datos<-datasets::CO2
datos<-datasets::iris
especies<-datos$Species
TDF_especies<-data.frame(table(especies))
ni<-TDF_especies$Freq
# Ajustar modelo lineal
modelo <- lm(Petal.Length ~ Petal.Width, data=iris)
# PredicciĂ³n para Petal.Width = 0.75
predict(modelo, newdata = data.frame(Petal.Width = 0.75))
## 1
## 2.756013
######
datos<-datasets::CO2
concentracion<-datos$conc
hist(concentracion)

##########rios####
rivers
## [1] 735 320 325 392 524 450 1459 135 465 600 330 336 280 315 870
## [16] 906 202 329 290 1000 600 505 1450 840 1243 890 350 407 286 280
## [31] 525 720 390 250 327 230 265 850 210 630 260 230 360 730 600
## [46] 306 390 420 291 710 340 217 281 352 259 250 470 680 570 350
## [61] 300 560 900 625 332 2348 1171 3710 2315 2533 780 280 410 460 260
## [76] 255 431 350 760 618 338 981 1306 500 696 605 250 411 1054 735
## [91] 233 435 490 310 460 383 375 1270 545 445 1885 380 300 380 377
## [106] 425 276 210 800 420 350 360 538 1100 1205 314 237 610 360 540
## [121] 1038 424 310 300 444 301 268 620 215 652 900 525 246 360 529
## [136] 500 720 270 430 671 1770
sum(rivers < 3500)
## [1] 140
datos<-datasets::ChickWeight
dietas<-datos$Diet
# Cargar datos
data(ChickWeight)
# Estimar parĂ¡metros lognormales
log_weights <- log(ChickWeight$weight)
mu <- mean(log_weights)
sigma <- sd(log_weights)
prob <- plnorm(100, meanlog = mu, sdlog = sigma) - plnorm(50, meanlog = mu, sdlog = sigma)
n <- nrow(ChickWeight)
expected_count <- n * prob
expected_count
## [1] 214.7679
datos<-rivers
hist(datos)
