Assignment 3B Approach

Author

Michael Mayne

Pre-Coding Approach

For the assignment 3B, I intend to use an LLM to see a viable datset regarding time scale. I asked for Google Gemini assistance and it provided me a data set and it recommended the Mauna Loa Observatory data measuring the daily CO2 levels. So I plan to start with a overview of the data, then execute a summary of it data by year average, then weekly average. I do want to see if can test the method on both R & SQL but I will prioritize R as it has given me the most consistent results with CSV files.

library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   4.0.0     ✔ tibble    3.2.1
✔ lubridate 1.9.4     ✔ tidyr     1.3.1
✔ purrr     1.0.4     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
CO2_Measure <- read.csv('co2_daily_mlo.csv')