USN: 1NT24IS227
Develop a R program to quickly explore a given dataset, including categorical analysis using the group_by() command, visualise
What We Will Do
In this program, we will:
Load the required libraries and dataset.
Explore the structure of the dataset
Convert a numeric variable into a categorical variable.
Perform categorical analysis using ‘group_by()’ and ‘summarise()’.
Visualize the result
Step 1: Load the required Libraries and Dataset
tidyverse is a collection of packages for data science.
dplyr is used for grouping and summarizing data.
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.2.0 ✔ readr 2.1.6
✔ forcats 1.0.1 ✔ stringr 1.6.0
✔ ggplot2 4.0.2 ✔ tibble 3.3.1
✔ lubridate 1.9.5 ✔ tidyr 1.3.2
✔ purrr 1.2.1
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library (dplyr)
# Load built-in dataset
data <- mtcars
Step 2: Explore the Dataset
Before performing any analysis, we should understand the dataset.
We will check:
Number of rows and columns
Column names
Data types
Summary statistics
First few rows
#Dimensions (rows and columns)
dim (data)
# Column names
names (data)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"
# Structure of dataset
str (data)
'data.frame': 32 obs. of 11 variables:
$ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
$ disp: num 160 160 108 258 360 ...
$ hp : num 110 110 93 110 175 105 245 62 95 123 ...
$ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt : num 2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num 16.5 17 18.6 19.4 17 ...
$ vs : num 0 0 1 1 0 1 0 1 1 1 ...
$ am : num 1 1 1 0 0 0 0 0 0 0 ...
$ gear: num 4 4 4 3 3 3 3 4 4 4 ...
$ carb: num 4 4 1 1 2 1 4 2 2 4 ...
# Summary statistics
summary (data)
mpg cyl disp hp
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
Median :3.695 Median :3.325 Median :17.71 Median :0.0000
Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000
# First six rows
head (data)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Step 3: Convert Numeric Value to Categorical
The variable cyl represents the number of cylingers in a car.
Although it is numeric (4,6,8), it represents categories.
For categorical analysis, we convert it into a factor.
# Convert 'cyl' to factor
data$ cyl <- as.factor (data$ cyl)
# Confirm conversion
str (data$ cyl)
Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
Step 6: Visualize Using a Bar Plot
Understanding ggplot Components
ggplot(summary_data, aes(...)) defines dataset and mappings.
aes(x=cyl, y=avg_mpg, fill=cyl) sets axes and colors.
geom_bar(stat = "identity") uses actual values.
labs() adds titles and labels.
theme_minimal() applies a clean theme.
ggplot (summary_data, aes (x = cyl, y= avg_mpg, fill = cyl)) +
geom_bar (stat = "identity" ) +
labs (
title= "Average MPG by Cylinder Count" ,
x= "Number of Cylinders" ,
y = "Average MPG"
) +
theme_minimal ()