Load Libraries and Data

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)

movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Question 1: rename()

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

one <- movies %>%
  rename(
    movie_title = Film,
    release_year = Year
  )

head(one)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

Question 2: select()

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability, Rotten Tomatoes %.

two <- one %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`)

head(two)
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60

Question 3: filter()

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

three <- two %>%
  filter(release_year > 2000,
         `Rotten Tomatoes %` > 80)

head(three)
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93

Question 4: mutate()

Add a new column called “Profitability_millions”.

four <- three %>%
  mutate(Profitability_millions = Profitability)

head(four)
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 5: arrange()

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order.

five <- four %>%
  arrange(desc(`Rotten Tomatoes %`),
          desc(Profitability_millions))

head(five)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 6: Combining functions

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset.

six <- movies %>%
  rename(
    movie_title = Film,
    release_year = Year
  ) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000,
         `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability) %>%
  arrange(desc(`Rotten Tomatoes %`),
          desc(Profitability_millions))

head(six)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

Question 7: Interpretation

From the resulting data, the highest rated movies are not always the most profitable. Some movies with strong Rotten Tomatoes scores also have high profitability, but others do not, showing that critically successful movies are not always the most popular or financially successful.


EXTRA CREDIT: Summary by Genre

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre.

extra_credit <- movies %>%
  rename(
    movie_title = Film,
    release_year = Year
  ) %>%
  mutate(Profitability_millions = Profitability) %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability_millions = mean(Profitability_millions, na.rm = TRUE),
    number_of_movies = n()
  ) %>%
  arrange(desc(avg_rating))

head(extra_credit)
## # A tibble: 6 × 4
##   Genre     avg_rating avg_profitability_millions number_of_movies
##   <chr>          <dbl>                      <dbl>            <int>
## 1 Romence         93                        8.74                 1
## 2 comedy          87                        8.10                 1
## 3 Animation       74.2                      3.76                 4
## 4 Fantasy         73                        1.78                 1
## 5 romance         54                        0.653                1
## 6 Drama           51.5                      8.41                13