Fungsi survival:
\[ S(t) = \frac{100 - t}{100}, \quad 0 \le t \le 100 \]
Probabilitas seseorang yang sudah hidup sampai usia 20 akan hidup sampai usia 70 adalah
\[ P(T > 70 \mid T > 20) = \frac{S(70)}{S(20)} \]
\[ S(70) = \frac{100 - 70}{100} = \frac{30}{100} = 0.3 \]
\[ S(20) = \frac{100 - 20}{100} = \frac{80}{100} = 0.8 \]
Maka
\[ P(T > 70 \mid T > 20) = \frac{0.3}{0.8} = 0.375 = 37.5\% \]
Laju kematian (force of mortality) didefinisikan sebagai
\[ \mu(t) = -\frac{S'(t)}{S(t)} \]
Dengan
\[ S(t) = \frac{100 - t}{100} \Rightarrow S'(t) = -\frac{1}{100} \]
Maka
\[ \mu(t) = \frac{1}{100 - t} \]
Pada usia 50:
\[ \mu(50) = \frac{1}{50} = 0.02 \]
\[ e_{20} = \int_0^{80} \frac{80 - t}{80} dt \]
\[ e_{20} = \frac{1}{80}\int_0^{80}(80 - t) dt \]
\[ = \frac{1}{80}\left[80t - \frac{1}{2}t^2\right]_0^{80} \]
\[ = \frac{1}{80}(6400 - 3200) = 40 \]
Jadi, harapan hidup lengkap pada usia 20 adalah 40 tahun.
# Fungsi survival
S <- function(t){
(100 - t)/100
}
S20 <- S(20)
S70 <- S(70)
p_20_70 <- S70 / S20
p_20_70
## [1] 0.375
mu <- function(t){
1/(100 - t)
}
mu_50 <- mu(50)
mu_50
## [1] 0.02
p20 <- function(t){
(80 - t)/80
}
e20 <- integrate(p20, lower = 0, upper = 80)
e20$value
## [1] 40