library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.5.2
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.5.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.5.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.5.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(car)
## Warning: package 'car' was built under R version 4.5.2
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.5.2
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
library(csv)
## Warning: package 'csv' was built under R version 4.5.2
# Import data CSV
df <- read.csv("C:/Users/MyBook Hype AMD/Downloads/Salary_dataset.csv")
data<- df[c("YearsExperience","Salary")]
# Lihat struktur data
head(data)
## YearsExperience Salary
## 1 1.2 39344
## 2 1.4 46206
## 3 1.6 37732
## 4 2.1 43526
## 5 2.3 39892
## 6 3.0 56643
#2. M I S S I N G V A L U E S
total_missing<- sum (is.na(data))
total_missing
## [1] 0
print("Statistik Deskriptif:")
## [1] "Statistik Deskriptif:"
summary(data)
## YearsExperience Salary
## Min. : 1.200 Min. : 37732
## 1st Qu.: 3.300 1st Qu.: 56722
## Median : 4.800 Median : 65238
## Mean : 5.413 Mean : 76004
## 3rd Qu.: 7.800 3rd Qu.:100546
## Max. :10.600 Max. :122392
# Scatter plot
ggplot(data, aes(x = YearsExperience, y = Salary)) +
geom_point(color = "blue", size = 3) +
labs(title = "Hubungan tahun pengalaman dan gaji",
x = "Tahun pengalaman", y = "Gaji") +
theme_minimal()
# Korelasi
cor_test <- cor.test(data$YearsExperience,data$Salary)
print(paste("Korelasi Pearson:", round(cor_test$estimate, 4)))
## [1] "Korelasi Pearson: 0.9782"
print(paste("p-value korelasi:", round(cor_test$p.value, 4)))
## [1] "p-value korelasi: 0"
model <- lm(Salary ~ YearsExperience, data = data)
print("Ringkasan Model Regresi:")
## [1] "Ringkasan Model Regresi:"
summary(model)
##
## Call:
## lm(formula = Salary ~ YearsExperience, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7958.0 -4088.5 -459.9 3372.6 11448.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24848.2 2306.7 10.77 1.82e-11 ***
## YearsExperience 9450.0 378.8 24.95 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5788 on 28 degrees of freedom
## Multiple R-squared: 0.957, Adjusted R-squared: 0.9554
## F-statistic: 622.5 on 1 and 28 DF, p-value: < 2.2e-16
cat("\n=== UJI ASUMSI REGRESI LINEAR ===\n")
##
## === UJI ASUMSI REGRESI LINEAR ===
# 5.1 Normalitas Residual
shapiro_test <- shapiro.test(residuals(model))
cat("1. UJI NORMALITAS (Shapiro-Wilk):\n")
## 1. UJI NORMALITAS (Shapiro-Wilk):
cat(" Statistik W =", round(shapiro_test$statistic, 4), "\n")
## Statistik W = 0.9523
cat(" p-value =", round(shapiro_test$p.value, 4), "\n")
## p-value = 0.1952
if(shapiro_test$p.value > 0.05) {
cat(" Keputusan: Residual berdistribusi normal\n")
} else {
cat(" Keputusan: Residual tidak normal\n")
}
## Keputusan: Residual berdistribusi normal
# Q-Q Plot
qqnorm(residuals(model), main = "Q-Q Plot Residual")
qqline(residuals(model), col = "red")
# 5.2 Homoskedastisitas
bp_test <- bptest(model)
cat("\n2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):\n")
##
## 2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):
cat(" Statistik LM =", round(bp_test$statistic, 4), "\n")
## Statistik LM = 0.3991
cat(" p-value =", round(bp_test$p.value, 4), "\n")
## p-value = 0.5276
if(bp_test$p.value > 0.05) {
cat(" Keputusan: Varian residual homogen\n")
} else {
cat(" Keputusan: Ada heteroskedastisitas\n")
}
## Keputusan: Varian residual homogen
# Plot Residual vs Fitted
plot(fitted(model), residuals(model),
main = "Residual vs Fitted Values",
xlab = "Fitted Values", ylab = "Residuals",
pch = 19, col = "blue")
abline(h = 0, col = "red", lty = 2)
# 5.3 Tidak ada Autokorelasi
dw_test <- dwtest(model)
cat("\n3. UJI AUTOKORELASI (Durbin-Watson):\n")
##
## 3. UJI AUTOKORELASI (Durbin-Watson):
cat(" Statistik DW =", round(dw_test$statistic, 4), "\n")
## Statistik DW = 1.648
cat(" p-value =", round(dw_test$p.value, 4), "\n")
## p-value = 0.1178
if(dw_test$p.value > 0.05) {
cat(" Keputusan: Tidak ada autokorelasi\n")
} else {
cat(" Keputusan: Ada autokorelasi\n")
}
## Keputusan: Tidak ada autokorelasi
cat("\n=== INTERPRETASI KOEFISIEN ===\n")
##
## === INTERPRETASI KOEFISIEN ===
intercept <- coef(model)[1]
slope <- coef(model)[2]
cat("Persamaan Regresi: Salary =", round(intercept, 2), "+", round(slope, 2), "* YearsExperience\n")
## Persamaan Regresi: Salary = 24848.2 + 9449.96 * YearsExperience
cat("\nInterpretasi:\n")
##
## Interpretasi:
cat("1. Intercept (β0 =", round(intercept, 2), "):\n")
## 1. Intercept (β0 = 24848.2 ):
cat(" Nilai gaji ketika tahun pengalam = 0 adalah", round(intercept, 2), "dolar\n")
## Nilai gaji ketika tahun pengalam = 0 adalah 24848.2 dolar
cat("2. Slope (β1 =", round(slope, 2), "):\n")
## 2. Slope (β1 = 9449.96 ):
cat(" Setiap penambahan pengalaman 1 Tahun, nilai gaji meningkat", round(slope, 2), "dolar\n")
## Setiap penambahan pengalaman 1 Tahun, nilai gaji meningkat 9449.96 dolar
cat("\n=== ESTIMASI PARAMETER ===\n")
##
## === ESTIMASI PARAMETER ===
conf_int <- confint(model, level = 0.95)
cat("Interval Kepercayaan 95%:\n")
## Interval Kepercayaan 95%:
cat(" Intercept: [", round(conf_int[1,1], 3), ", ", round(conf_int[1,2], 3), "]\n", sep = "")
## Intercept: [20123.24, 29573.17]
cat(" Slope: [", round(conf_int[2,1], 3), ", ", round(conf_int[2,2], 3), "]\n", sep = "")
## Slope: [8674.119, 10225.81]
# Uji hipotesis untuk slope
cat("\nUji Hipotesis untuk Slope (β1):\n")
##
## Uji Hipotesis untuk Slope (β1):
cat(" H0: β1 = 0 (tidak ada hubungan linear)\n")
## H0: β1 = 0 (tidak ada hubungan linear)
cat(" H1: β1 ≠ 0 (ada hubungan linear)\n")
## H1: β1 ≠ 0 (ada hubungan linear)
summary_model <- summary(model)
slope_pvalue <- summary_model$coefficients[2, 4]
cat(" p-value =", round(slope_pvalue, 6), "\n")
## p-value = 0
if(slope_pvalue < 0.05) {
cat(" Keputusan: Tolak H0, ada hubungan linear signifikan\n")
} else {
cat(" Keputusan: Gagal tolak H0, tidak ada hubungan linear signifikan\n")
}
## Keputusan: Tolak H0, ada hubungan linear signifikan
r_squared <- summary_model$r.squared
cat("\nKoefisien Determinasi (R²):\n")
##
## Koefisien Determinasi (R²):
cat(" R² =", round(r_squared, 4), "\n")
## R² = 0.957
cat(" Artinya:", round(r_squared * 100, 2), "% variasi nilai gaji dapat dijelaskan oleh pengalaman\n")
## Artinya: 95.7 % variasi nilai gaji dapat dijelaskan oleh pengalaman
ggplot(data, aes(x =YearsExperience , y = Salary)) +
geom_point(color = "blue", size = 3) +
geom_smooth(method = "lm", se = TRUE, color = "red", fill = "pink") +
labs(title = "Garis Regresi Linear",
subtitle = paste("Y =", round(intercept, 2), "+", round(slope, 2), "X"),
x = "Tahub pengalaman", y = "gaji") +
theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'
new_data <- data.frame(YearsExperience = c(3, 5))
prediction <- predict(model, newdata = new_data, interval = "confidence")
cat("\n=== PREDIKSI ===\n")
##
## === PREDIKSI ===
cat("Untuk pengalaman 3 tahun, prediksi gaji =", round(prediction[1, "fit"], 2), "\n")
## Untuk pengalaman 3 tahun, prediksi gaji = 53198.09
cat("Untuk pengalaman 5 tahun , prediksi gaji =", round(prediction[2, "fit"], 2), "\n")
## Untuk pengalaman 5 tahun , prediksi gaji = 72098.02
par(mfrow = c(2, 2))
plot(model, which = 1:4)
par(mfrow = c(1, 1))
cat("\n=== RINGKASAN ANALISIS ===\n")
##
## === RINGKASAN ANALISIS ===
cat("1. Model:Gaji = β0 + β1*YearsExperience + ε\n")
## 1. Model:Gaji = β0 + β1*YearsExperience + ε
cat("2. Estimasi: Y =", round(intercept, 3), "+", round(slope, 3), "* X\n")
## 2. Estimasi: Y = 24848.2 + 9449.962 * X
cat("3. R² =", round(r_squared, 4), "(", round(r_squared*100, 1), "%)\n")
## 3. R² = 0.957 ( 95.7 %)
cat("4. Uji F (model): p-value =",
round(summary_model$fstatistic[1], 4), "\n")
## 4. Uji F (model): p-value = 622.5072
cat("5. Asumsi:\n")
## 5. Asumsi:
cat(" - Normalitas: p =", round(shapiro_test$p.value, 4), "\n")
## - Normalitas: p = 0.1952
cat(" - Homoskedastisitas: p =", round(bp_test$p.value, 4), "\n")
## - Homoskedastisitas: p = 0.5276
cat(" - Autokorelasi: p =", round(dw_test$p.value, 4), "\n")
## - Autokorelasi: p = 0.1178
# Simpan hasil
hasil <- list(
model = model,
coefficients = coef(model),
r_squared = r_squared,
assumptions = list(
normality = shapiro_test$p.value,
homoscedasticity = bp_test$p.value,
autocorrelation = dw_test$p.value
),
confidence_intervals = conf_int
)
print("Analisis regresi linear sederhana selesai!")
## [1] "Analisis regresi linear sederhana selesai!"