HANDS ON 2 MG 3 ANREG GRACILLIA N.V

2026-02-14

#INPUT DATA

library(ggplot2)
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.5.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.5.2
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
library(outliers)
## Warning: package 'outliers' was built under R version 4.5.2
library(car)
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.5.2
# Input data
df <- read.csv("C:/Users/User/Downloads/Data_Handson_anreg_fixed1.csv",
               sep=";",
               header=TRUE)

data <- df[, c("Work_Experience", "Income")]

data$Work_Experience <- as.numeric(data$Work_Experience)
data$Income <- as.numeric(data$Income)

data <- na.omit(data)

#MISSING VALUE

# Cek Missing Value
cat("\n=== Missing Value ===\n")
## 
## === Missing Value ===
total_missing <- sum(is.na(data))
total_missing
## [1] 0

#OUTLIER

# Outlier
detect_outliers <- function(data) {
  cat("\n=== Deteksi Outlier ===\n\n")
  
  outlier_report <- list()
  
  for(var in names(data)[sapply(data, is.numeric)]) {
    cat("Analisis outlier untuk variabel:", var, "\n")
    
    # Statistik deskriptif
    stats <- summary(data[[var]])
    iqr_val <- IQR(data[[var]], na.rm = TRUE)
    q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
    q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
    lower_bound <- q1 - 1.5 * iqr_val
    upper_bound <- q3 + 1.5 * iqr_val
    
    # Deteksi outlier dengan metode IQR
    outliers_iqr <- data[[var]][data[[var]] < lower_bound | data[[var]] > upper_bound]
    
    # Deteksi outlier dengan metode Z-score
    z_scores <- scale(data[[var]])
    outliers_z <- data[[var]][abs(z_scores) > 3]
    
    # Deteksi outlier dengan metode Grubbs (uji statistik)
    if(length(na.omit(data[[var]])) > 6) {
      tryCatch({
        grubbs_test <- grubbs.test(na.omit(data[[var]]))
        grubbs_outlier <- ifelse(grubbs_test$p.value < 0.05, "Terdeteksi", "Tidak terdeteksi")
      }, error = function(e) {
        grubbs_outlier <- "Tidak dapat dihitung"
      })
    } else {
      grubbs_outlier <- "Data tidak cukup"
    }
    
    # Ringkasan
    outlier_report[[var]] <- list(
      n_outliers_iqr = length(outliers_iqr),
      n_outliers_z = length(outliers_z),
      grubbs_result = grubbs_outlier,
      lower_bound = lower_bound,
      upper_bound = upper_bound,
      outlier_values = unique(round(outliers_iqr, 2))
    )
    
    cat("  - Outlier (IQR method):", length(outliers_iqr), "\n")
    cat("  - Outlier (Z-score > 3):", length(outliers_z), "\n")
    cat("  - Uji Grubbs:", grubbs_outlier, "\n")
    cat("  - Batas bawah:", round(lower_bound, 2), "\n")
    cat("  - Batas atas:", round(upper_bound, 2), "\n")
    
    if(length(outliers_iqr) > 0) {
      cat("  - Nilai outlier:", paste(head(unique(round(outliers_iqr, 2)), 5), collapse = ", "), "\n")
    }
    cat("\n")
  }
  
  return(outlier_report)
}

# Deteksi outlier
outlier_analysis <- detect_outliers(data)
## 
## === Deteksi Outlier ===
## 
## Analisis outlier untuk variabel: Work_Experience 
##   - Outlier (IQR method): 0 
##   - Outlier (Z-score > 3): 0 
##   - Uji Grubbs: Tidak terdeteksi 
##   - Batas bawah: -25.5 
##   - Batas atas: 74.5 
## 
## Analisis outlier untuk variabel: Income 
##   - Outlier (IQR method): 957 
##   - Outlier (Z-score > 3): 188 
##   - Uji Grubbs: Terdeteksi 
##   - Batas bawah: -350190.6 
##   - Batas atas: 765668.4 
##   - Nilai outlier: 3584362, 5188124, 9892000, 1011213, 3856805
# Visual
visualize_outliers <- function(data) {
  
  numeric_vars <- names(data)[sapply(data, is.numeric)]
  
  # Boxplot untuk setiap variabel numerik
  par(mfrow = c(2, 3))
  for(var in numeric_vars[1:min(6, length(numeric_vars))]) {
    boxplot(data[[var]], main = var, col = "lightblue", 
            ylab = "Income", outline = TRUE)
    grid()
  }
  par(mfrow = c(1, 1))
  
  # Histogram dengan overlay outlier
  for(var in numeric_vars[1:min(3, length(numeric_vars))]) {
    # Hitung batas outlier
    q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
    q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
    iqr_val <- IQR(data[[var]], na.rm = TRUE)
    lower_bound <- q1 - 1.5 * iqr_val
    upper_bound <- q3 + 1.5 * iqr_val
    
    # Identifikasi outlier
    is_outlier <- data[[var]] < lower_bound | data[[var]] > upper_bound
    
    # Plot histogram
    hist_data <- ggplot(data.frame(value = data[[var]]), aes(x = value)) +
      geom_histogram(aes(y = ..density..), bins = 30, fill = "lightblue", alpha = 0.7) +
      geom_density(color = "darkblue", linewidth = 1) +
      geom_vline(xintercept = c(lower_bound, upper_bound), 
                 color = "red", linetype = "dashed", linewidth = 1) +
      labs(title = paste("Distribusi dan Outlier:", var),
           x = var, y = "Density") +
      theme_minimal() +
      annotate("text", x = lower_bound, y = 0, 
               label = "Bawah", vjust = 2, color = "red") +
      annotate("text", x = upper_bound, y = 0, 
               label = "Atas", vjust = 2, color = "red")
    
    print(hist_data)
  }
  
  # Scatter plot matrix untuk melihat outlier multivariat
  if(length(numeric_vars) >= 3) {
    pairs(data[, numeric_vars[1:min(4, length(numeric_vars))]], 
          main = "Scatter Plot Matrix untuk Deteksi Outlier",
          pch = 19, col = alpha("blue", 0.6))
  }
}

# Jalankan visualisasi
visualize_outliers(data)

## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## ℹ Please use `after_stat(density)` instead.
## This warning is displayed once per session.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

#STATISTIK DESKRIPTIF

# ANALISIS DESKRIPTIF DAN VISUALISASI
print("Statistik Deskriptif:")
## [1] "Statistik Deskriptif:"
summary(data)
##  Work_Experience     Income       
##  Min.   : 0.00   Min.   :  31127  
##  1st Qu.:12.00   1st Qu.:  68257  
##  Median :25.00   Median :  72875  
##  Mean   :24.76   Mean   : 814278  
##  3rd Qu.:37.00   3rd Qu.: 347221  
##  Max.   :50.00   Max.   :9992571
# Scatter plot
ggplot(data, aes(x = Work_Experience, y = Income)) +
  geom_point(color = "blue", size = 3) +
  labs(title = "Hubungan Pengalaman Kerja dan Penghasilan",
       x = "Work_Experience", y = "Income") +
  theme_minimal()

# Korelasi
cor_test <- cor.test(data$Work_Experience, data$Income)
print(paste("Korelasi Pearson:", round(cor_test$estimate, 4)))
## [1] "Korelasi Pearson: -0.0265"
print(paste("p-value korelasi:", round(cor_test$p.value, 4)))
## [1] "p-value korelasi: 0.0611"

#ANALISIS REGRESI

# Membangun Model Regresi
model <- lm(Income ~ Work_Experience, data = data)
print("Ringkasan Model Regresi:")
## [1] "Ringkasan Model Regresi:"
summary(model)
## 
## Call:
## lm(formula = Income ~ Work_Experience, data = data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -859345 -762182 -704427 -476249 9241544 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       895662      50535  17.724   <2e-16 ***
## Work_Experience    -3287       1755  -1.873   0.0611 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1824000 on 4996 degrees of freedom
## Multiple R-squared:  0.0007016,  Adjusted R-squared:  0.0005016 
## F-statistic: 3.508 on 1 and 4996 DF,  p-value: 0.06115
# UJI ASUMSI REGRESI LINEAR
cat("\n=== UJI ASUMSI REGRESI LINEAR ===\n")
## 
## === UJI ASUMSI REGRESI LINEAR ===
# Normalitas Residual
shapiro_test <- shapiro.test(residuals(model))
cat("1. UJI NORMALITAS (Shapiro-Wilk):\n")
## 1. UJI NORMALITAS (Shapiro-Wilk):
cat("   Statistik W =", round(shapiro_test$statistic, 4), "\n")
##    Statistik W = 0.4914
cat("   p-value =", round(shapiro_test$p.value, 4), "\n")
##    p-value = 0
if(shapiro_test$p.value > 0.05) {
  cat("   Keputusan: Residual berdistribusi normal\n")
} else {
  cat("   Keputusan: Residual tidak normal\n")
}
##    Keputusan: Residual tidak normal
# Q-Q Plot
qqnorm(residuals(model), main = "Q-Q Plot Residual")
qqline(residuals(model), col = "red")

# Homoskedastisitas
bp_test <- bptest(model)
cat("\n2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):\n")
## 
## 2. UJI HOMOSKEDASTISITAS (Breusch-Pagan):
cat("   Statistik LM =", round(bp_test$statistic, 4), "\n")
##    Statistik LM = 1.7834
cat("   p-value =", round(bp_test$p.value, 4), "\n")
##    p-value = 0.1817
if(bp_test$p.value > 0.05) {
  cat("   Keputusan: Varian residual homogen\n")
} else {
  cat("   Keputusan: Ada heteroskedastisitas\n")
}
##    Keputusan: Varian residual homogen
# Plot Residual vs Fitted
plot(fitted(model), residuals(model),
     main = "Residual vs Fitted Values",
     xlab = "Fitted Values", ylab = "Residuals",
     pch = 19, col = "blue")
abline(h = 0, col = "red", lty = 2)

# Tidak ada Autokorelasi
dw_test <- dwtest(model)
cat("\n3. UJI AUTOKORELASI (Durbin-Watson):\n")
## 
## 3. UJI AUTOKORELASI (Durbin-Watson):
cat("   Statistik DW =", round(dw_test$statistic, 4), "\n")
##    Statistik DW = 2.0377
cat("   p-value =", round(dw_test$p.value, 4), "\n")
##    p-value = 0.9087
if(dw_test$p.value > 0.05) {
  cat("   Keputusan: Tidak ada autokorelasi\n")
} else {
  cat("   Keputusan: Ada autokorelasi\n")
}
##    Keputusan: Tidak ada autokorelasi
# INTERPRETASI KOEFISIEN
cat("\n=== INTERPRETASI KOEFISIEN ===\n")
## 
## === INTERPRETASI KOEFISIEN ===
intercept <- coef(model)[1]
slope <- coef(model)[2]

cat("Persamaan Regresi: Penghasilan =", round(intercept, 2), "+", round(slope, 2), "* Pengalaman Kerja\n")
## Persamaan Regresi: Penghasilan = 895662 + -3286.83 * Pengalaman Kerja
cat("\nInterpretasi:\n")
## 
## Interpretasi:
cat("1. Intercept (β0 =", round(intercept, 2), "):\n")
## 1. Intercept (β0 = 895662 ):
cat("   Penghasilan ketika Pengalaman Kerja = 0 adalah", round(intercept, 2))
##    Penghasilan ketika Pengalaman Kerja = 0 adalah 895662
cat("2. Slope (β1 =", round(slope, 2), "):\n")
## 2. Slope (β1 = -3286.83 ):
cat("   Setiap penambahan 1 Pengalaman Kerja, Penghasilan meningkat", round(slope, 2))
##    Setiap penambahan 1 Pengalaman Kerja, Penghasilan meningkat -3286.83
# ESTIMASI PARAMETER DAN INFERENSI
cat("\n=== ESTIMASI PARAMETER ===\n")
## 
## === ESTIMASI PARAMETER ===
conf_int <- confint(model, level = 0.95)
cat("Interval Kepercayaan 95%:\n")
## Interval Kepercayaan 95%:
cat("   Intercept: [", round(conf_int[1,1], 3), ", ", round(conf_int[1,2], 3), "]\n", sep = "")
##    Intercept: [796591.7, 994732.3]
cat("   Slope:     [", round(conf_int[2,1], 3), ", ", round(conf_int[2,2], 3), "]\n", sep = "")
##    Slope:     [-6727.37, 153.709]
# Uji hipotesis untuk slope
cat("\nUji Hipotesis untuk Slope (β1):\n")
## 
## Uji Hipotesis untuk Slope (β1):
cat("   H0: β1 = 0 (tidak ada hubungan linear)\n")
##    H0: β1 = 0 (tidak ada hubungan linear)
cat("   H1: β1 ≠ 0 (ada hubungan linear)\n")
##    H1: β1 ≠ 0 (ada hubungan linear)
summary_model <- summary(model)
slope_pvalue <- summary_model$coefficients[2, 4]
cat("   p-value =", round(slope_pvalue, 6), "\n")
##    p-value = 0.061147
if(slope_pvalue < 0.05) {
  cat("   Keputusan: Tolak H0, ada hubungan linear signifikan\n")
} else {
  cat("   Keputusan: Gagal tolak H0, tidak ada hubungan linear signifikan\n")
}
##    Keputusan: Gagal tolak H0, tidak ada hubungan linear signifikan
# KOEFISIEN DETERMINASI
r_squared <- summary_model$r.squared
cat("\nKoefisien Determinasi (R²):\n")
## 
## Koefisien Determinasi (R²):
cat("   R² =", round(r_squared, 4), "\n")
##    R² = 7e-04
cat("   Artinya:", round(r_squared * 100, 2), "% Work Experience tidak mampu menjelaskan variasi Income\n")
##    Artinya: 0.07 % Work Experience tidak mampu menjelaskan variasi Income
# VISUALISASI MODEL
ggplot(data, aes(x = Work_Experience, y = Income)) +
  geom_point(color = "blue", size = 3) +
  geom_smooth(method = "lm", se = TRUE, color = "red", fill = "pink") +
  labs(title = "Garis Regresi Linear",
       subtitle = paste("Y =", round(intercept, 2), "+", round(slope, 2), "X"),
       x = "Work_Experience", y = "Income") +
  theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

# PREDIKSI
new_data <- data.frame(Work_Experience = c(17, 38))
prediction <- predict(model, newdata = new_data, interval = "confidence")
cat("\n=== PREDIKSI ===\n")
## 
## === PREDIKSI ===
cat("Untuk Pengalaman Kerja 17, prediksi Penghasilan =", round(prediction[1, "fit"], 2), "\n")
## Untuk Pengalaman Kerja 17, prediksi Penghasilan = 839785.9
cat("Untuk Pengalaman Kerja 38, prediksi Penghasilan =", round(prediction[2, "fit"], 2), "\n")
## Untuk Pengalaman Kerja 38, prediksi Penghasilan = 770762.4
# DIAGNOSTIC PLOTS
par(mfrow = c(2, 2))
plot(model, which = 1:4)

par(mfrow = c(1, 1))

# RINGKASAN LENGKAP
cat("\n=== RINGKASAN ANALISIS ===\n")
## 
## === RINGKASAN ANALISIS ===
cat("1. Model: Income = β0 + β1*Work_Experience + ε\n")
## 1. Model: Income = β0 + β1*Work_Experience + ε
cat("2. Estimasi: Y =", round(intercept, 3), "+", round(slope, 3), "* X\n")
## 2. Estimasi: Y = 895662 + -3286.83 * X
cat("3. R² =", round(r_squared, 4), "(", round(r_squared*100, 1), "%)\n")
## 3. R² = 7e-04 ( 0.1 %)
cat("4. Uji F (model): p-value =", 
    round(summary_model$fstatistic[1], 4), "\n")
## 4. Uji F (model): p-value = 3.5076
cat("5. Asumsi:\n")
## 5. Asumsi:
cat("   - Normalitas: p =", round(shapiro_test$p.value, 4), "\n")
##    - Normalitas: p = 0
cat("   - Homoskedastisitas: p =", round(bp_test$p.value, 4), "\n")
##    - Homoskedastisitas: p = 0.1817
cat("   - Autokorelasi: p =", round(dw_test$p.value, 4), "\n")
##    - Autokorelasi: p = 0.9087
# Simpan hasil
hasil <- list(
  model = model,
  coefficients = coef(model),
  r_squared = r_squared,
  assumptions = list(
    normality = shapiro_test$p.value,
    homoscedasticity = bp_test$p.value,
    autocorrelation = dw_test$p.value
  ),
  confidence_intervals = conf_int
)

```