Question 2.
b.Change the .5 cutoff for the sick class to .4, then to .3, .2,.1,
and finally, .001 each time recording the value for auc.
cutoffs <- c(0.4, 0.3, 0.2, 0.1, 0.001)
auc_out <- numeric(length(cutoffs))
for (i in seq_along(cutoffs)) {
# get probabilities
p.card <- predict(card.glm, card.test, type="response")
# APPLY THE CUTOFF
p.card <- ifelse(p.card > cutoffs[i], 2, 1)
# create ROCR prediction object
pr.card <- prediction(p.card, card.test$class)
# compute AUC and store it
auc_out[i] <- performance(pr.card, measure = "auc")@y.values[[1]]
}
# Put results in a table
results <- data.frame(cutoff = cutoffs, auc = auc_out)
results
NA
c.Change the .5 cutoff for the sick class to .4, then to
.6,.7,.8,.9, and finally, .999 each time recording the value for
auc.
cutoffsc <- c(0.6, 0.7, 0.8, 0.9, 0.999)
auc_out <- numeric(length(cutoffsc))
for (i in seq_along(cutoffsc)) {
# get probabilities
p.card <- predict(card.glm, card.test, type="response")
# APPLY THE CUTOFF
p.card <- ifelse(p.card > cutoffsc[i], 2, 1)
# create ROCR prediction object
pr.card <- prediction(p.card, card.test$class)
# compute AUC and store it
auc_out[i] <- performance(pr.card, measure = "auc")@y.values[[1]]
}
# Put results in a table
results <- data.frame(cutoffc = cutoffsc, auc = auc_out)
results
Question 4
x <- removeNAS(creditScreening)
# Randomize and split the data for 2/3 training, 1/3 testing
set.seed(100)
credit.data <- creditScreening
index <- sample(1:nrow(credit.data), 2/3*nrow(credit.data))
credit.train <- credit.data[index,]
credit.test <- credit.data[-index,]
Next, build a second model by replacing attribute nine with
attribute twelve.
twelve.credit.Bayes<-naiveBayes(class ~ twelve,
laplace = 1,
data= credit.train,type = "class")
# CREATE CONFUSION MATRIX
twelve.credit.pred <-predict(twelve.credit.Bayes, credit.test)
twelve.credit.perf<- table(credit.test$class, twelve.credit.pred, dnn=c("actual", "Predicted"))
twelve.credit.perf
Predicted
actual - +
- 130 0
+ 100 0
confusionP(twelve.credit.perf)
Correct= 130
Incorrect= 100
Accuracy = 56.52 %
Question 5
b.Repeat Part A but assume Gender is unknown
print("P|Life=Yes|E")
[1] "P|Life=Yes|E"
(5.5/6)*(4.5/6)*(.5/6)*(3.5/6)*(1.5/3)
[1] 0.01671007
print("P|Life=No|E")
[1] "P|Life=No|E"
(2.5/6)*(.5/6)*(5.5/6)*(1.5/6)*(1.5/3)
[1] 0.003978588
Question 6
Consider the confusion matrix below where Yes represents the
positive class.
a.Compute the overall classification accuracy.
(30+70)/(30+10+10+70)
[1] 0.8333333
b. Compute the True Positive Rate
30/(30+10)
[1] 0.75
c. Compute the False Positive Rate
10/(10+70)
[1] 0.125
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6IGRlZmF1bHQNCiAgcGRmX2RvY3VtZW50OiBkZWZhdWx0DQotLS0NCg0KIyMjIFF1ZXN0aW9uIDIuDQoNCiMjIyMgYi5DaGFuZ2UgdGhlIC41IGN1dG9mZiBmb3IgdGhlIHNpY2sgY2xhc3MgdG8gLjQsIHRoZW4gdG8gLjMsIC4yLC4xLCBhbmQgZmluYWxseSwgLjAwMSBlYWNoIHRpbWUgcmVjb3JkaW5nIHRoZSB2YWx1ZSBmb3IgYXVjLg0KDQpgYGB7cn0NCg0KY3V0b2ZmcyA8LSBjKDAuNCwgMC4zLCAwLjIsIDAuMSwgMC4wMDEpDQphdWNfb3V0IDwtIG51bWVyaWMobGVuZ3RoKGN1dG9mZnMpKQ0KDQpmb3IgKGkgaW4gc2VxX2Fsb25nKGN1dG9mZnMpKSB7DQoNCiAgIyBnZXQgcHJvYmFiaWxpdGllcyANCiAgcC5jYXJkIDwtIHByZWRpY3QoY2FyZC5nbG0sIGNhcmQudGVzdCwgdHlwZT0icmVzcG9uc2UiKQ0KDQogICMgIEFQUExZIFRIRSBDVVRPRkYgDQogIHAuY2FyZCA8LSBpZmVsc2UocC5jYXJkID4gY3V0b2Zmc1tpXSwgMiwgMSkNCg0KICAjICBjcmVhdGUgUk9DUiBwcmVkaWN0aW9uIG9iamVjdA0KICBwci5jYXJkIDwtIHByZWRpY3Rpb24ocC5jYXJkLCBjYXJkLnRlc3QkY2xhc3MpDQoNCiAgIyBjb21wdXRlIEFVQyBhbmQgc3RvcmUgaXQNCiAgYXVjX291dFtpXSA8LSBwZXJmb3JtYW5jZShwci5jYXJkLCBtZWFzdXJlID0gImF1YyIpQHkudmFsdWVzW1sxXV0NCn0NCg0KICMgUHV0IHJlc3VsdHMgaW4gYSB0YWJsZQ0KcmVzdWx0cyA8LSBkYXRhLmZyYW1lKGN1dG9mZiA9IGN1dG9mZnMsIGF1YyA9IGF1Y19vdXQpDQpyZXN1bHRzDQoNCmBgYA0KDQojIyMjIGMuQ2hhbmdlIHRoZSAuNSBjdXRvZmYgZm9yIHRoZSBzaWNrIGNsYXNzIHRvIC40LCB0aGVuIHRvIC42LC43LC44LC45LCBhbmQgZmluYWxseSwgLjk5OSBlYWNoIHRpbWUgcmVjb3JkaW5nIHRoZSB2YWx1ZSBmb3IgYXVjLg0KDQpgYGB7cn0NCmN1dG9mZnNjIDwtIGMoMC42LCAwLjcsIDAuOCwgMC45LCAwLjk5OSkNCmF1Y19vdXQgPC0gbnVtZXJpYyhsZW5ndGgoY3V0b2Zmc2MpKQ0KDQpmb3IgKGkgaW4gc2VxX2Fsb25nKGN1dG9mZnNjKSkgew0KDQogICMgZ2V0IHByb2JhYmlsaXRpZXMgDQogIHAuY2FyZCA8LSBwcmVkaWN0KGNhcmQuZ2xtLCBjYXJkLnRlc3QsIHR5cGU9InJlc3BvbnNlIikNCg0KICAjICBBUFBMWSBUSEUgQ1VUT0ZGIA0KICBwLmNhcmQgPC0gaWZlbHNlKHAuY2FyZCA+IGN1dG9mZnNjW2ldLCAyLCAxKQ0KDQogICMgIGNyZWF0ZSBST0NSIHByZWRpY3Rpb24gb2JqZWN0DQogIHByLmNhcmQgPC0gcHJlZGljdGlvbihwLmNhcmQsIGNhcmQudGVzdCRjbGFzcykNCg0KICAjIGNvbXB1dGUgQVVDIGFuZCBzdG9yZSBpdA0KICBhdWNfb3V0W2ldIDwtIHBlcmZvcm1hbmNlKHByLmNhcmQsIG1lYXN1cmUgPSAiYXVjIilAeS52YWx1ZXNbWzFdXQ0KfQ0KDQogIyBQdXQgcmVzdWx0cyBpbiBhIHRhYmxlDQpyZXN1bHRzIDwtIGRhdGEuZnJhbWUoY3V0b2ZmYyA9IGN1dG9mZnNjLCBhdWMgPSBhdWNfb3V0KQ0KcmVzdWx0cw0KYGBgDQoNCiMjIyBRdWVzdGlvbiAzDQoNCiMjIyMgYS5CdWlsZCBhbmQgdGVzdCBvbmUgbW9kZWwgdXNpbmcgdGhlIGZvbGxvd2luZyBhdHRyaWJ1dGVzOsKgICoqZ2VuZGVyLCBjaGVzdC5wYWluLnR5cGUsIFguY29sb3JlZC52ZXNzZWxzLCB0aGFsLsKgICpQcm92aWRlIHRoZSBjb25mdXNpb24gbWF0cml4LioqKg0KDQpgYGB7cn0NCiNQUkVQUk9DRVNTSU5HDQoNCnNldC5zZWVkKDEwMCkNCmNhcmQuZGF0YSA8LSBDYXJkaW9sb2d5TWl4ZWQNCiNzdW1tYXJ5KGNhcmQuZGF0YSkNCg0KaW5kZXggPC0gc2FtcGxlKDE6bnJvdyhjYXJkLmRhdGEpLCAyLzMqbnJvdyhjYXJkLmRhdGEpKQ0KY2FyZC50cmFpbiA8LSBjYXJkLmRhdGFbaW5kZXgsXQ0KY2FyZC50ZXN0IDwtICBjYXJkLmRhdGFbLWluZGV4LF0NCg0KIyBDUkVBVEUgQU5EIEFOQUxZWkUgTE9HSVNUSUMgUkVHUkVTU0lPTiBNT0RFTA0KDQpxMy5jYXJkLmdsbSA8LSBnbG0oY2xhc3MgfiBnZW5kZXIrY2hlc3QucGFpbi50eXBlK1guY29sb3JlZC52ZXNzZWxzK3RoYWwsDQogICAgICAgICAgICAgICAgICBkYXRhID0gY2FyZC50cmFpbixmYW1pbHk9IGJpbm9taWFsKGxpbms9J2xvZ2l0JykpIA0KDQpzdW1tYXJ5KHEzLmNhcmQuZ2xtKQ0KDQphbm92YShxMy5jYXJkLmdsbSwgdGVzdD0iQ2hpc3EiKQ0KDQpxMy5jYXJkLnJlc3VsdHMgPC0gcHJlZGljdChxMy5jYXJkLmdsbSwgY2FyZC50ZXN0LCB0eXBlPSdyZXNwb25zZScpDQpxMy5jYXJkLnRhYmxlIDwtIGNiaW5kKFByZWQ9cm91bmQocTMuY2FyZC5yZXN1bHRzLDMpLENsYXNzPWNhcmQudGVzdCRjbGFzcykNCnEzLmNhcmQudGFibGUgPC0gZGF0YS5mcmFtZShxMy5jYXJkLnRhYmxlKQ0KaGVhZChxMy5jYXJkLnRhYmxlKQ0KDQojIENSRUFURSBDT05GVVNJT04gTUFUUklYDQojIGhlYWx0aHk8PS41IHNpY2sgPi41DQpxMy5jYXJkLnJlc3VsdHM8LWlmZWxzZShxMy5jYXJkLnJlc3VsdHM+LjUsMiwxKSAjPi41IGEgc2ljaw0KcTMuY2FyZC5wcmVkPC1mYWN0b3IocTMuY2FyZC5yZXN1bHRzLGxhYmVscz1jKCJIZWFsdGh5IiwiU2ljayIpKQ0KcTMubXkuY29uZjwtdGFibGUoY2FyZC50ZXN0JGNsYXNzLHEzLmNhcmQucHJlZCxkbm49YygiQWN0dWFsIiwiUHJlZGljdGVkIikpDQpjb25mdXNpb25QKHEzLm15LmNvbmYpDQpgYGANCg0KIyMjIyBiLiBCdWlsZCBhbmQgdGVzdCBhIHNlY29uZCBtb2RlbCB1c2luZyB0aGUgZm9sbG93aW5nIGF0dHJpYnV0ZXM6wqAgKiphZ2UsIGdlbmRlciwgY2hlc3QucGFpbi50eXBlLCBtYXhpbXVtLmhlYXJ0LnJhdGUsIHBlYWssIFguY29sb3JlZC52ZXNzZWxzLCB0aGFsLsKgICpQcm92aWRlIHRoZSBjb25mdXNpb24gbWF0cml4LioqKg0KDQpgYGB7cn0NCiNQUkVQUk9DRVNTSU5HDQoNCnNldC5zZWVkKDEwMCkNCmNhcmQuZGF0YSA8LSBDYXJkaW9sb2d5TWl4ZWQNCiNzdW1tYXJ5KGNhcmQuZGF0YSkNCg0KaW5kZXggPC0gc2FtcGxlKDE6bnJvdyhjYXJkLmRhdGEpLCAyLzMqbnJvdyhjYXJkLmRhdGEpKQ0KY2FyZC50cmFpbiA8LSBjYXJkLmRhdGFbaW5kZXgsXQ0KY2FyZC50ZXN0IDwtICBjYXJkLmRhdGFbLWluZGV4LF0NCg0KIyBDUkVBVEUgQU5EIEFOQUxZWkUgTE9HSVNUSUMgUkVHUkVTU0lPTiBNT0RFTA0KDQpxM2IuY2FyZC5nbG0gPC0gZ2xtKGNsYXNzIH4gYWdlK2dlbmRlcitjaGVzdC5wYWluLnR5cGUrbWF4aW11bS5oZWFydC5yYXRlK3BlYWsrWC5jb2xvcmVkLnZlc3NlbHMrdGhhbCwNCiAgICAgICAgICAgICAgICAgIGRhdGEgPSBjYXJkLnRyYWluLGZhbWlseT0gYmlub21pYWwobGluaz0nbG9naXQnKSkgDQoNCnN1bW1hcnkocTNiLmNhcmQuZ2xtKQ0KDQphbm92YShxM2IuY2FyZC5nbG0sIHRlc3Q9IkNoaXNxIikNCg0KcTNiLmNhcmQucmVzdWx0cyA8LSBwcmVkaWN0KHEzYi5jYXJkLmdsbSwgY2FyZC50ZXN0LCB0eXBlPSdyZXNwb25zZScpDQpxM2IuY2FyZC50YWJsZSA8LSBjYmluZChQcmVkPXJvdW5kKHEzYi5jYXJkLnJlc3VsdHMsMyksQ2xhc3M9Y2FyZC50ZXN0JGNsYXNzKQ0KcTNiLmNhcmQudGFibGUgPC0gZGF0YS5mcmFtZShxM2IuY2FyZC50YWJsZSkNCmhlYWQocTNiLmNhcmQudGFibGUpDQoNCiMgQ1JFQVRFIENPTkZVU0lPTiBNQVRSSVgNCiMgaGVhbHRoeTw9LjUgc2ljayA+LjUNCnEzYi5jYXJkLnJlc3VsdHM8LWlmZWxzZShxM2IuY2FyZC5yZXN1bHRzPi41LDIsMSkgIz4uNSBhIHNpY2sNCnEzYi5jYXJkLnByZWQ8LWZhY3RvcihxM2IuY2FyZC5yZXN1bHRzLGxhYmVscz1jKCJIZWFsdGh5IiwiU2ljayIpKQ0KcTNiLm15LmNvbmY8LXRhYmxlKGNhcmQudGVzdCRjbGFzcyxxM2IuY2FyZC5wcmVkLGRubj1jKCJBY3R1YWwiLCJQcmVkaWN0ZWQiKSkNCmNvbmZ1c2lvblAocTNiLm15LmNvbmYpDQpgYGANCg0KIyMjIFF1ZXN0aW9uIDQNCg0KYGBge3J9DQp4IDwtIHJlbW92ZU5BUyhjcmVkaXRTY3JlZW5pbmcpDQoNCiMgUmFuZG9taXplIGFuZCBzcGxpdCB0aGUgZGF0YSBmb3IgMi8zIHRyYWluaW5nLCAxLzMgdGVzdGluZyANCg0Kc2V0LnNlZWQoMTAwKQ0KY3JlZGl0LmRhdGEgPC0gY3JlZGl0U2NyZWVuaW5nDQppbmRleCA8LSBzYW1wbGUoMTpucm93KGNyZWRpdC5kYXRhKSwgMi8zKm5yb3coY3JlZGl0LmRhdGEpKQ0KY3JlZGl0LnRyYWluIDwtIGNyZWRpdC5kYXRhW2luZGV4LF0NCmNyZWRpdC50ZXN0IDwtICBjcmVkaXQuZGF0YVstaW5kZXgsXQ0KDQpgYGANCg0KIyMjIyBSZXBlYXQgU2NyaXB0IDUuMTEgYnV0IHVzZSBhdHRyaWJ1dGUgKm5pbmUqIGFzIHRoZSBsb25lIGlucHV0IGF0dHJpYnV0ZS7CoA0KDQpgYGB7cn0NCm5pbmUuY3JlZGl0LkJheWVzPC1uYWl2ZUJheWVzKGNsYXNzIH4gbmluZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBsYXBsYWNlID0gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhPSBjcmVkaXQudHJhaW4sdHlwZSA9ICJjbGFzcyIpDQoNCiMgQ1JFQVRFIENPTkZVU0lPTiBNQVRSSVgNCm5pbmUuY3JlZGl0LnByZWQgPC1wcmVkaWN0KG5pbmUuY3JlZGl0LkJheWVzLCBjcmVkaXQudGVzdCkNCm5pbmUuY3JlZGl0LnBlcmY8LSB0YWJsZShjcmVkaXQudGVzdCRjbGFzcywgbmluZS5jcmVkaXQucHJlZCwgZG5uPWMoImFjdHVhbCIsICJQcmVkaWN0ZWQiKSkNCm5pbmUuY3JlZGl0LnBlcmYNCmNvbmZ1c2lvblAobmluZS5jcmVkaXQucGVyZikNCmBgYA0KDQojIyMjIE5leHQsIGJ1aWxkIGEgc2Vjb25kIG1vZGVsIGJ5IHJlcGxhY2luZyBhdHRyaWJ1dGUgKm5pbmUqIHdpdGggYXR0cmlidXRlICp0d2VsdmUqLsKgDQoNCmBgYHtyfQ0KdHdlbHZlLmNyZWRpdC5CYXllczwtbmFpdmVCYXllcyhjbGFzcyB+IHR3ZWx2ZSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBsYXBsYWNlID0gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICBkYXRhPSBjcmVkaXQudHJhaW4sdHlwZSA9ICJjbGFzcyIpDQoNCiMgQ1JFQVRFIENPTkZVU0lPTiBNQVRSSVgNCnR3ZWx2ZS5jcmVkaXQucHJlZCA8LXByZWRpY3QodHdlbHZlLmNyZWRpdC5CYXllcywgY3JlZGl0LnRlc3QpDQp0d2VsdmUuY3JlZGl0LnBlcmY8LSB0YWJsZShjcmVkaXQudGVzdCRjbGFzcywgdHdlbHZlLmNyZWRpdC5wcmVkLCBkbm49YygiYWN0dWFsIiwgIlByZWRpY3RlZCIpKQ0KdHdlbHZlLmNyZWRpdC5wZXJmDQpjb25mdXNpb25QKHR3ZWx2ZS5jcmVkaXQucGVyZikNCg0KDQpgYGANCg0KIyMjIyBCdWlsZCBhIGZpbmFsIG1vZGVsIHVzaW5nIGJvdGggYXR0cmlidXRlcyBmb3IgaW5wdXQuwqAgV2hpY2ggbW9kZWwgc2hvd3MgdGhlIGJlc3QgdGVzdCBzZXQgYWNjdXJhY3k/DQoNCmBgYHtyfQ0KDQoNCiMgQ1JFQVRFIFRIRSBNT0RFTA0KDQpjcmVkaXQuQmF5ZXM8LW5haXZlQmF5ZXMoY2xhc3MgfiBuaW5lICsgdHdlbHZlLGxhcGxhY2UgPSAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGE9IGNyZWRpdC50cmFpbix0eXBlID0gImNsYXNzIikNCg0KIyBDUkVBVEUgQ09ORlVTSU9OIE1BVFJJWA0KY3JlZGl0LnByZWQgPC1wcmVkaWN0KGNyZWRpdC5CYXllcywgY3JlZGl0LnRlc3QpDQpjcmVkaXQucGVyZjwtIHRhYmxlKGNyZWRpdC50ZXN0JGNsYXNzLCBjcmVkaXQucHJlZCwgZG5uPWMoImFjdHVhbCIsICJQcmVkaWN0ZWQiKSkNCmNyZWRpdC5wZXJmDQpjb25mdXNpb25QKGNyZWRpdC5wZXJmKQ0KDQpgYGANCg0KIyMjIFF1ZXN0aW9uIDUNCg0KIyMjIyBhLiBVc2UgdGhlIGNvbXBsZXRlIHRhYmxlIHRvZ2V0aGVyIHdpdGggdGhlIG5haXZlIEJheWVkIGNsYXNzaWZpZXIgdG8gZGV0ZXJtaW5lIHRoZSB2YWx1ZSBvZiB0aGUgbGlmZSBpbnN1cmFuY2UgcHJvbW90aW9uIGZvciB0aGUgZm9sbG93aW5nIGluc3RhbmNlOg0KDQoqTWFnYXppbmUgUHJvbW90aW9uID0gWWVzKg0KDQoqV2F0Y2ggUHJvbW90aW9uID0gWWVzKg0KDQoqQ3JlZGl0IENhcmQgSW5zdXJhbmNlID0gTm8qDQoNCipHZW5kZXIgPSBGZW1hbGUqDQoNCipMaWZlIEluc3VyYW5jZSBQcm9tb3Rpb24gPSA/Kg0KDQpgYGB7cn0NCnByaW50KCdQfExpZmU9WWVzfEUnKQ0KKDQvNSkqKDIvNSkqKDMvNSkqKDEvMikNCnByaW50KCJQfExpZmU9Tm98RSIpDQooMi81KSooMC81KSooNS81KSooMy81KSooMS8yKQ0KDQpgYGANCg0KIyMjIyBiLlJlcGVhdCBQYXJ0IEEgYnV0IGFzc3VtZSBHZW5kZXIgaXMgdW5rbm93bg0KDQpgYGB7cn0NCnByaW50KCJQfExpZmU9WWVzfEUiKQ0KKDUvNSkqKDQvNSkqKDAqNSkqKDEvMikNCnByaW50KCJQfExpZmU9Tm98RSIpDQooMi81KSooNS81KSooNS81KSooMS8yKQ0KDQoNCmBgYA0KDQojIyMjIGMuIFJlcGVhdCBwYXJ0IGEgYnV0IHVzZSBlcXVhdGlvbiA1LjE1IHdpdGggaz0xIGFuZCBwPS41IHRvIGRldGVybWluZSB0aGUgdmFsdWUgb2YgdGhlIGxpZmUgaW5zdXJhbmNlIHByb21vdGlvbg0KDQpgYGB7cn0NCnByaW50KCJQfExpZmU9WWVzfEUiKQ0KKDUuNS82KSooNC41LzYpKiguNS82KSooMy41LzYpKigxLjUvMykNCg0KcHJpbnQoIlB8TGlmZT1Ob3xFIikNCigyLjUvNikqKC41LzYpKig1LjUvNikqKDEuNS82KSooMS41LzMpDQpgYGANCg0KIyMjIFF1ZXN0aW9uIDYNCg0KQ29uc2lkZXIgdGhlIGNvbmZ1c2lvbiBtYXRyaXggYmVsb3cgd2hlcmUgKlllcyogcmVwcmVzZW50cyB0aGUgcG9zaXRpdmUgY2xhc3MuDQoNCiMjIyMgYS5Db21wdXRlIHRoZSBvdmVyYWxsIGNsYXNzaWZpY2F0aW9uIGFjY3VyYWN5Lg0KDQpgYGB7cn0NCigzMCs3MCkvKDMwKzEwKzEwKzcwKQ0KYGBgDQoNCmJcLiBDb21wdXRlIHRoZSBUcnVlIFBvc2l0aXZlIFJhdGUNCg0KYGBge3J9DQozMC8oMzArMTApDQpgYGANCg0KY1wuIENvbXB1dGUgdGhlIEZhbHNlIFBvc2l0aXZlIFJhdGUNCg0KYGBge3J9DQoxMC8oMTArNzApDQpgYGANCg==