n= 1013
phat=466/n #proporcion MUESTRAL
SE=sqrt (phat* (1-phat) /n) #DESVIACION DE LA PROPORCION
alpha=0.05 # Nivel de significancia
zstar=-qnorm (alpha/2) # valor de Z
zstar
c(phat-zstarSE,phat+zstarSE)
prop.test(466, 1013, conf.level=0.95)
xbar = 66; s = 4; n = 30
alpha = 0.2
tstar=qt (1-alpha/2, df = n - 1)
SE = s/sqrt (n)
c(xbar - tstar * SE, xbar + tstar * SE) #realizando prueba de VALIDACION
x=c(110, 12, 2.5, 98, 1017, 540, 54, 4.3, 150, 432)
shapiro.test(x) 3 los datos no siguen una distribucion NORMAL. Usar MEDIANA+
wilcox.test(log(x), conf.int=TRUE,conf.level=0.9)
exp(c(2.96, 5.53))
Ejercicio: d=c(rep(21,4),22,22,23,23,rep(24,6),25,25,26,29,rep(31,3),33)
#MAS PRUEBAS
prop.test(x=5850, n=50000, p=0.113, alt=“greater”)
#x=caracteristica medida
#n=tamanño de la muestra
#p=0.113 Ho Hipotesis a PRAR
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.