Maternal.Health.Risk.Data.Set <- read.csv("Maternal Health Risk Data Set.csv")
head(Maternal.Health.Risk.Data.Set)
## Age SystolicBP DiastolicBP BS BodyTemp HeartRate RiskLevel
## 1 25 130 80 15.00 98 86 high risk
## 2 35 140 90 13.00 98 70 high risk
## 3 29 90 70 8.00 100 80 high risk
## 4 30 140 85 7.00 98 70 high risk
## 5 35 120 60 6.10 98 76 low risk
## 6 23 140 80 7.01 98 70 high risk
data_num <- Maternal.Health.Risk.Data.Set[,1:6]
cor_matrix <- cor(data_num)
cor_matrix
## Age SystolicBP DiastolicBP BS BodyTemp
## Age 1.00000000 0.41604545 0.39802629 0.4732843 -0.25532314
## SystolicBP 0.41604545 1.00000000 0.78700648 0.4251717 -0.28661552
## DiastolicBP 0.39802629 0.78700648 1.00000000 0.4238241 -0.25753832
## BS 0.47328434 0.42517166 0.42382407 1.0000000 -0.10349336
## BodyTemp -0.25532314 -0.28661552 -0.25753832 -0.1034934 1.00000000
## HeartRate 0.07979763 -0.02310796 -0.04615057 0.1428672 0.09877104
## HeartRate
## Age 0.07979763
## SystolicBP -0.02310796
## DiastolicBP -0.04615057
## BS 0.14286723
## BodyTemp 0.09877104
## HeartRate 1.00000000
Interpretasi:
Untuk correlation matrix, SystolicBP dan DiastolicBP punya hubungan yang kuat dan positif, jadi kalau tekanan sistolik naik maka diastolik juga ikut naik.
cov_matrix <- cov(data_num)
cov_matrix
## Age SystolicBP DiastolicBP BS BodyTemp HeartRate
## Age 181.559065 103.171539 74.471739 21.0035619 -4.7180044 8.697168
## SystolicBP 103.171539 338.704005 201.121845 25.7712999 -7.2338429 -3.439938
## DiastolicBP 74.471739 201.121845 192.815323 19.3828770 -4.9042413 -5.183543
## BS 21.003562 25.771300 19.382877 10.8473512 -0.4674483 3.806040
## BodyTemp -4.718004 -7.233843 -4.904241 -0.4674483 1.8806951 1.095640
## HeartRate 8.697168 -3.439938 -5.183543 3.8060397 1.0956395 65.427104
Interpretasi:
Untuk Covariance matrix jika nilainya positif maka akan searah dan kalau negatif maka akan berlawanan.
eigen_result <- eigen(cov_matrix)
eigen_result$values
## [1] 529.521825 136.772898 64.572037 51.358769 7.360073 1.647943
eigen_result$vectors
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.346411189 0.923900546 -0.13192259 0.042731491 0.08198705
## [2,] -0.764857940 -0.293487053 0.14910706 0.553048994 0.02349903
## [3,] -0.537978589 -0.186074547 -0.12389090 -0.811464330 0.04575582
## [4,] -0.072118241 0.069777475 0.04387199 -0.031191932 -0.99247862
## [5,] 0.018657383 -0.008883756 0.01905652 -0.008215683 -0.04608110
## [6,] 0.004638836 0.143880423 0.97094112 -0.181096759 0.05911889
## [,6]
## [1,] 0.021345781
## [2,] 0.014469639
## [3,] 0.006196148
## [4,] -0.044928412
## [5,] 0.998508320
## [6,] -0.016098692
Interpretasi:
Untuk eigen value, semakin besar eigen value maka semakin menunjukkan bahawa komponen tersebut seamkin penting, untuk Eigen vector menunjukkan kontribusi masing-masing variabel dalam membentuk komponen utama. Jadi dari eigen vector kita bisa melihat variabel mana yang paling berpengaruh terhadap komponen dengan eigen value terbesar.