Berikut adalah jawaban soal pada materi Fungsi Survival dan Laju Kematian
\[ P(T>70 \mid T>20)=\frac{S(70)}{S(20)} \] Hitung:
\[ S(70)=\frac{100-70}{100}=\frac{30}{100}=0.3 \]
\[ S(20)=\frac{100-20}{100}=\frac{80}{100}=0.8 \]
Sehingga :
\[ P(T>70 \mid T>20)=\frac{0.3}{0.8}=0.375=37.5\% \]
Rumus laju kematian:
\[ \mu(t) = -\frac{d}{dt}\ln(S(t)) \]
Dengan yang diketahui S(t) :
\[ S(t)=\frac{100-t}{100} \]
Maka:
\[ \ln(S(t))=\ln(100-t)-\ln(100) \]
Turunkan:
\[ \frac{d}{dt}\ln(S(t))=-\frac{1}{100-t} \]
Sehingga:
\[ \mu(t)=\frac{1}{100-t} \]
Nilai pada usia 50:
\[ \mu(50)=\frac{1}{100-50}=\frac{1}{50}=0.02 \]
Rumus :
\[ e_x=\int_0^\infty {}_tp_x \, dt \]
Dengan:
\[ {}_tp_x=\frac{S(x+t)}{S(x)} \]
Sehingga :
\[ e_{20}=\int_0^{80}\frac{S(20+t)}{S(20)}dt \]
Karena:
\[ S(20+t)=\frac{100-(20+t)}{100}=\frac{80-t}{100} \]
dan:
\[ S(20)=\frac{80}{100}=0.8 \]
Maka :
\[ \frac{S(20+t)}{S(20)} =\frac{\frac{80-t}{100}}{\frac{80}{100}} =\frac{80-t}{80} \]
Jadi:
\[ e_{20}=\int_0^{80}\frac{80-t}{80}\,dt \]
Hitung:
\[ e_{20}=\frac{1}{80}\int_0^{80}(80-t)\,dt \]
\[ =\frac{1}{80}\left[80t-\frac{t^2}{2}\right]_0^{80} \]
\[ =\frac{1}{80}(6400-3200)=40 \]
Jadi hasilnya:
\[ e_{20}=40 \text{ tahun} \]