Configuración y Carga
de Datos
##### UNIVERSIDAD CENTRAL DEL ECUADOR #####
#### AUTOR: MARTIN SARMIENTO ####
### CARRERA: INGENIERÍA EN PETRÓLEOS #####
#### VARIABLE ESTADO OPERATIVO ####
## DATASET ##
setwd("~/R/OPERATIONAL_STATUS")
# Cargar dataset
Datos <- read.csv("Data_Mundial_Final.csv", sep = ";", fileEncoding = "latin1")
# Estructura de los datos
str(Datos)
## 'data.frame': 58771 obs. of 29 variables:
## $ OBJECTID : int 127 129 131 132 133 137 138 139 140 145 ...
## $ code : chr "00127-ARG-P" "00129-ARG-G" "00131-ARG-P" "00132-ARG-P" ...
## $ plant_name : chr "Aconcagua solar farm" "Altiplano 200 Solar Power Plant" "Anchoris solar farm" "Antu Newen solar farm" ...
## $ country : chr "Argentina" "Argentina" "Argentina" "Argentina" ...
## $ operational_status : chr "announced" "operating" "construction" "cancelled - inferred 4 y" ...
## $ longitude : chr "-68,8713" "-66,895798" "-68,915001" "-70,269897" ...
## $ latitude : chr "-32,998501" "-24,1392" "-33,330101" "-37,375801" ...
## $ elevation : int 929 4000 937 865 858 570 1612 665 3989 2640 ...
## $ area : chr "250,337006" "4397290" "645,163025" "241,276001" ...
## $ size : chr "Small" "Big" "Small" "Small" ...
## $ slope : chr "0,574179" "1,60257" "0,902748" "1,79147" ...
## $ slope_type : chr "Plano o casi plano" "Plano o casi plano" "Plano o casi plano" "Plano o casi plano" ...
## $ curvature : chr "0,000795" "-0,002781" "0,002781" "-0,002384" ...
## $ curvature_type : chr "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies planas o intermedias" "Superficies planas o intermedias" ...
## $ aspect : chr "55,124672" "188,707367" "108,434952" "239,349335" ...
## $ aspect_type : chr "Northeast" "South" "East" "Southwest" ...
## $ dist_to_road : chr "127,2827045" "56014,95403" "335,9280031" "34,00973342" ...
## $ ambient_temperature : chr "12,6" "6,8" "13,1" "11,4" ...
## $ ghi : chr "6,11" "8,012" "6,119" "6,223" ...
## $ humidity : chr "53,74" "53,74" "53,74" "53,74" ...
## $ wind_speed : chr "3,7789" "7,02062" "3,87037" "6,55962" ...
## $ wind_direction : chr "55,099998" "55,099998" "55,099998" "55,099998" ...
## $ dt_wind : chr "Northeast" "Northeast" "Northeast" "Northeast" ...
## $ solar_aptitude : chr "0,746197" "0,8" "0,595309" "0,657269" ...
## $ solar_aptitude_rounded: int 7 8 6 7 7 7 8 7 8 6 ...
## $ solar_aptittude_class : chr "Alta" "Alta" "Media" "Alta" ...
## $ capacity : chr "25" "101" "180" "20" ...
## $ optimal_tilt : chr "31" "26" "31" "33" ...
## $ pv_potential : chr "4,983" "6,389" "4,969" "5,002" ...
# Cargamos las librerias
library(dplyr)
##
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(gt)
Categorización y
Ordenamiento Lógico
### Agrupación ###
tabla_resumen <- tabla_STATUS %>%
mutate(grupo = case_when(
grepl("cancelled - inferred 4 y", Status, ignore.case = TRUE) ~ "Cancelado (Inferred 4y)",
grepl("shelved - inferred 2 y", Status, ignore.case = TRUE) ~ "Archivado (Inferred 2y)",
grepl("operating", Status, ignore.case = TRUE) ~ "Operativo",
grepl("announced", Status, ignore.case = TRUE) ~ "Anunciado",
grepl("pre-construction", Status, ignore.case = TRUE) ~ "Pre-Construcción",
grepl("construction", Status, ignore.case = TRUE) ~ "Construcción",
grepl("mothballed", Status, ignore.case = TRUE) ~ "Inactivo (Mothballed)",
grepl("shelved", Status, ignore.case = TRUE) ~ "Archivado (Shelved)",
grepl("cancelled", Status, ignore.case = TRUE) ~ "Cancelado",
grepl("retired", Status, ignore.case = TRUE) ~ "Retirada",
TRUE ~ "Otros"))
# Definimos el orden
orden_especifico <- c(
"Operativo",
"Anunciado",
"Construcción",
"Pre-Construcción",
"Inactivo (Mothballed)",
"Archivado (Shelved)",
"Archivado (Inferred 2y)",
"Cancelado",
"Cancelado (Inferred 4y)",
"Retirada",
"Otros")
tabla_resumen <- tabla_resumen %>%
mutate(grupo = factor(grupo, levels = orden_especifico)) %>%
group_by(grupo) %>%
summarise(
Frecuencia = sum(Freq),
Porcentaje = sum(hi_porc)) %>%
arrange(grupo)
# Renombramos columnas
colnames(tabla_resumen) <- c("Estado","ni","hi (%)")
# Tabla Intermedia GT
tabla_resumen_gt <- tabla_resumen %>%
gt() %>%
tab_header(
title = md("**Tabla N°1 de Agrupación por Estado Operativo de las Plantas Solares**")) %>%
tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
cols_label(
Estado = "Estado Operativo",
ni = "Frecuencia (ni)",
`hi (%)` = "Porcentaje (hi%)") %>%
fmt_number(columns = c(`hi (%)`), decimals = 2) %>%
tab_options(
heading.title.font.size = px(16),
heading.subtitle.font.size = px(14),
column_labels.background.color = "#F0F0F0")
# Mostramos la tabla
tabla_resumen_gt
| Tabla N°1 de Agrupación por Estado Operativo de las Plantas Solares |
| Estado Operativo |
Frecuencia (ni) |
Porcentaje (hi%) |
| Operativo |
47341 |
80.55 |
| Anunciado |
1380 |
2.35 |
| Construcción |
2002 |
3.41 |
| Pre-Construcción |
6243 |
10.62 |
| Inactivo (Mothballed) |
8 |
0.01 |
| Archivado (Shelved) |
246 |
0.42 |
| Archivado (Inferred 2y) |
530 |
0.90 |
| Cancelado |
564 |
0.96 |
| Cancelado (Inferred 4y) |
426 |
0.72 |
| Retirada |
31 |
0.05 |
| Autor: Martin Sarmiento |
Indicadores
Estadísticos
# Cálculo de la Moda
moda_estado <- tabla_resumen$Estado[which.max(tabla_resumen$ni)]
# Tabla de Indicadores
tabla_indicadores <- data.frame(
"Variable" = "Estado Operativo",
"Rango" = "announced, pre-construction, construction, operating, mothballed, shelved, shelved–inferred 2y, cancelled, cancelled–inferred 4y, retired",
"Media (X)" = "-",
"Mediana (Me)" = "-",
"Moda (Mo)" = moda_estado,
"Varianza (V)" = "-",
"Desv. Est. (Sd)" = "-",
"C.V. (%)" = "-",
"Asimetría (As)" = "-",
"Curtosis (K)" = "-",
check.names = FALSE)
# Generar Tabla de Indicadores
tabla_conclusiones_gt <- tabla_indicadores %>%
gt() %>%
tab_header(title = md("**Tabla N°3 de Conclusiones de Estado Operativo de las Plantas Solares**")) %>%
tab_source_note(source_note = "Autor: Martin Sarmiento") %>%
tab_options(column_labels.background.color = "#F0F0F0")
tabla_conclusiones_gt
| Tabla N°3 de Conclusiones de Estado Operativo de las Plantas Solares |
| Variable |
Rango |
Media (X) |
Mediana (Me) |
Moda (Mo) |
Varianza (V) |
Desv. Est. (Sd) |
C.V. (%) |
Asimetría (As) |
Curtosis (K) |
| Estado Operativo |
announced, pre-construction, construction, operating, mothballed, shelved, shelved–inferred 2y, cancelled, cancelled–inferred 4y, retired |
- |
- |
Operativo |
- |
- |
- |
- |
- |
| Autor: Martin Sarmiento |