Goal: to predict the rental prices in the SF rental market Click here for the data.

Import Data

rent <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/main/data/2022/2022-07-05/rent.csv')

skimr::skim(rent)
Data summary
Name rent
Number of rows 200796
Number of columns 17
_______________________
Column type frequency:
character 8
numeric 9
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
post_id 0 1.00 9 14 0 200796 0
nhood 0 1.00 4 43 0 167 0
city 0 1.00 5 19 0 104 0
county 1394 0.99 4 13 0 10 0
address 196888 0.02 1 38 0 2869 0
title 2517 0.99 2 298 0 184961 0
descr 197542 0.02 13 16975 0 3025 0
details 192780 0.04 4 595 0 7667 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
date 0 1.00 20095718.38 44694.07 20000902.00 20050227.00 20110924.00 20120805.0 20180717.00 ▁▇▁▆▃
year 0 1.00 2009.51 4.48 2000.00 2005.00 2011.00 2012.0 2018.00 ▁▇▁▆▃
price 0 1.00 2135.36 1427.75 220.00 1295.00 1800.00 2505.0 40000.00 ▇▁▁▁▁
beds 6608 0.97 1.89 1.08 0.00 1.00 2.00 3.0 12.00 ▇▂▁▁▁
baths 158121 0.21 1.68 0.69 1.00 1.00 2.00 2.0 8.00 ▇▁▁▁▁
sqft 136117 0.32 1201.83 5000.22 80.00 750.00 1000.00 1360.0 900000.00 ▇▁▁▁▁
room_in_apt 0 1.00 0.00 0.04 0.00 0.00 0.00 0.0 1.00 ▇▁▁▁▁
lat 193145 0.04 37.67 0.35 33.57 37.40 37.76 37.8 40.43 ▁▁▅▇▁
lon 196484 0.02 -122.21 0.78 -123.20 -122.42 -122.26 -122.0 -74.20 ▇▁▁▁▁
data <- rent %>%
    
    # Treat missing values
    select(-address, -descr, -details, -lat, -lon, -date, -year, -room_in_apt) %>%
    na.omit() %>%
    
    # log transform variables with pos-skewed distribution
    mutate(price = log(price))

Explore Data

Identify good predictors.

sqft

data %>%
    ggplot(aes(price,sqft)) +
    scale_y_log10() +
    geom_point()

beds

data %>%
    ggplot(aes(price, as.factor(beds))) +
    geom_boxplot()

title

data %>%
    
    # tokenize title
    unnest_tokens(output = word, input = title) %>%
    
    # calculate avg rent per word
    group_by(word) %>%
    summarise(price = mean(price),
              n     = n()) %>%
    ungroup() %>%
    
    filter(n > 10, !str_detect(word, "\\d")) %>%
    slice_max(order_by = price, n = 20) %>%
    
    # Plot
    ggplot(aes(price, fct_reorder(word, price))) +
    geom_point() +
    
    labs(y = "Words in Title")

EDA shortcut

# Step 1: Prepare data
data_binarized_tbl <- data %>%
    select(-post_id, -title) %>%
    binarize()

data_binarized_tbl %>% glimpse()
## Rows: 14,394
## Columns: 85
## $ nhood__campbell                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__concord_/_pleasant_hill_/_martinez` <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__cupertino                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__daly_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__danville_/_san_ramon`               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__dublin_/_pleasanton`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__fairfield_/_vacaville`              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__foster_city                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__hayward_/_castro_valley`            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__milpitas                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__mountain_view                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__napa_county                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__palo_alto                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__petaluma                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__pittsburg_/_antioch`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__rohnert_pk_/_cotati`                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_francisco                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_central                     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_east                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_north                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_south                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_jose_west                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_mateo                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__san_rafael                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_clara                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_cruz                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__santa_rosa                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__SOMA_/_south_beach`                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__sunnyvale                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ nhood__union_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__vallejo_/_benicia`                  <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__willow_glen_/_cambrian`             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `nhood__-OTHER`                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ city__cambrian                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__campbell                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__concord                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__cupertino                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__daly_city                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__dublin                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__fairfield                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__foster_city                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__hayward                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__milpitas                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__mountain_view                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__napa_county                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__oakland                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__palo_alto                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__petaluma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__pittsburg                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__rohnert_park                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_francisco                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_jose                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_mateo                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_rafael                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__san_ramon                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_clara                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_cruz                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__santa_rosa                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__sunnyvale                             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__union_city                            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ city__vallejo                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `city__-OTHER`                              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__alameda                             <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1,…
## $ county__contra_costa                        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__marin                               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__napa                                <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_francisco                       <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__san_mateo                           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_clara                         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__santa_cruz                          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__solano                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ county__sonoma                              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `price__-Inf_7.52294091807237`              <dbl> 0, 1, 0, 1, 0, 1, 1, 0, 0,…
## $ price__7.52294091807237_7.80384330353877    <dbl> 0, 0, 1, 0, 0, 0, 0, 1, 1,…
## $ price__7.80384330353877_8.07868822922987    <dbl> 1, 0, 0, 0, 1, 0, 0, 0, 0,…
## $ price__8.07868822922987_Inf                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `beds__-Inf_2`                              <dbl> 0, 1, 0, 1, 1, 1, 0, 0, 1,…
## $ beds__2_3                                   <dbl> 0, 0, 1, 0, 0, 0, 1, 1, 0,…
## $ beds__3_Inf                                 <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0,…
## $ `baths__-Inf_2`                             <dbl> 0, 1, 1, 1, 1, 1, 0, 0, 1,…
## $ baths__2_Inf                                <dbl> 1, 0, 0, 0, 0, 0, 1, 1, 0,…
## $ `sqft__-Inf_887`                            <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 1,…
## $ sqft__887_1100                              <dbl> 0, 0, 0, 1, 0, 0, 0, 1, 0,…
## $ sqft__1100_1500                             <dbl> 0, 0, 1, 0, 1, 1, 0, 0, 0,…
## $ sqft__1500_Inf                              <dbl> 1, 0, 0, 0, 0, 0, 1, 0, 0,…
# Step 2: Correlate
data_corr_tbl <- data_binarized_tbl %>%
    correlate(price__8.07868822922987_Inf)

data_corr_tbl
## # A tibble: 85 × 3
##    feature bin                               correlation
##    <fct>   <chr>                                   <dbl>
##  1 price   8.07868822922987_Inf                    1    
##  2 city    san_francisco                           0.389
##  3 county  san_francisco                           0.389
##  4 price   -Inf_7.52294091807237                  -0.342
##  5 price   7.80384330353877_8.07868822922987      -0.330
##  6 price   7.52294091807237_7.80384330353877      -0.328
##  7 sqft    1500_Inf                                0.324
##  8 beds    -Inf_2                                 -0.254
##  9 beds    3_Inf                                   0.241
## 10 sqft    -Inf_887                               -0.240
## # ℹ 75 more rows
# Step 3: Plot
data_corr_tbl %>%
    plot_correlation_funnel()
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## ℹ The deprecated feature was likely used in the correlationfunnel package.
##   Please report the issue at
##   <https://github.com/business-science/correlationfunnel/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: ggrepel: 69 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

Build Models

data <- sample_n(data, 100)

# Split into train and test dataset
set.seed(1234)
data_split <- rsample::initial_split(data)
data_train <- training(data_split)
data_test  <- testing(data_split)

# Further spit training dataset for cross-validation
set.seed(2345)
data_cv <- rsample::vfold_cv(data_train)
data_cv
## #  10-fold cross-validation 
## # A tibble: 10 × 2
##    splits         id    
##    <list>         <chr> 
##  1 <split [67/8]> Fold01
##  2 <split [67/8]> Fold02
##  3 <split [67/8]> Fold03
##  4 <split [67/8]> Fold04
##  5 <split [67/8]> Fold05
##  6 <split [68/7]> Fold06
##  7 <split [68/7]> Fold07
##  8 <split [68/7]> Fold08
##  9 <split [68/7]> Fold09
## 10 <split [68/7]> Fold10
library(usemodels)
## Warning: package 'usemodels' was built under R version 4.5.2
usemodels::use_xgboost(price ~ ., data = data_train)
## xgboost_recipe <- 
##   recipe(formula = price ~ ., data = data_train) %>% 
##   step_zv(all_predictors()) 
## 
## xgboost_spec <- 
##   boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(), learn_rate = tune(), 
##     loss_reduction = tune(), sample_size = tune()) %>% 
##   set_mode("classification") %>% 
##   set_engine("xgboost") 
## 
## xgboost_workflow <- 
##   workflow() %>% 
##   add_recipe(xgboost_recipe) %>% 
##   add_model(xgboost_spec) 
## 
## set.seed(6804)
## xgboost_tune <-
##   tune_grid(xgboost_workflow, resamples = stop("add your rsample object"), grid = stop("add number of candidate points"))
# Specify recipe
xgboost_recipe <- 
  recipe(formula = price ~ ., data = data_train) %>% 
    recipes::update_role(post_id, new_role = "id variable") %>%
    step_tokenize(title)  %>%
    step_tokenfilter(title, max_tokens = 100) %>%
    step_tfidf(title) %>%
    step_other(nhood) %>%
    step_dummy(nhood, city, county, one_hot = TRUE) %>%
    step_log(sqft, beds, baths)

xgboost_recipe %>% prep() %>% juice() %>% glimpse()
## Rows: 75
## Columns: 152
## $ post_id                  <chr> "pre2013_58179", "5159749730", "4691328278", …
## $ beds                     <dbl> 0.0000000, 1.0986123, 0.6931472, 1.3862944, 0…
## $ baths                    <dbl> 0.0000000, 0.6931472, 0.0000000, 1.2527630, 0…
## $ sqft                     <dbl> 6.309918, 7.167038, 6.915723, 7.937375, 7.600…
## $ price                    <dbl> 7.541683, 8.287780, 7.935587, 9.680031, 8.853…
## $ tfidf_title_1            <dbl> 0.5329519, 0.0000000, 0.3197712, 0.0000000, 0…
## $ tfidf_title_1000ft       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_12           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_13           <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000…
## $ tfidf_title_1550         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_1ba          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_1bath        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_1br          <dbl> 0.3427420, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2            <dbl> 0.0000000, 0.0000000, 0.2658272, 0.0000000, 0…
## $ tfidf_title_2.5          <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.331…
## $ tfidf_title_2000ft       <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.331…
## $ tfidf_title_2200         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2250         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2500         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2595         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2850         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2ba          <dbl> 0.0000000, 0.5583981, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2bath        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2bd          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_2bed         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_2br          <dbl> 0.00000000, 0.00000000, 0.00000000, 0.0000000…
## $ tfidf_title_3            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_3000         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_3200         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_3ba          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_3bd          <dbl> 0.0000000, 0.9126646, 0.0000000, 0.0000000, 0…
## $ tfidf_title_3br          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_4            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1530994, 0…
## $ tfidf_title_4br          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1258862, 0…
## $ tfidf_title_5            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_6            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_7            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_8            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.2147446, 0…
## $ tfidf_title_a            <dbl> 0.4337816, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_all          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_amenities    <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_an           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_apartment    <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000…
## $ tfidf_title_at           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_aug          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.2147446, 0…
## $ tfidf_title_available    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_ba           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1258862, 0…
## $ tfidf_title_bath         <dbl> 0.20118216, 0.00000000, 0.24141859, 0.0000000…
## $ tfidf_title_baths        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_bay          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_bd           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.2147446, 0…
## $ tfidf_title_bdrm         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_beach        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1754796, 0…
## $ tfidf_title_beautiful    <dbl> 0.0000000, 0.0000000, 0.5205379, 0.0000000, 0…
## $ tfidf_title_bed          <dbl> 0.3722654, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_bedroom      <dbl> 0.0000000, 0.0000000, 0.3583519, 0.0000000, 0…
## $ tfidf_title_br           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_bright       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_car          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_charming     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_city         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_community    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_condo        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_cruz         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_cute         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_danville     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_den          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_downtown     <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_floor        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_for          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_garage       <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000…
## $ tfidf_title_great        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_har          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_hide         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1916527, 0…
## $ tfidf_title_home         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_house        <dbl> 0.0000000, 0.6152023, 0.0000000, 0.0000000, 0…
## $ tfidf_title_in           <dbl> 0.0000000, 0.4780969, 0.0000000, 0.0000000, 0…
## $ tfidf_title_jose         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_large        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_luxury       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_map          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1630935, 0…
## $ tfidf_title_modern       <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_neighborhood <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_new          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_nis          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_north        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1916527, 0…
## $ tfidf_title_one          <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.000…
## $ tfidf_title_pic          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1754796, 0…
## $ tfidf_title_posting      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.3833055, 0…
## $ tfidf_title_remodeled    <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1754796, 0…
## $ tfidf_title_rent         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_resim        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_restore      <dbl> 0.0000000, 0.0000000, 0.0000000, 0.1916527, 0…
## $ tfidf_title_san          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_santa        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_spacious     <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_şub          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_the          <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_this         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.3261869, 0…
## $ tfidf_title_to           <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_two          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ tfidf_title_unit         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_views        <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_w            <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ tfidf_title_with         <dbl> 0.0000000, 0.0000000, 0.0000000, 0.0000000, 0…
## $ nhood_santa.cruz         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ nhood_union.city         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ nhood_other              <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, …
## $ city_alameda             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_belmont             <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_belvedere           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_berkeley            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, …
## $ city_brentwood           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_campbell            <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, …
## $ city_cupertino           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_daly.city           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_el.sobrante         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_emeryville          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_foster.city         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_gilroy              <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_hayward             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_los.gatos           <dbl> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_milpitas            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, …
## $ city_mountain.view       <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_oakland             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_palo.alto           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_petaluma            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_pittsburg           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_redwood.shores      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_richmond            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_rohnert.park        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
## $ city_san.bruno           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_san.francisco       <dbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ city_san.jose            <dbl> 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_san.mateo           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ city_san.rafael          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_san.ramon           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_santa.clara         <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_santa.cruz          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ city_santa.rosa          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_sunnyvale           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ city_union.city          <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, …
## $ city_vallejo             <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_alameda           <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, …
## $ county_contra.costa      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_marin             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_san.francisco     <dbl> 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, …
## $ county_san.mateo         <dbl> 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, …
## $ county_santa.clara       <dbl> 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, …
## $ county_santa.cruz        <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, …
## $ county_solano            <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ county_sonoma            <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, …
# Specify model
xgboost_spec <- 
  boost_tree(trees = tune(), min_n = tune(), mtry = tune(), learn_rate = tune()) %>% 
  set_mode("classification") %>% 
  set_engine("xgboost") 

# Combine recipe and models using workflow
xgboost_workflow <- 
  workflow() %>% 
  add_recipe(xgboost_recipe) %>% 
  add_model(xgboost_spec) 

# Tune hyperparameters
set.seed(344)
xgboost_tune <-
  tune_grid(xgboost_workflow, 
            resamples = data_cv, 
            grid = 5)
## Warning: All models failed. Run `show_notes(.Last.tune.result)` for more
## information.

Preprocess Data

Evaluate Models

Make Predictions