Import data

# excel file
data <- read_excel("data/myData_charts.xls")
## New names:
## • `` -> `...1`
data
## # A tibble: 16,383 × 29
##     ...1  year unitid institution_name         city_txt state_cd zip_text
##    <dbl> <dbl>  <dbl> <chr>                    <chr>    <chr>       <dbl>
##  1     1  2015 100654 Alabama A & M University Normal   AL          35762
##  2     2  2015 100654 Alabama A & M University Normal   AL          35762
##  3     3  2015 100654 Alabama A & M University Normal   AL          35762
##  4     4  2015 100654 Alabama A & M University Normal   AL          35762
##  5     5  2015 100654 Alabama A & M University Normal   AL          35762
##  6     6  2015 100654 Alabama A & M University Normal   AL          35762
##  7     7  2015 100654 Alabama A & M University Normal   AL          35762
##  8     8  2015 100654 Alabama A & M University Normal   AL          35762
##  9     9  2015 100654 Alabama A & M University Normal   AL          35762
## 10    10  2015 100654 Alabama A & M University Normal   AL          35762
## # ℹ 16,373 more rows
## # ℹ 22 more variables: classification_code <dbl>, classification_name <chr>,
## #   classification_other <chr>, ef_male_count <dbl>, ef_female_count <dbl>,
## #   ef_total_count <dbl>, sector_cd <dbl>, sector_name <chr>, sportscode <dbl>,
## #   partic_men <chr>, partic_women <chr>, partic_coed_men <chr>,
## #   partic_coed_women <chr>, sum_partic_men <dbl>, sum_partic_women <dbl>,
## #   rev_men <chr>, rev_women <chr>, total_rev_menwomen <chr>, exp_men <chr>, …

Plot prices

#data %>%
    
    #ggplot(aes(rank)) +
    #geom_bar()

library(ggplot2)

# plot the age distribution using a histogram
ggplot(data, aes(x = sports)) +
  geom_bar() + 
  labs(title = "Frequency of Sports",
       x = "Sports", 
       y = "Count")