L1 and L2 French non-EEG behavioral study

These data are from a masked-priming lexical decision task in French. 35 native French speakers completed the task in Grenoble, France. 28 non-native French speakers completed the task in Lawrence, Kansas. Only native English speakers who grew up in an English only environment until age 10 remained in the analyses.

The task

Participants sat at a computer and were presented with target words. They decided as quickly as they could if the target was a real word in French or not.

The trial structure was as follows:

  • Mask (##########), 750 ms
  • Prime word, 50 ms
  • Target word, until response
  • Pause, 1000 ms

The experiment was run in E-Prime 2.0. Native French data were compiled into 1 large Excel sheet with no changes to formatting from the E-data format. The non-native French data are in individual Excel files (named p1XX.csv) that are un-changed in format from the E-data output files. The L2 files thus are compiled into 1 data frame (“L2”), whereas the native French group does not need to be compiled.

Other tasks

  • All participants filled out a language background questionnaire.
  • Non-native speakers also completed 2 proficiency tests: cloze test (/45) and LexTale, as well as a word familiarity task. In the familiarity task they were asked to rate on a scale of 1-7 how familiar they were with the real-word targets and related prime words they saw in the masked-priming task. On the scale, 1= never seen, 7= use very frequently

Set working directory

setwd("C:/Users/Katie/Desktop/Research/Dissertation/STUDIES/Studies 1 and 2 Behavioral/RESULTS/All tasks raw excel files/Comparing L1 and L2")

Compile L2 french files into one dataframe called L2

file_list <- list.files(pattern="p1")
 
for (file in file_list){
       
  # if the merged dataset doesn't exist, create it
  if (!exists("dataset")){
    dataset <- read.csv(file, header=TRUE)
  }
   
  # if the merged dataset does exist, append to it
  if (exists("dataset")){
    temp_dataset <-read.csv(file, header=TRUE)
    dataset<-rbind(dataset, temp_dataset)
    rm(temp_dataset)
  }
 
}
L2<-dataset
dataset<-NULL

Prepping L2 file

The E-prime output files include rows that correspond to practice items and breaks in the experiment. The below code removes these rows. R also reads in some factors as characters or numbers, which would be problematic for analysis, so the below code also turns these variables into factors.

The E-data files also contain many unnecessary columns. These are removed to have a clean dataframe to work with.

Some column names are not very transparent, so dplyr’s ‘rename’ function is used to give more transparent variable names

A variable “group” is added to marked all rows in this file as coming from the L2 group

Finally, there are some subject numbers for L2ers that are the same for L1ers (e.g., 101). Subjects are renamed with the prefix of their language group concatenated with the subject number they were assigned when they participated

L2<-L2[L2$Running !="PracList",]
L2$Running<-factor(L2$Running)
L2<-L2[L2$Procedure != "BreakProc",]
L2$Procedure<-factor(L2$Procedure)
L2$Condition<-factor(L2$Condition)
L2$Related<-factor(L2$Related)
L2$Slide1.ACC<-factor(L2$Slide1.ACC)
L2$PrimeCondition<-factor(L2$PrimeCondition)

L2<-L2[,c(1,2,16,18,20,30,31,33,35,42,44)]

library(dplyr)
L2<-rename(L2,List=ExperimentName)
L2<-rename(L2,TrialOrder=Block)
L2<-rename(L2,Accuracy=Slide1.ACC)
L2<-rename(L2,RT=Slide1.RT)

library(stats)
library(lme4)
library(lmerTest)

L2$Accuracy<-as.numeric(as.character(L2$Accuracy))
L2$RT<-as.numeric(as.character(L2$RT))
L2$Group<-"L2"
L2$Subject<-paste(L2$Group,L2$Subject)

Remove participants (L2 group)

  • Subjects 101, 106, and 124 grew up in households where English was not the only, or even primary, language. This was found in the language background quesitonnaire. 101 and 106 grew up with French-speaking mothers, 124 grew up in a Vietnamese speaking household.
  • Subject 112 is removed for not following instructions to do the task quickly. He could be heard debating over the lexical status of many targets.
L2<-L2[L2$Subject!="L2 112" &L2$Subject!="L2 106" &L2$Subject!="L2 101" &L2$Subject!="L2 124",]

Load in L1 french file into dataframe called L1

L1<-read.csv("L1 french raw data- all merged.csv",header=TRUE)

Prepping L1 file

The L1 file is prepped in a similar way to the L2 file above. In the L1 version E-prime did not code for the prime being related or not to the target, so a block of code is added to assist in a ‘lookup’ (qdap package) function to add this information to the dataframe

The columns are not in the exact same order as they are in the L2 file, so code is added to organize the columns in the same order as in the L2 file, which will be necessary for merging the 2 files

Finally, a variable “group” is added to marked all rows in this file as coming from the L1 group

L1<-L1[L1$Running !="PracList",]
L1<-L1[L1$Procedure != "BreakProc",]

L1<-L1[,c(1,2,17,19,21,31,32,35,42,44)]

library(dplyr)
L1<-rename(L1,List=ExperimentName)
L1<-rename(L1,TrialOrder=Block)
L1<-rename(L1,Accuracy=Slide1.ACC)
L1<-rename(L1,RT=Slide1.RT)

PrimeCondition<-c("Morph","Orth","Sem","ID","Unr","unr","orth","sem","morph","id")
Related<-c("Related","Related","Related","Related","Unrelated","Unrelated","Related","Related","Related","Related")
RelatedTable<-cbind(PrimeCondition,Related)

library(qdap)
L1$Related<-lookup(L1$PrimeCondition,RelatedTable)
L1<-L1[,c("List","Subject","TrialOrder","Condition","Item","Prime","PrimeCondition","Related","Accuracy","RT","Target")]
L1$Group<-"L1"
L1$Subject<-paste(L1$Group,L1$Subject)

Merge dataframes

Merge L1 and L2 files together to have a large dataframe called “data”

data<-rbind(L1,L2)
data$Group<-as.factor(data$Group)

Accuracy analyses

The below code summarizes the accuracy in lexical decision for reach target condition, for each group

L1_acc<-aggregate(Accuracy~Condition,data=L1,FUN=mean)
L2_acc<-aggregate(Accuracy~Condition,data=L2,FUN=mean)
Acc_all<-cbind(L1_acc[,c(1,2)],L2_acc[,2])
names(Acc_all)<-c("Condition","L1","L2")
Acc_all
##   Condition        L1        L2
## 1        ID 0.9119048 0.8300000
## 2     Morph 0.9325397 0.8466667
## 3     Nonce 0.9093254 0.7275000
## 4      Orth 0.8698413 0.8000000
## 5       Sem 0.9325397 0.8188889

Comparing overall accuracy, it is clear that native speakers were more accurate, and the condition in which they were least accurate was the Orth condition. The non-native group was least accurate in the Nonce condition.

Accuracy of the lexical decision is analyzed below with a logistic mixed-effects model. The fixed effects are Condition(ID,Morph,Orth,Sem, Nonce), Related(related,unrelated), Group (L1,L2), and TrialOrder (i.e., presentation order). Random effects are subject and Item.

ID is the baseline for Condition, Unrelated is the baseline for Related, and L1 is the baseline for Group

data$Related<-as.factor(data$Related)
data$Related<-relevel(data$Related,ref="Unrelated")

acc1<-glm(Accuracy~ Condition*Related*Group+TrialOrder,data=data,family=binomial)
acc2<-glm(Accuracy~ Condition*Related*Group-Condition:Related:Group+TrialOrder,data=data,family=binomial)
acc3<-glm(Accuracy~ Condition*Related*Group-Condition:Related:Group-Condition:Related+TrialOrder,data=data,family=binomial)

summary(acc3)
## 
## Call:
## glm(formula = Accuracy ~ Condition * Related * Group - Condition:Related:Group - 
##     Condition:Related + TrialOrder, family = binomial, data = data)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3638   0.3820   0.4401   0.6130   0.8286  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             2.2294478  0.1126083  19.798  < 2e-16 ***
## ConditionMorph          0.2858601  0.1500058   1.906 0.056694 .  
## ConditionNonce         -0.0296351  0.1115001  -0.266 0.790404    
## ConditionOrth          -0.4428572  0.1299976  -3.407 0.000658 ***
## ConditionSem            0.2858075  0.1500063   1.905 0.056741 .  
## RelatedRelated          0.0325524  0.0721475   0.451 0.651851    
## GroupL2                -0.7413964  0.1410319  -5.257 1.46e-07 ***
## TrialOrder              0.0006139  0.0002627   2.337 0.019437 *  
## ConditionMorph:GroupL2 -0.1634934  0.1973333  -0.829 0.407380    
## ConditionNonce:GroupL2 -0.5726854  0.1476757  -3.878 0.000105 ***
## ConditionOrth:GroupL2   0.2397435  0.1780996   1.346 0.178264    
## ConditionSem:GroupL2   -0.3670763  0.1946087  -1.886 0.059264 .  
## RelatedRelated:GroupL2 -0.0253732  0.0931127  -0.273 0.785237    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 14346  on 17279  degrees of freedom
## Residual deviance: 13592  on 17267  degrees of freedom
## AIC: 13618
## 
## Number of Fisher Scoring iterations: 5

The results of the logistic regression show

  • An effect of condition for Orth, meaning more Orth targets were inaccurately responded to as non-word (in the L1 Group) more often than other target conditions
  • An effect of group, meaning overall the L2 group was less accurate than the L1 Group
  • An effect of TrialOrder, meaning that participants got more accurate as the experiment progressed
  • Interaction of condition (Nonce) x group (L2), meaning overall the L2 group was less accurate in rejecting the nonce targets

Preparing dataframe for RT analyses

Remove Nonce items

data<-data[data$Condition!="Nonce",]

Count how many data points are in the dataframe before cleaning

L1<-data[data$Group=="L1",]
L2<-data[data$Group=="L2",]
L1_before<-length(L1$Item)
L2_before<-length(L2$Item)
L1_before
## [1] 5040
L2_before 
## [1] 3600

Load in lexical properties

The dataframe “props” has lexical properties about all the primes and targets used in the study. It has length (in letter), syllable count, and frequency per million words (Lexique.org)

The below code loads in this dataframe, and creates matrices of 2 columns each to allow for the lookup function to be used to transfer the lexical properties from the “props” dataframe to the “data” dataframe

props<-read.csv("major paper stim properties.csv",header=TRUE)
head(props)
##   Item Condition    Word Letters Frequency Syllables tar.rel.unrel
## 1 D113        ID  laçons       6         0         2         unrel
## 2 D114        ID  parons       6         0         2         unrel
## 3 D115        ID  gazons       6         0         2         unrel
## 4 D116        ID  misons       6         0         2         unrel
## 5 D120        ID privons       7         0         2         unrel
## 6 D121        ID prônons       7         0         2         unrel
##   rel.overlap word.nonce repeat.
## 1          NA       word       0
## 2          NA       word       0
## 3          NA       word       0
## 4          NA       word       0
## 5          NA       word       0
## 6          NA       word       0
targets<-props[props$tar.rel.unrel=="target" & props$word.nonce=="word",]

target_length<-targets[,c(3,4)]
target_freq<-targets[,c(3,5)]
target_syllables<-targets[,c(3,6)]

data$targetfreq<-lookup(data$Target,target_freq)
data$targetlength<-lookup(data$Target,target_length)
data$targetsyllables<-lookup(data$Target,target_syllables)
head(data)
##     List Subject TrialOrder Condition Item     Prime PrimeCondition
## 11 List1  L1 101         11     Morph D014   gagnons          morph
## 15 List1  L1 101         15       Sem D085   narrons            sem
## 16 List1  L1 101         16       Sem D106 discutons            unr
## 20 List1  L1 101         20      Orth D068  amassons            unr
## 23 List1  L1 101         23       Sem D082   montons            sem
## 25 List1  L1 101         25     Morph D013   fondons          morph
##      Related Accuracy  RT  Target Group targetfreq targetlength
## 11   Related        1 757   GAGNE    L1      19.66            5
## 15   Related        1 798 RACONTE    L1      54.12            7
## 16 Unrelated        1 708    AIDE    L1      18.38            4
## 20 Unrelated        1 729  CHARGE    L1       7.97            6
## 23   Related        1 800  GRIMPE    L1       8.18            6
## 25   Related        1 710   FONDE    L1       2.03            5
##    targetsyllables
## 11               1
## 15               2
## 16               1
## 20               1
## 23               1
## 25               1

Clean data in following order

    * Remove 3000+ RTs
    * Calculate zscores (per participant)
    * Remove 2.5+ zscores
    * Keep only accurate items
    * Re-level the Related column so that Unrelated is treated as the baseline
library(stats)
data<-data[data$RT<=3000 & data$RT>=300,]
data$zRT<-ave(data$RT,data$Subject,FUN=scale,na.rm=T)
data<-data[data$zRT<=2.5,]
dim(data)
## [1] 8308   16

Get count of data points in dataframe after cleaning and find how much data was lost

L1<-data[data$Group=="L1",]
L2<-data[data$Group=="L2",]
L1_after<-length(L1$Item)
L2_after<-length(L2$Item)
L1_after
## [1] 4869
L2_after
## [1] 3439
L1_lost<-(L1_before-L1_after)/L1_before
L1_lost
## [1] 0.03392857
L2_lost<-(L2_before-L2_after)/L2_before
L2_lost
## [1] 0.04472222

Remove items with incorrect response

data<-data[data$Accuracy==1,]
data$Related<-as.factor(data$Related)
data$Related<-relevel(data$Related,ref="Unrelated")

Calculate lost due to inaccuracy

L1<-data[data$Group=="L1",]
L2<-data[data$Group=="L2",]
L1_acc<-length(L1$Item)
L2_acc<-length(L2$Item)
L1_acc
## [1] 4469
L2_acc
## [1] 2861
L1_final<-(L1_after-L1_acc)/L1_after
L1_final
## [1] 0.08215239
L2_final<-(L2_after-L2_acc)/L2_after
L2_final
## [1] 0.1680721

Log transform RTs and target frequencies to achieve a normal distribution

data$logRT<-log(data$RT)
data$logtargetfreq<-log(data$targetfreq)

Linear mixed-effects models to analyse reaction times (RTs)

  • Dependent variable: Log-transformed reaction times
  • Independent variables: Condition, Related, Group, Trial order, and log-transformed target frequency is tested to see if it improves the model
  • Random effects: Item, Subject.
  • Random slopes tested: Group, for random effect Item; target frequency for random effect Subject

Baselines in the model:

  • Condition =ID
  • Related= Unrelated
  • Group = L1

Models are compared with ANOVAs to test if adding/removing terms improves the model. When there is no significant difference between 2 models, the model with fewer terms is chosen.

library(LMERConvenienceFunctions)

test1<-lmer(logRT~Condition*Related*Group+TrialOrder+(1|Item)+(1|Subject),data)
test2<-lmer(logRT~Condition*Related*Group+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data)
test3<-lmer(logRT~Condition*Related*Group-Group:Condition+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data)
test4<-lmer(logRT~Condition*Related*Group-Group:Related+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data)
test5<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data)
#test5 is best, simpler than others, and others aren't significantly better
test6<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1|Subject),data)
test7<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),data)

# test 7 is best (i.e., better to include random slopes for group and targetfreq)
summary(test7)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Condition * Related + Group + logtargetfreq + TrialOrder +  
##     (1 + Group | Item) + (1 + logtargetfreq | Subject)
##    Data: data
## 
## REML criterion at convergence: -1889.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9717 -0.6448 -0.1305  0.5099  4.3087 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Item     (Intercept)   0.0022160 0.04707       
##           GroupL2       0.0040613 0.06373  0.07 
##  Subject  (Intercept)   0.0286915 0.16939       
##           logtargetfreq 0.0002223 0.01491  -0.59
##  Residual               0.0411669 0.20290       
## Number of obs: 7330, groups:  Item, 144; Subject, 60
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value
## (Intercept)                    6.691e+00  3.075e-02  9.400e+01 217.590
## ConditionMorph                -1.017e-02  1.529e-02  2.020e+02  -0.665
## ConditionOrth                 -2.446e-02  1.554e-02  2.080e+02  -1.574
## ConditionSem                  -7.711e-04  1.541e-02  2.030e+02  -0.050
## RelatedRelated                -6.327e-02  9.513e-03  7.055e+03  -6.650
## GroupL2                        6.921e-02  3.875e-02  6.300e+01   1.786
## logtargetfreq                 -2.791e-02  3.781e-03  1.360e+02  -7.381
## TrialOrder                    -1.726e-04  2.858e-05  7.103e+03  -6.038
## ConditionMorph:RelatedRelated  2.011e-02  1.338e-02  7.052e+03   1.503
## ConditionOrth:RelatedRelated   4.673e-02  1.365e-02  7.065e+03   3.422
## ConditionSem:RelatedRelated    6.775e-02  1.346e-02  7.076e+03   5.033
##                               Pr(>|t|)    
## (Intercept)                    < 2e-16 ***
## ConditionMorph                0.506509    
## ConditionOrth                 0.117055    
## ConditionSem                  0.960129    
## RelatedRelated                3.14e-11 ***
## GroupL2                       0.078895 .  
## logtargetfreq                 1.40e-11 ***
## TrialOrder                    1.64e-09 ***
## ConditionMorph:RelatedRelated 0.132757    
## ConditionOrth:RelatedRelated  0.000624 ***
## ConditionSem:RelatedRelated   4.96e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtnM CndtnO CndtnS RltdRl GropL2 lgtrgt TrlOrd CnM:RR
## ConditnMrph -0.245                                                        
## ConditnOrth -0.271  0.495                                                 
## ConditionSm -0.222  0.502  0.482                                          
## RelatedRltd -0.159  0.317  0.312  0.314                                   
## GroupL2     -0.532  0.000  0.002  0.000  0.000                            
## logtargtfrq -0.462 -0.010  0.085 -0.085  0.005  0.065                     
## TrialOrder  -0.141 -0.016 -0.013 -0.011  0.002 -0.002  0.003              
## CndtnMrp:RR  0.111 -0.443 -0.222 -0.224 -0.712  0.000 -0.002  0.010       
## CndtnOrt:RR  0.112 -0.221 -0.445 -0.218 -0.697  0.000 -0.008  0.002  0.496
## CndtnSm:RlR  0.112 -0.224 -0.221 -0.443 -0.708  0.002 -0.005 -0.002  0.504
##             CnO:RR
## ConditnMrph       
## ConditnOrth       
## ConditionSm       
## RelatedRltd       
## GroupL2           
## logtargtfrq       
## TrialOrder        
## CndtnMrp:RR       
## CndtnOrt:RR       
## CndtnSm:RlR  0.493

Summarizing the analyses

  • There is an effect of relatedness, meaning in the ID condition targets with related primes elicit faster RTs than targets with unrelated primes
  • There’s an effect of log-transformed target frequency, meaning the more frequent a target, the faster the RT
  • There’s an effect of trial order, meaning RTs got faster as the experiment went on
  • There’s an interaction of condition x related for Orth, meaning the effect of relatedness found in the ID condition is different in the Orth condition
  • There’s an interaction of condition x related for Sem, meaning the effect of relatedness found in the ID condition is different in the Sem condition

  • The best model did not include any interactions with group meaning the patterns for the 2 groups do not differ. The lack of effect of group also indicates that the L2 group overall did not differ in log-transformed RTs comapared to the L1 group.

This is awesome!

Looking at different conditions on their own to check for relatedness effects

morph<-data[data$Condition=="Morph",]
orth<-data[data$Condition=="Orth",]
sem<-data[data$Condition=="Sem",]
id<-data[data$Condition=="ID",]

ID model

id1<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),id)
summary(id1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related * Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: id
## 
## REML criterion at convergence: -291
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8383 -0.6333 -0.1205  0.5076  4.0935 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   0.0352858 0.18785       
##           logtargetfreq 0.0001383 0.01176  -1.00
##  Item     (Intercept)   0.0032144 0.05670       
##           GroupL2       0.0033139 0.05757  -0.45
##  Residual               0.0426847 0.20660       
## Number of obs: 1847, groups:  Subject, 60; Item, 36
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)             6.699e+00  3.726e-02  1.043e+02 179.789  < 2e-16
## RelatedRelated         -5.432e-02  1.247e-02  1.738e+03  -4.356  1.4e-05
## GroupL2                 8.557e-02  4.341e-02  7.330e+01   1.971 0.052487
## logtargetfreq          -3.055e-02  7.121e-03  3.750e+01  -4.290 0.000121
## TrialOrder             -2.194e-04  5.823e-05  1.754e+03  -3.768 0.000170
## RelatedRelated:GroupL2 -2.671e-02  1.992e-02  1.737e+03  -1.341 0.180184
##                           
## (Intercept)            ***
## RelatedRelated         ***
## GroupL2                .  
## logtargetfreq          ***
## TrialOrder             ***
## RelatedRelated:GroupL2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt TrlOrd
## RelatedRltd -0.175                            
## GroupL2     -0.480  0.143                     
## logtargtfrq -0.576  0.013 -0.005              
## TrialOrder  -0.247 -0.001 -0.010  0.027       
## RltdRlt:GL2  0.103 -0.628 -0.229 -0.002  0.010

Morph model

morph1<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),morph)
summary(morph1)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related * Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: morph
## 
## REML criterion at convergence: -372.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7641 -0.6461 -0.1414  0.5055  3.9705 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev.  Corr 
##  Subject  (Intercept)   2.452e-02 0.1565912      
##           logtargetfreq 3.473e-07 0.0005894 -1.00
##  Item     (Intercept)   3.443e-03 0.0586780      
##           GroupL2       3.419e-03 0.0584750 -0.09
##  Residual               4.089e-02 0.2022050      
## Number of obs: 1888, groups:  Subject, 60; Item, 36
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)             6.695e+00  3.721e-02  9.170e+01 179.943  < 2e-16
## RelatedRelated         -4.257e-02  1.205e-02  1.777e+03  -3.532 0.000423
## GroupL2                 8.057e-02  4.399e-02  7.020e+01   1.831 0.071294
## logtargetfreq          -3.365e-02  8.544e-03  3.250e+01  -3.939 0.000408
## TrialOrder             -2.083e-04  5.640e-05  1.789e+03  -3.693 0.000228
## RelatedRelated:GroupL2 -1.803e-03  1.932e-02  1.770e+03  -0.093 0.925677
##                           
## (Intercept)            ***
## RelatedRelated         ***
## GroupL2                .  
## logtargetfreq          ***
## TrialOrder             ***
## RelatedRelated:GroupL2    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt TrlOrd
## RelatedRltd -0.179                            
## GroupL2     -0.475  0.138                     
## logtargtfrq -0.566  0.006  0.003              
## TrialOrder  -0.256  0.057  0.016  0.014       
## RltdRlt:GL2  0.115 -0.627 -0.222 -0.002 -0.052

Orth model

orth1<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),orth)
orth2<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),orth)
summary(orth2)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: orth
## 
## REML criterion at convergence: -205.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6011 -0.6413 -0.1289  0.5322  4.1259 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   0.0245206 0.15659       
##           logtargetfreq 0.0002961 0.01721  -0.51
##  Item     (Intercept)   0.0011344 0.03368       
##           GroupL2       0.0040616 0.06373  0.35 
##  Residual               0.0440582 0.20990       
## Number of obs: 1745, groups:  Subject, 60; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.644e+00  3.040e-02  9.210e+01 218.509  < 2e-16 ***
## RelatedRelated -1.469e-02  1.014e-02  1.595e+03  -1.449   0.1475    
## GroupL2         7.845e-02  3.969e-02  6.460e+01   1.976   0.0524 .  
## logtargetfreq  -2.355e-02  4.818e-03  4.500e+01  -4.887 1.34e-05 ***
## TrialOrder     -1.281e-04  6.248e-05  1.647e+03  -2.050   0.0405 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.169                     
## GroupL2     -0.503 -0.003              
## logtargtfrq -0.426 -0.010  0.074       
## TrialOrder  -0.322  0.013 -0.003 -0.016

Sem model

sem1<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),sem)
sem2<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),sem)
summary(sem2)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: sem
## 
## REML criterion at convergence: -527.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2760 -0.6332 -0.1297  0.5076  4.2768 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   0.0318915 0.17858       
##           logtargetfreq 0.0004545 0.02132  -0.68
##  Item     (Intercept)   0.0013850 0.03722       
##           GroupL2       0.0062322 0.07894  0.53 
##  Residual               0.0371628 0.19278       
## Number of obs: 1850, groups:  Subject, 60; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.686e+00  3.831e-02  7.720e+01 174.502  < 2e-16 ***
## RelatedRelated  4.445e-03  9.091e-03  1.753e+03   0.489 0.624924    
## GroupL2         8.567e-02  4.054e-02  6.990e+01   2.114 0.038124 *  
## logtargetfreq  -2.895e-02  7.900e-03  4.180e+01  -3.664 0.000693 ***
## TrialOrder     -1.490e-04  5.466e-05  1.753e+03  -2.726 0.006478 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.116                     
## GroupL2     -0.428  0.004              
## logtargtfrq -0.708 -0.009  0.111       
## TrialOrder  -0.221 -0.001 -0.008 -0.004

Summarizing follow-up models

  • The follow-up models show an effect of relatedness in the ID and morph conditions. There are effects of group, but no interaction. This means the L2ers are slower in general, but the pattern of ID and Morph priming holds for them too
  • There is no effect of relatedness for the Orth or Sem. There is an effect of group, meaning the L2ers are slower, but there is no interaction. This means that neither the L1 or L2 groups show orth or sem priming

This is really awesome!

Next analyses

The above analyses indicate that there is no need to separate L1 and L2 French speakers for analyses (no interactions of group). However, I am interested in testing if French proficiency modulates the processing of morphologically complex words in non-native French speakers. Only the L2 group completed proficiency measures, so separate analyses are done on just the L2 group to investigate how proficiency may modulate morphological processing. Those analyses are documented in a separate markdown file posted to RPubs.

Matching L1 and L2 in power

There are 35 native speakers and 25 usable L2 speakers in the above analyses. Typically these analyses are robust to unequal groups, but to ensure that the L1 group is not unfairly driving the results of the ‘big’ model with both language groups, a subset of 25 native French speakers is created and another ‘big’ model is used to test the effect of group.

Subsetting L1 group

L1_subjects<-unique(L1$Subject)
L1_subset<-L1_subjects[c(6:30)]
L1_subset
##  [1] "L1 106" "L1 107" "L1 108" "L1 109" "L1 301" "L1 302" "L1 303"
##  [8] "L1 304" "L1 305" "L1 306" "L1 201" "L1 202" "L1 203" "L1 204"
## [15] "L1 205" "L1 206" "L1 207" "L1 208" "L1 209" "L1 401" "L1 402"
## [22] "L1 403" "L1 404" "L1 405" "L1 406"
L1_25<-L1[L1$Subject %in% L1_subset,]

Merging new L1 group (n=24) with all L2 group (n=24)

data2<-rbind(L1_25,L2)

Accuracy Analyses

L1_acc<-aggregate(Accuracy~Condition,data=L1_25,FUN=mean)
L2_acc<-aggregate(Accuracy~Condition,data=L2,FUN=mean)
Acc_all<-cbind(L1_acc[,c(1,2)],L2_acc[,2])
names(Acc_all)<-c("Condition","L1","L2")
Acc_all
##   Condition L1 L2
## 1        ID  1  1
## 2     Morph  1  1
## 3      Orth  1  1
## 4       Sem  1  1
data2$Related<-as.factor(data2$Related)
data2$Related<-relevel(data2$Related,ref="Unrelated")
acc1<-glm(Accuracy~ Condition*Related*Group+TrialOrder,data=data2,family=binomial)
## Warning: glm.fit: algorithm did not converge
summary(acc1)
## 
## Call:
## glm(formula = Accuracy ~ Condition * Related * Group + TrialOrder, 
##     family = binomial, data = data2)
## 
## Deviance Residuals: 
##       Min         1Q     Median         3Q        Max  
## 2.409e-06  2.409e-06  2.409e-06  2.409e-06  2.409e-06  
## 
## Coefficients:
##                                         Estimate Std. Error z value
## (Intercept)                            2.657e+01  1.954e+04   0.001
## ConditionMorph                        -1.000e-07  2.512e+04   0.000
## ConditionOrth                          5.969e-08  2.559e+04   0.000
## ConditionSem                           5.961e-08  2.526e+04   0.000
## RelatedRelated                        -8.287e-08  2.508e+04   0.000
## GroupL2                               -1.670e-07  2.597e+04   0.000
## TrialOrder                             1.900e-08  5.442e+01   0.000
## ConditionMorph:RelatedRelated          1.118e-07  3.542e+04   0.000
## ConditionOrth:RelatedRelated          -1.993e-07  3.609e+04   0.000
## ConditionSem:RelatedRelated           -1.867e-08  3.547e+04   0.000
## ConditionMorph:GroupL2                 2.036e-07  3.658e+04   0.000
## ConditionOrth:GroupL2                  7.596e-08  3.727e+04   0.000
## ConditionSem:GroupL2                  -7.919e-08  3.673e+04   0.000
## RelatedRelated:GroupL2                 2.667e-07  3.647e+04   0.000
## ConditionMorph:RelatedRelated:GroupL2 -2.121e-07  5.143e+04   0.000
## ConditionOrth:RelatedRelated:GroupL2  -8.895e-08  5.238e+04   0.000
## ConditionSem:RelatedRelated:GroupL2   -1.677e-07  5.167e+04   0.000
##                                       Pr(>|z|)
## (Intercept)                              0.999
## ConditionMorph                           1.000
## ConditionOrth                            1.000
## ConditionSem                             1.000
## RelatedRelated                           1.000
## GroupL2                                  1.000
## TrialOrder                               1.000
## ConditionMorph:RelatedRelated            1.000
## ConditionOrth:RelatedRelated             1.000
## ConditionSem:RelatedRelated              1.000
## ConditionMorph:GroupL2                   1.000
## ConditionOrth:GroupL2                    1.000
## ConditionSem:GroupL2                     1.000
## RelatedRelated:GroupL2                   1.000
## ConditionMorph:RelatedRelated:GroupL2    1.000
## ConditionOrth:RelatedRelated:GroupL2     1.000
## ConditionSem:RelatedRelated:GroupL2      1.000
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 0.0000e+00  on 6038  degrees of freedom
## Residual deviance: 3.5036e-08  on 6022  degrees of freedom
## AIC: 34
## 
## Number of Fisher Scoring iterations: 25
data2<-data2[data2$Condition!="Nonce",]

Load in lexical properties

The dataframe “props” has lexical properties about all the primes and targets used in the study. It has length (in letter), syllable count, and frequency per million words (Lexique.org)

The below code loads in this dataframe, and creates matrices of 2 columns each to allow for the lookup function to be used to transfer the lexical properties from the “props” dataframe to the “data” dataframe

props<-read.csv("major paper stim properties.csv",header=TRUE)
head(props)
##   Item Condition    Word Letters Frequency Syllables tar.rel.unrel
## 1 D113        ID  laçons       6         0         2         unrel
## 2 D114        ID  parons       6         0         2         unrel
## 3 D115        ID  gazons       6         0         2         unrel
## 4 D116        ID  misons       6         0         2         unrel
## 5 D120        ID privons       7         0         2         unrel
## 6 D121        ID prônons       7         0         2         unrel
##   rel.overlap word.nonce repeat.
## 1          NA       word       0
## 2          NA       word       0
## 3          NA       word       0
## 4          NA       word       0
## 5          NA       word       0
## 6          NA       word       0
targets<-props[props$tar.rel.unrel=="target" & props$word.nonce=="word",]

target_length<-targets[,c(3,4)]
target_freq<-targets[,c(3,5)]
target_syllables<-targets[,c(3,6)]

data2$targetfreq<-lookup(data2$Target,target_freq)
data2$targetlength<-lookup(data2$Target,target_length)
data2$targetsyllables<-lookup(data2$Target,target_syllables)
head(data2)
##       List Subject TrialOrder Condition Item     Prime PrimeCondition
## 1516 List1  L1 106         11      Orth D064  cinglons            unr
## 1517 List1  L1 106         12       Sem D086   dénions            sem
## 1518 List1  L1 106         13     Morph D026  écrasons            unr
## 1519 List1  L1 106         14       Sem D108  tolérons            unr
## 1520 List1  L1 106         15        ID D138 concluons            unr
## 1521 List1  L1 106         16     Morph D018   signons          morph
##        Related Accuracy   RT  Target Group targetfreq targetlength
## 1516 Unrelated        1 1100  ARRIVE    L1     164.12            6
## 1517   Related        1  837  REFUSE    L1      24.19            6
## 1518 Unrelated        1  745  MONTRE    L1      38.99            6
## 1519 Unrelated        1  576    VEXE    L1       1.76            4
## 1520 Unrelated        1  655 PRÉPARE    L1      19.59            7
## 1521   Related        1  602   SIGNE    L1       7.57            5
##      targetsyllables        zRT
## 1516               2  2.3416291
## 1517               2  0.8355292
## 1518               1  0.3086805
## 1519               1 -0.6591176
## 1520               2 -0.2067149
## 1521               1 -0.5102256

Clean data in following order

    * Remove 3000+ RTs
    * Calculate zscores (per participant)
    * Remove 2.5+ zscores
    * Keep only accurate items
    * Re-level the Related column so that Unrelated is treated as the baseline
library(stats)
data2<-data2[data2$RT<=3000,]
data2$zRT<-ave(data2$RT,data2$Subject,FUN=scale,na.rm=T)
data2<-data2[data2$zRT<=2.5,]
dim(data2)
## [1] 5853   16
data2<-data2[data2$Accuracy==1,]
data2$Related<-as.factor(data2$Related)
data2$Related<-relevel(data2$Related,ref="Unrelated")

Log transform RTs and target frequencies to achieve a normal distribution

data2$logRT<-log(data2$RT)
data2$logtargetfreq<-log(data2$targetfreq)
test11<-lmer(logRT~Condition*Related*Group+TrialOrder+(1|Item)+(1|Subject),data2)
test12<-lmer(logRT~Condition*Related*Group+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data2)
test13<-lmer(logRT~Condition*Related*Group-Group:Condition+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data2)
test14<-lmer(logRT~Condition*Related*Group-Group:Related+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data2)
test15<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1|Item)+(1|Subject),data2)
#test5 is best, simpler than others, and others aren't significantly better
test16<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1|Subject),data2)
test17<-lmer(logRT~Condition*Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),data2)

# test 17 is best (i.e., better to include random slopes for group and targetfreq)
summary(test17)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Condition * Related + Group + logtargetfreq + TrialOrder +  
##     (1 + Group | Item) + (1 + logtargetfreq | Subject)
##    Data: data2
## 
## REML criterion at convergence: -2451
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0433 -0.6644 -0.1149  0.5637  3.9005 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Item     (Intercept)   0.0018154 0.04261       
##           GroupL2       0.0029748 0.05454  0.05 
##  Subject  (Intercept)   0.0302985 0.17406       
##           logtargetfreq 0.0001903 0.01379  -0.71
##  Residual               0.0347800 0.18649       
## Number of obs: 5853, groups:  Item, 144; Subject, 50
## 
## Fixed effects:
##                                 Estimate Std. Error         df t value
## (Intercept)                    6.699e+00  3.492e-02  7.600e+01 191.854
## ConditionMorph                 8.920e-04  1.482e-02  2.140e+02   0.060
## ConditionOrth                 -2.746e-02  1.510e-02  2.210e+02  -1.818
## ConditionSem                  -7.419e-04  1.496e-02  2.160e+02  -0.050
## RelatedRelated                -6.356e-02  9.777e-03  5.622e+03  -6.501
## GroupL2                        4.020e-02  4.017e-02  5.400e+01   1.001
## logtargetfreq                 -2.613e-02  3.692e-03  1.160e+02  -7.077
## TrialOrder                    -2.175e-04  2.951e-05  5.658e+03  -7.369
## ConditionMorph:RelatedRelated  1.803e-02  1.376e-02  5.621e+03   1.311
## ConditionOrth:RelatedRelated   4.595e-02  1.406e-02  5.628e+03   3.268
## ConditionSem:RelatedRelated    6.842e-02  1.387e-02  5.641e+03   4.932
##                               Pr(>|t|)    
## (Intercept)                    < 2e-16 ***
## ConditionMorph                 0.95206    
## ConditionOrth                  0.07041 .  
## ConditionSem                   0.96048    
## RelatedRelated                8.66e-11 ***
## GroupL2                        0.32136    
## logtargetfreq                 1.21e-10 ***
## TrialOrder                    1.96e-13 ***
## ConditionMorph:RelatedRelated  0.18998    
## ConditionOrth:RelatedRelated   0.00109 ** 
## ConditionSem:RelatedRelated   8.36e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) CndtnM CndtnO CndtnS RltdRl GropL2 lgtrgt TrlOrd CnM:RR
## ConditnMrph -0.209                                                        
## ConditnOrth -0.230  0.493                                                 
## ConditionSm -0.189  0.501  0.481                                          
## RelatedRltd -0.143  0.335  0.329  0.331                                   
## GroupL2     -0.589  0.000  0.004 -0.001  0.000                            
## logtargtfrq -0.496 -0.010  0.081 -0.084  0.005  0.088                     
## TrialOrder  -0.130 -0.016 -0.017 -0.013 -0.006 -0.001  0.007              
## CndtnMrp:RR  0.100 -0.468 -0.234 -0.236 -0.711 -0.001 -0.002  0.012       
## CndtnOrt:RR  0.099 -0.233 -0.472 -0.230 -0.696  0.000 -0.008  0.015  0.495
## CndtnSm:RlR  0.101 -0.236 -0.232 -0.469 -0.706  0.002 -0.005  0.000  0.502
##             CnO:RR
## ConditnMrph       
## ConditnOrth       
## ConditionSm       
## RelatedRltd       
## GroupL2           
## logtargtfrq       
## TrialOrder        
## CndtnMrp:RR       
## CndtnOrt:RR       
## CndtnSm:RlR  0.491

Summarizing the model

  • An effect of Relatedness, meaning for the ID condition, related primes have faster RTs than unrelated primes
  • Marginal effect of group, meaning L2 group is overall (marginally) slower than natives
  • Effect of log-transformed target frequency, meaning more frequent targets have faster RTs
  • Effect of TrialOrder, meaning RTs got faster as the experiment progressed
  • Interaction of Condition x Related for Orth, meaning the effect of relatedness in the ID condition is different in the Orth condition
  • Interaction of Condition x Related for Sem, meaning the effect of relatedness in the ID condition is different in the Orth condition

Still works!

morph2<-data2[data2$Condition=="Morph",]
orth2<-data2[data2$Condition=="Orth",]
sem2<-data2[data2$Condition=="Sem",]
id2<-data2[data2$Condition=="ID",]

ID model

id11<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),id2)
id12<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),id2)
summary(id12)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: id2
## 
## REML criterion at convergence: -475.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7261 -0.6345 -0.1041  0.5587  3.5750 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   3.545e-02 0.188294      
##           logtargetfreq 9.541e-05 0.009768 -1.00
##  Item     (Intercept)   3.392e-03 0.058244      
##           GroupL2       2.975e-03 0.054543 -0.58
##  Residual               3.563e-02 0.188759      
## Number of obs: 1483, groups:  Subject, 50; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.701e+00  4.142e-02  8.340e+01 161.790  < 2e-16 ***
## RelatedRelated -6.503e-02  9.933e-03  1.398e+03  -6.547 8.23e-11 ***
## GroupL2         5.269e-02  4.680e-02  5.360e+01   1.126 0.265293    
## logtargetfreq  -2.550e-02  6.871e-03  3.820e+01  -3.711 0.000656 ***
## TrialOrder     -2.704e-04  5.949e-05  1.403e+03  -4.545 5.96e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.126                     
## GroupL2     -0.561 -0.001              
## logtargtfrq -0.506  0.015 -0.019       
## TrialOrder  -0.231 -0.008 -0.005  0.034

Morph model

morph11<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),morph2)
morph12<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),morph2)

summary(morph12)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: morph2
## 
## REML criterion at convergence: -485.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.8450 -0.6866 -0.1260  0.5652  3.6840 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   2.795e-02 0.167190      
##           logtargetfreq 3.115e-05 0.005581 -1.00
##  Item     (Intercept)   2.043e-03 0.045199      
##           GroupL2       1.417e-03 0.037648 0.30 
##  Residual               3.602e-02 0.189784      
## Number of obs: 1513, groups:  Subject, 50; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.731e+00  4.034e-02  7.700e+01 166.857  < 2e-16 ***
## RelatedRelated -4.523e-02  9.838e-03  1.426e+03  -4.597 4.66e-06 ***
## GroupL2         3.997e-02  4.433e-02  5.010e+01   0.902    0.372    
## logtargetfreq  -3.528e-02  7.689e-03  3.400e+01  -4.588 5.85e-05 ***
## TrialOrder     -2.826e-04  5.952e-05  1.439e+03  -4.748 2.26e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.130                     
## GroupL2     -0.554 -0.003              
## logtargtfrq -0.550  0.008  0.053       
## TrialOrder  -0.239  0.020  0.005  0.006

Orth model

orth11<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1|Subject),orth2)
orth12<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1|Subject),orth2)
summary(orth12)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 | Subject)
##    Data: orth2
## 
## REML criterion at convergence: -388.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9668 -0.6516 -0.1367  0.5786  3.6735 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  Subject  (Intercept) 0.020108 0.14180       
##  Item     (Intercept) 0.001166 0.03415       
##           GroupL2     0.004377 0.06616  -0.14
##  Residual             0.037362 0.19329       
## Number of obs: 1388, groups:  Subject, 50; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.648e+00  3.299e-02  7.380e+01 201.501  < 2e-16 ***
## RelatedRelated -1.670e-02  1.049e-02  1.297e+03  -1.592  0.11162    
## GroupL2         4.840e-02  4.298e-02  5.350e+01   1.126  0.26513    
## logtargetfreq  -2.057e-02  4.051e-03  3.540e+01  -5.079 1.23e-05 ***
## TrialOrder     -1.865e-04  6.419e-05  1.297e+03  -2.906  0.00373 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.168                     
## GroupL2     -0.613 -0.001              
## logtargtfrq -0.241 -0.014  0.015       
## TrialOrder  -0.311  0.034 -0.004 -0.012

Sem model

sem11<-lmer(logRT~Related*Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),sem2)
sem12<-lmer(logRT~Related+Group+logtargetfreq+TrialOrder+(1+Group|Item)+(1+logtargetfreq|Subject),sem2)
summary(sem12)
## Linear mixed model fit by REML t-tests use Satterthwaite approximations
##   to degrees of freedom [lmerMod]
## Formula: 
## logRT ~ Related + Group + logtargetfreq + TrialOrder + (1 + Group |  
##     Item) + (1 + logtargetfreq | Subject)
##    Data: sem2
## 
## REML criterion at convergence: -662.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.2596 -0.6372 -0.0888  0.5375  3.9904 
## 
## Random effects:
##  Groups   Name          Variance  Std.Dev. Corr 
##  Subject  (Intercept)   0.0342910 0.18518       
##           logtargetfreq 0.0008081 0.02843  -0.67
##  Item     (Intercept)   0.0007527 0.02744       
##           GroupL2       0.0034772 0.05897  1.00 
##  Residual               0.0307702 0.17541       
## Number of obs: 1469, groups:  Subject, 50; Item, 36
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     6.692e+00  4.250e-02  6.840e+01 157.462  < 2e-16 ***
## RelatedRelated  4.444e-03  9.309e-03  1.382e+03   0.477 0.633191    
## GroupL2         6.266e-02  4.219e-02  5.390e+01   1.485 0.143263    
## logtargetfreq  -3.039e-02  8.459e-03  4.820e+01  -3.593 0.000767 ***
## TrialOrder     -1.566e-04  5.605e-05  1.377e+03  -2.795 0.005269 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) RltdRl GropL2 lgtrgt
## RelatedRltd -0.102                     
## GroupL2     -0.495  0.004              
## logtargtfrq -0.690 -0.012  0.096       
## TrialOrder  -0.212 -0.014 -0.009  0.011

In separate models, same patter holds as was found when all 35 native French speakers were included