library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)



# Load the movies dataset
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

1. rename(): (4 points)

Rename the “Film” column to “movie_title” and “Year” to “release_year”.

Q1 <-movies %>% 
  rename(movie_title = Film, 
         release_year = Year) 

head(Q1, 3)
## # A tibble: 3 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>

2. select(): (4 points)

Create a new dataframe with only the columns: movie_title, release_year, Genre, Profitability,

Q2 <-Q1 %>% 
   select(movie_title, release_year, Genre, Profitability)
head(Q2)
## # A tibble: 6 × 4
##   movie_title                        release_year Genre   Profitability
##   <chr>                                     <dbl> <chr>           <dbl>
## 1 Zack and Miri Make a Porno                 2008 Romance          1.75
## 2 Youth in Revolt                            2010 Comedy           1.09
## 3 You Will Meet a Tall Dark Stranger         2010 Comedy           1.21
## 4 When in Rome                               2010 Comedy           0   
## 5 What Happens in Vegas                      2008 Comedy           6.27
## 6 Water For Elephants                        2011 Drama            3.08

3. filter(): (4 points)

Filter the dataset to include only movies released after 2000 with a Rotten Tomatoes % higher than 80.

Q3 <-Q1 %>% 
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>% 
  filter(release_year >2000,
        `Rotten Tomatoes %` > 80)

head(Q3)
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93

4. mutate(): (4 points)

Add a new column called “Profitability_millions” that converts the Profitability to millions of dollars.

Q4 <-Q3 %>% 
  mutate(Profitability_millions = Profitability*1000000) 
  
head(Q4)
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>

5. arrange(): (3 points)

Sort the filtered dataset by Rotten Tomatoes % in descending order, and then by Profitability in descending order. five <- four %>% arrange(desc(Rotten Tomatoes %) , desc(Profitability_millions))

Q5 <-Q4 %>% 
  arrange(desc('Rotten Tomatoes %'), desc(Profitability_millions))

head(Q5)
## # A tibble: 6 × 6
##   movie_title          release_year Genre   Profitability `Rotten Tomatoes %`
##   <chr>                       <dbl> <chr>           <dbl>               <dbl>
## 1 Waitress                     2007 Romance         11.1                   89
## 2 Midnight in Paris            2011 Romence          8.74                  93
## 3 (500) Days of Summer         2009 comedy           8.10                  87
## 4 Knocked Up                   2007 Comedy           6.64                  91
## 5 Beginners                    2011 Comedy           4.47                  84
## 6 A Serious Man                2009 Drama            4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

6. Combining functions: (3 points)

Use the pipe operator (%>%) to chain these operations together, starting with the original dataset and ending with a final dataframe that incorporates all the above transformations.

Q6 <- movies %>% 
  rename(movie_title = Film, 
         release_year = Year) %>% 
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>% 
  filter(release_year >2000,
         `Rotten Tomatoes %` > 80) %>% 
  mutate(Profitability_millions = Profitability*1000000) %>% 
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))

head(Q6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

7. Interpret question 6 (1 point)

No, there is statistically not a correlation between popularity and movie success

EXTRA CREDIT (4 points)

Create a summary dataframe that shows the average rating and Profitability_millions for movies by Genre. Hint: You’ll need to use group_by() and summarize().

colnames(movies)
## [1] "Film"              "Genre"             "Lead Studio"      
## [4] "Audience score %"  "Profitability"     "Rotten Tomatoes %"
## [7] "Worldwide Gross"   "Year"
library(dplyr)

genre_summary <- movies %>%
  group_by(Genre) %>%
  summarize(
    avg_rating = mean(`Rotten Tomatoes %`, na.rm = TRUE),
    avg_profitability = mean(Profitability, na.rm = TRUE)
  )

genre_summary
## # A tibble: 10 × 3
##    Genre     avg_rating avg_profitability
##    <chr>          <dbl>             <dbl>
##  1 Action          11               1.25 
##  2 Animation       74.2             3.76 
##  3 Comdy           13               2.65 
##  4 Comedy          42.7             3.78 
##  5 Drama           51.5             8.41 
##  6 Fantasy         73               1.78 
##  7 Romance         42.1             3.98 
##  8 Romence         93               8.74 
##  9 comedy          87               8.10 
## 10 romance         54               0.653