confidence interval - upper                     0.083
  P-value H_0: Robust RMSEA <= 0.050                         0.204
  P-value H_0: Robust RMSEA >= 0.080                         0.080

Standardized Root Mean Square Residual:

  SRMR                                           0.042       0.042

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  IM_composite ~                                                        
    reward1_eco1      0.105    0.394    0.266    0.790    0.105    0.037
    reward0_eco2      0.430    0.396    1.084    0.278    0.430    0.158
    reward1_eco2      0.590    0.340    1.733    0.083    0.590    0.218
    reward0_eco3     -0.183    0.409   -0.447    0.655   -0.183   -0.068
    reward1_eco3     -0.028    0.434   -0.065    0.948   -0.028   -0.010
    ADT_high_num      0.522    0.322    1.621    0.105    0.522    0.257
    TR_high_num      -0.063    0.297   -0.214    0.831   -0.063   -0.022
    reward1_c1_ADT    0.104    0.440    0.236    0.813    0.104    0.031
    reward0_c2_ADT   -0.258    0.456   -0.565    0.572   -0.258   -0.077
    reward1_c2_ADT   -0.492    0.409   -1.202    0.229   -0.492   -0.120
    reward0_c3_ADT    0.308    0.502    0.614    0.539    0.308    0.075
    reward1_c3_ADT   -0.180    0.507   -0.355    0.723   -0.180   -0.049
    reward1_ec1_TR    0.452    0.552    0.820    0.412    0.452    0.060
    reward0_ec2_TR    0.073    0.549    0.133    0.895    0.073    0.010
    reward1_ec2_TR    0.452    0.419    1.079    0.281    0.452    0.074
    reward0_ec3_TR    0.869    0.537    1.619    0.105    0.869    0.082
    reward1_ec3_TR   -0.575    0.572   -1.005    0.315   -0.575   -0.094
  EEF_composite ~                                                       
    IM_composite      0.638    0.070    9.154    0.000    0.638    0.580
  EEC_composite ~                                                       
    IM_composite      0.616    0.073    8.481    0.000    0.616    0.506

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .EEF_composite ~~                                                      
   .EEC_composite     0.447    0.096    4.675    0.000    0.447    0.462

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .IM_composite      0.886    0.110    8.034    0.000    0.886    0.862
   .EEF_composite     0.825    0.124    6.670    0.000    0.825    0.664
   .EEC_composite     1.136    0.115    9.837    0.000    1.136    0.744

R-Square:
                   Estimate
    IM_composite      0.138
    EEF_composite     0.336
    EEC_composite     0.256

Nested modelling

CFA

Mediation

Moderation

Only mediation
     aic      bic     srmr    rmsea      cfi      tli 
4804.246 4925.421    0.048    0.078    0.955    0.932 
Entire model as baseline
     aic      bic     srmr    rmsea      cfi      tli 
4783.907 4958.937    0.036    0.044    0.961    0.950 
Only ADT as moderator
     aic      bic     srmr    rmsea      cfi      tli 
4798.952 4940.323    0.055    0.063    0.945    0.927 
Only TR as moderator
     aic      bic     srmr    rmsea      cfi      tli 
4808.483 4949.854    0.059    0.062    0.947    0.930 
Derived model with PEB as control
     aic      bic     srmr    rmsea      cfi      tli 
4732.955 4918.083    0.035    0.043    0.964    0.953 
Both moderators
     aic      bic     srmr    rmsea      cfi      tli 
4806.259 4967.826    0.056    0.052    0.945    0.930 
Only ADT as moderator
     aic      bic     srmr    rmsea      cfi      tli 
4798.952 4940.323    0.055    0.063    0.945    0.927 
Only TR as moderator
     aic      bic     srmr    rmsea      cfi      tli 
4808.483 4949.854    0.059    0.062    0.947    0.930 

EEF –> EEC or EEC –> EEF

Comparison of SEM results of filtered sample to initial sample