library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(readr)
movies <- read_csv("https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv")
## Rows: 77 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): Film, Genre, Lead Studio, Worldwide Gross
## dbl (4): Audience score %, Profitability, Rotten Tomatoes %, Year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
attach(movies)
head(movies)
## # A tibble: 6 × 8
##   Film  Genre `Lead Studio` `Audience score %` Profitability `Rotten Tomatoes %`
##   <chr> <chr> <chr>                      <dbl>         <dbl>               <dbl>
## 1 Zack… Roma… The Weinstei…                 70          1.75                  64
## 2 Yout… Come… The Weinstei…                 52          1.09                  68
## 3 You … Come… Independent                   35          1.21                  43
## 4 When… Come… Disney                        44          0                     15
## 5 What… Come… Fox                           72          6.27                  28
## 6 Wate… Drama 20th Century…                 72          3.08                  60
## # ℹ 2 more variables: `Worldwide Gross` <chr>, Year <dbl>
q1 <- movies %>% rename(movie_title = Film, release_year = Year)
head(q1)
## # A tibble: 6 × 8
##   movie_title               Genre `Lead Studio` `Audience score %` Profitability
##   <chr>                     <chr> <chr>                      <dbl>         <dbl>
## 1 Zack and Miri Make a Por… Roma… The Weinstei…                 70          1.75
## 2 Youth in Revolt           Come… The Weinstei…                 52          1.09
## 3 You Will Meet a Tall Dar… Come… Independent                   35          1.21
## 4 When in Rome              Come… Disney                        44          0   
## 5 What Happens in Vegas     Come… Fox                           72          6.27
## 6 Water For Elephants       Drama 20th Century…                 72          3.08
## # ℹ 3 more variables: `Rotten Tomatoes %` <dbl>, `Worldwide Gross` <chr>,
## #   release_year <dbl>
q2 <- q1 %>% select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`)
head(q2)
## # A tibble: 6 × 5
##   movie_title               release_year Genre Profitability `Rotten Tomatoes %`
##   <chr>                            <dbl> <chr>         <dbl>               <dbl>
## 1 Zack and Miri Make a Por…         2008 Roma…          1.75                  64
## 2 Youth in Revolt                   2010 Come…          1.09                  68
## 3 You Will Meet a Tall Dar…         2010 Come…          1.21                  43
## 4 When in Rome                      2010 Come…          0                     15
## 5 What Happens in Vegas             2008 Come…          6.27                  28
## 6 Water For Elephants               2011 Drama          3.08                  60
q3 <- q2 %>% filter(release_year > 2000, `Rotten Tomatoes %` > 80)
head(q3)
## # A tibble: 6 × 5
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
q4 <- q3 %>% mutate(Profitability_millions = Profitability * 1000000)
head(q4)
## # A tibble: 6 × 6
##   movie_title            release_year Genre    Profitability `Rotten Tomatoes %`
##   <chr>                         <dbl> <chr>            <dbl>               <dbl>
## 1 WALL-E                         2008 Animati…         2.90                   96
## 2 Waitress                       2007 Romance         11.1                    89
## 3 Tangled                        2010 Animati…         1.37                   89
## 4 Rachel Getting Married         2008 Drama            1.38                   85
## 5 My Week with Marilyn           2011 Drama            0.826                  83
## 6 Midnight in Paris              2011 Romence          8.74                   93
## # ℹ 1 more variable: Profitability_millions <dbl>
q5 <- q4 %>% arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(q5)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>
q6 <- movies %>% rename(movie_title = Film, release_year = Year) %>%
  select(movie_title, release_year, Genre, Profitability, `Rotten Tomatoes %`) %>%
  filter(release_year > 2000, `Rotten Tomatoes %` > 80) %>%
  mutate(Profitability_millions = Profitability * 1000000) %>%
  arrange(desc(`Rotten Tomatoes %`), desc(Profitability_millions))
head(q6)
## # A tibble: 6 × 6
##   movie_title       release_year Genre     Profitability `Rotten Tomatoes %`
##   <chr>                    <dbl> <chr>             <dbl>               <dbl>
## 1 WALL-E                    2008 Animation          2.90                  96
## 2 Midnight in Paris         2011 Romence            8.74                  93
## 3 Enchanted                 2007 Comedy             4.01                  93
## 4 Knocked Up                2007 Comedy             6.64                  91
## 5 Waitress                  2007 Romance           11.1                   89
## 6 A Serious Man             2009 Drama              4.38                  89
## # ℹ 1 more variable: Profitability_millions <dbl>

From the resulting data, the best movies are not necessarily the most popular

bonus <- q6 %>%
  group_by(Genre)%>%
  summarize(
    mean_rating = mean(`Rotten Tomatoes %`),
    mean_profitability = mean(Profitability_millions)
  )
head(bonus)
## # A tibble: 6 × 3
##   Genre     mean_rating mean_profitability
##   <chr>           <dbl>              <dbl>
## 1 Animation        92.5           2130856.
## 2 Comedy           89.3           5038005.
## 3 Drama            85.7           2197608.
## 4 Romance          87             5544871.
## 5 Romence          93             8744706.
## 6 comedy           87             8096000