1 load libraries

2 load seurat object

# 1. Reload clean object
L7 <- readRDS("../../../0-RDS_Cell_lines/L7_clustered.rds")
DefaultAssay(L7) <- "SCT"

Idents(L7) <- "SCT_snn_res.0.3"

3 Error Fix

my_GetAssayData <- function(
  object,
  assay = NULL,
  layer = NULL,
  slot = NULL,
  ...
) {
  # Map old 'slot' to new 'layer'
  if (is.null(layer) && !is.null(slot)) {
    layer <- slot
  }
  if (is.null(layer)) {
    layer <- "data"
  }

  # If a Seurat object is provided, get the assay object
  if (inherits(object, "Seurat")) {
    if (is.null(assay)) assay <- Seurat::DefaultAssay(object)
    assay_obj <- object[[assay]]
  } else {
    assay_obj <- object
  }

  # Seurat v5 assays: use LayerData
  if (inherits(assay_obj, "Assay5") || inherits(assay_obj, "StdAssay")) {
    return(SeuratObject::LayerData(assay_obj, layer = layer))
  }

  # Seurat v4 assays: fall back to slots
  if (inherits(assay_obj, "Assay")) {
    return(methods::slot(assay_obj, layer))
  }

  stop("Unsupported object class: ", paste(class(object), collapse = ", "))
}

assignInNamespace("GetAssayData", my_GetAssayData, ns = "SeuratObject")

4 Liana analysis using scPubr


# Run LIANA with multiple methods
liana_output <- liana::liana_wrap(sce =  L7,
                                  method = c("natmi", "connectome", "logfc", "sca", "cellphonedb", "CellChat"),
                                  idents_col = NULL,
                                  verbose = FALSE,
                                  assay = "SCT")

# Compute consensus aggregate ranking
liana_aggregate <- liana::liana_aggregate(liana_output)

4.1 Save Results


# Create output directory
dir.create("LIANA_L7", showWarnings = FALSE)

# Save R object (for future use)
saveRDS(liana_output, "LIANA_L7/liana_L7_output.rds")

# Save aggregate results (for comparative analysis across all cell lines)
write.csv(liana_aggregate, 
          "LIANA_L7/liana_L7_aggregate_results.csv", 
          row.names = FALSE)

# Save individual methods
for (name in names(liana_output)) {
    write.csv(liana_output[[name]], 
              paste0("LIANA_L7/liana_L7_", name, "_results.csv"), 
              row.names = FALSE)
}

cat("✓ Results saved to LIANA_L7/\n")
✓ Results saved to LIANA_L7/

4.2 Supplementary Figure: Detailed Dotplot

library(ggplot2)

# Top 10 interactions by aggregate_rank
p_dotplot <- SCpubr::do_LigandReceptorPlot(
    liana_output = liana_output,
    arrange_interactions_by = "aggregate_rank",
    top_interactions = 10
)

p_dotplot


# Save as PDF
ggsave(
  filename = "LIANA_L7/L7_Dotplot_Top10_AggregateRank.pdf",
  plot = p_dotplot,
  width = 13,
  height = 8
)

# Save as PNG (set dpi explicitly — otherwise figures look amateurish)
ggsave(
  filename = "LIANA_L7/L7_Dotplot_Top10_AggregateRank.png",
  plot = p_dotplot,
  width = 13,
  height = 8,
  dpi = 300
)

cat("✓ Dotplot saved as PDF and PNG\n")
✓ Dotplot saved as PDF and PNG

5 Main Figure: Chord Diagrams


# Generate chord diagrams (TOP 25 interactions by aggregate_rank)
chord_output <- SCpubr::do_LigandReceptorPlot(
    liana_output = liana_output,
    top_interactions = 10,
    arrange_interactions_by = "aggregate_rank",
    compute_ChordDiagrams = TRUE
)

# Display chord diagrams
chord_output$chord_total_interactions
chord_output$chord_ligand_receptor

5.1 Save Chord Diagrams



# Save Chord Diagram 1: Total interactions by cluster
pdf("LIANA_L7/L7_Chord_Total_Interactions.pdf", width = 12, height = 11)
print(chord_output$chord_total_interactions)
dev.off()
null device 
          1 
# Save Chord Diagram 2: Specific ligand-receptor pairs
pdf("LIANA_L7/L7_Chord_Ligand_Receptor.pdf", width = 12, height = 11)
print(chord_output$chord_ligand_receptor)
dev.off()
null device 
          1 
png("LIANA_L7/L7_Chord_Total_Interactions.png", width = 3600, height = 3200, res = 300)
print(chord_output$chord_total_interactions)
dev.off()
null device 
          1 
png("LIANA_L7/L7_Chord_Ligand_Receptor.png", width = 3600, height = 3200, res = 300)
print(chord_output$chord_ligand_receptor)
dev.off()
null device 
          1 
cat("✓ Chord diagrams saved\n")
✓ Chord diagrams saved

6 Summary Table


# Top 10 interactions for manuscript table
top10_table <- liana_aggregate %>%
  arrange(aggregate_rank) %>%
  select(source, target, ligand.complex, receptor.complex, 
         aggregate_rank, natmi.edge_specificity, sca.LRscore) %>%
  head(10)

# Display
print(top10_table)
# A tibble: 10 × 7
   source target ligand.complex receptor.complex aggregate_rank natmi.edge_specificity sca.LRscore
   <chr>  <chr>  <chr>          <chr>                     <dbl>                  <dbl>       <dbl>
 1 6      2      CCL5           CXCR3               0.000000632                 0.157        0.676
 2 6      1      CCL5           CXCR3               0.00000179                  0.148        0.669
 3 6      2      CXCL10         CXCR3               0.00000189                  0.353        0.495
 4 6      6      CCL5           SDC4                0.00000292                  0.142        0.653
 5 6      1      CXCL10         CXCR3               0.00000424                  0.331        0.487
 6 6      6      SPP1           PTGER4              0.00000716                  0.119        0.812
 7 6      6      CXCL10         TLR4                0.00000755                  0.368        0.323
 8 6      6      CXCL10         SDC4                0.00000755                  0.319        0.470
 9 6      0      CCL5           CCR4                0.0000319                   0.0934       0.656
10 6      3      SPP1           CCR8                0.0000465                   0.0905       0.630
# Save as CSV
write.csv(top10_table, 
          "LIANA_L7/L7_Top10_Interactions_Table.csv", 
          row.names = FALSE)

cat("✓ Summary table saved\n")
✓ Summary table saved
# Print statistics
cat("\n=== SUMMARY STATISTICS ===\n")

=== SUMMARY STATISTICS ===
cat("Total interactions with aggregate_rank ≤ 0.05:", 
    sum(liana_aggregate$aggregate_rank <= 0.05), "\n")
Total interactions with aggregate_rank ≤ 0.05: 2032 
cat("Total interactions with aggregate_rank ≤ 0.01:", 
    sum(liana_aggregate$aggregate_rank <= 0.01), "\n")
Total interactions with aggregate_rank ≤ 0.01: 690 

6.1 Session Info


sessionInfo()
R version 4.5.2 (2025-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0 
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=fr_FR.UTF-8        LC_COLLATE=en_GB.UTF-8    
 [5] LC_MONETARY=fr_FR.UTF-8    LC_MESSAGES=en_GB.UTF-8    LC_PAPER=fr_FR.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C       

time zone: Europe/Paris
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] ggplot2_4.0.2      SCpubr_1.1.1.9000  liana_0.1.14       dplyr_1.2.0        Seurat_5.4.0       SeuratObject_5.3.0
[7] sp_2.2-0          

loaded via a namespace (and not attached):
  [1] fs_1.6.6                    matrixStats_1.5.0           spatstat.sparse_3.1-0       lubridate_1.9.5            
  [5] httr_1.4.7                  RColorBrewer_1.1-3          doParallel_1.0.17           tools_4.5.2                
  [9] sctransform_0.4.3           backports_1.5.0             utf8_1.2.6                  R6_2.6.1                   
 [13] lazyeval_0.2.2              uwot_0.2.4                  GetoptLong_1.1.0            withr_3.0.2                
 [17] prettyunits_1.2.0           gridExtra_2.3               progressr_0.18.0            textshaping_1.0.4          
 [21] cli_3.6.5                   Biobase_2.70.0              spatstat.explore_3.7-0      fastDummies_1.7.5          
 [25] sass_0.4.10                 labeling_0.4.3              S7_0.2.1                    spatstat.data_3.1-9        
 [29] readr_2.1.6                 ggridges_0.5.7              pbapply_1.7-4               systemfonts_1.3.1          
 [33] R.utils_2.13.0              scater_1.38.0               dichromat_2.0-0.1           parallelly_1.46.1          
 [37] sessioninfo_1.2.3           limma_3.66.0                readxl_1.4.5                rstudioapi_0.18.0          
 [41] RSQLite_2.4.6               generics_0.1.4              shape_1.4.6.1               ica_1.0-3                  
 [45] spatstat.random_3.4-4       zip_2.3.3                   Matrix_1.7-4                ggbeeswarm_0.7.3           
 [49] S4Vectors_0.48.0            logger_0.4.1                abind_1.4-8                 R.methodsS3_1.8.2          
 [53] lifecycle_1.0.5             yaml_2.3.12                 edgeR_4.8.2                 SummarizedExperiment_1.40.0
 [57] SparseArray_1.10.8          Rtsne_0.17                  grid_4.5.2                  blob_1.3.0                 
 [61] promises_1.5.0              dqrng_0.4.1                 crayon_1.5.3                dir.expiry_1.18.0          
 [65] miniUI_0.1.2                lattice_0.22-7              beachmat_2.26.0             cowplot_1.2.0              
 [69] pillar_1.11.1               knitr_1.51                  ComplexHeatmap_2.26.1       metapod_1.18.0             
 [73] GenomicRanges_1.62.1        tcltk_4.5.2                 rjson_0.2.23                future.apply_1.20.1        
 [77] codetools_0.2-20            glue_1.8.0                  spatstat.univar_3.1-6       data.table_1.18.2.1        
 [81] vctrs_0.7.1                 png_0.1-8                   spam_2.11-3                 cellranger_1.1.0           
 [85] gtable_0.3.6                assertthat_0.2.1            cachem_1.1.0                OmnipathR_3.19.1           
 [89] xfun_0.56                   S4Arrays_1.10.1             mime_0.13                   Seqinfo_1.0.0              
 [93] rsconnect_1.7.0             survival_3.8-3              SingleCellExperiment_1.32.0 iterators_1.0.14           
 [97] statmod_1.5.1               bluster_1.20.0              fitdistrplus_1.2-6          ROCR_1.0-12                
[101] nlme_3.1-168                bit64_4.6.0-1               progress_1.2.3              filelock_1.0.3             
[105] RcppAnnoy_0.0.23            bslib_0.10.0                irlba_2.3.7                 vipor_0.4.7                
[109] KernSmooth_2.23-26          otel_0.2.0                  colorspace_2.1-2            BiocGenerics_0.56.0        
[113] DBI_1.2.3                   tidyselect_1.2.1            bit_4.6.0                   compiler_4.5.2             
[117] curl_7.0.0                  rvest_1.0.5                 httr2_1.2.2                 BiocNeighbors_2.4.0        
[121] xml2_1.5.2                  DelayedArray_0.36.0         plotly_4.12.0               checkmate_2.3.4            
[125] scales_1.4.0                lmtest_0.9-40               rappdirs_0.3.4              stringr_1.6.0              
[129] digest_0.6.39               goftest_1.2-3               spatstat.utils_3.2-1        rmarkdown_2.30             
[133] basilisk_1.23.0             XVector_0.50.0              htmltools_0.5.9             pkgconfig_2.0.3            
[137] sparseMatrixStats_1.22.0    MatrixGenerics_1.22.0       fastmap_1.2.0               rlang_1.1.7                
[141] GlobalOptions_0.1.3         htmlwidgets_1.6.4           shiny_1.12.1                jquerylib_0.1.4            
[145] farver_2.1.2                zoo_1.8-15                  jsonlite_2.0.0              BiocParallel_1.44.0        
[149] R.oo_1.27.1                 BiocSingular_1.26.1         magrittr_2.0.4              scuttle_1.20.0             
[153] dotCall64_1.2               patchwork_1.3.2             Rcpp_1.1.1                  viridis_0.6.5              
[157] reticulate_1.44.1           stringi_1.8.7               MASS_7.3-65                 plyr_1.8.9                 
[161] parallel_4.5.2              listenv_0.10.0              ggrepel_0.9.6               forcats_1.0.1              
[165] deldir_2.0-4                splines_4.5.2               tensor_1.5.1                hms_1.1.4                  
[169] circlize_0.4.17             locfit_1.5-9.12             igraph_2.2.1                spatstat.geom_3.7-0        
[173] RcppHNSW_0.6.0              reshape2_1.4.5              stats4_4.5.2                ScaledMatrix_1.18.0        
[177] XML_3.99-0.20               evaluate_1.0.5              scran_1.38.0                tzdb_0.5.0                 
[181] foreach_1.5.2               httpuv_1.6.16               RANN_2.6.2                  tidyr_1.3.2                
[185] purrr_1.2.1                 polyclip_1.10-7             future_1.69.0               clue_0.3-66                
[189] scattermore_1.2             rsvd_1.0.5                  xtable_1.8-4                RSpectra_0.16-2            
[193] later_1.4.5                 ragg_1.5.0                  viridisLite_0.4.3           tibble_3.3.1               
[197] beeswarm_0.4.0              memoise_2.0.1               IRanges_2.44.0              cluster_2.1.8.1            
[201] timechange_0.4.0            globals_0.19.0             
LS0tCnRpdGxlOiAiTGlhbmEgYW5hbHlzaXMgTDctVGhlc2lzIgphdXRob3I6ICJOYXNpciBNYWhtb29kIEFiYmFzaSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgdGhlbWU6IGpvdXJuYWwKLS0tCgoKIyBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCgpzdXBwcmVzc1BhY2thZ2VTdGFydHVwTWVzc2FnZXMoewogICAgbGlicmFyeShTZXVyYXQpICAgICAgIyBTZXVyYXQgb2JqZWN0IGhhbmRsaW5nCiAgICBsaWJyYXJ5KGRwbHlyKSAgICAgICAjIERhdGEgbWFuaXB1bGF0aW9uCiAgICBsaWJyYXJ5KGxpYW5hKSAgICAgICAjIExpZ2FuZC1yZWNlcHRvciBhbmFseXNpcwogICAgbGlicmFyeShTQ3B1YnIpICAgICAgIyBWaXN1YWxpemF0aW9uCn0pCgpgYGAKCgojIGxvYWQgc2V1cmF0IG9iamVjdApgYGB7ciBsb2FkX3NldXJhdH0KIyAxLiBSZWxvYWQgY2xlYW4gb2JqZWN0Ckw3IDwtIHJlYWRSRFMoIi4uLy4uLy4uLzAtUkRTX0NlbGxfbGluZXMvTDdfY2x1c3RlcmVkLnJkcyIpCkRlZmF1bHRBc3NheShMNykgPC0gIlNDVCIKCklkZW50cyhMNykgPC0gIlNDVF9zbm5fcmVzLjAuMyIKCgpgYGAKCiMgRXJyb3IgRml4CmBgYHtyIH0KbXlfR2V0QXNzYXlEYXRhIDwtIGZ1bmN0aW9uKAogIG9iamVjdCwKICBhc3NheSA9IE5VTEwsCiAgbGF5ZXIgPSBOVUxMLAogIHNsb3QgPSBOVUxMLAogIC4uLgopIHsKICAjIE1hcCBvbGQgJ3Nsb3QnIHRvIG5ldyAnbGF5ZXInCiAgaWYgKGlzLm51bGwobGF5ZXIpICYmICFpcy5udWxsKHNsb3QpKSB7CiAgICBsYXllciA8LSBzbG90CiAgfQogIGlmIChpcy5udWxsKGxheWVyKSkgewogICAgbGF5ZXIgPC0gImRhdGEiCiAgfQoKICAjIElmIGEgU2V1cmF0IG9iamVjdCBpcyBwcm92aWRlZCwgZ2V0IHRoZSBhc3NheSBvYmplY3QKICBpZiAoaW5oZXJpdHMob2JqZWN0LCAiU2V1cmF0IikpIHsKICAgIGlmIChpcy5udWxsKGFzc2F5KSkgYXNzYXkgPC0gU2V1cmF0OjpEZWZhdWx0QXNzYXkob2JqZWN0KQogICAgYXNzYXlfb2JqIDwtIG9iamVjdFtbYXNzYXldXQogIH0gZWxzZSB7CiAgICBhc3NheV9vYmogPC0gb2JqZWN0CiAgfQoKICAjIFNldXJhdCB2NSBhc3NheXM6IHVzZSBMYXllckRhdGEKICBpZiAoaW5oZXJpdHMoYXNzYXlfb2JqLCAiQXNzYXk1IikgfHwgaW5oZXJpdHMoYXNzYXlfb2JqLCAiU3RkQXNzYXkiKSkgewogICAgcmV0dXJuKFNldXJhdE9iamVjdDo6TGF5ZXJEYXRhKGFzc2F5X29iaiwgbGF5ZXIgPSBsYXllcikpCiAgfQoKICAjIFNldXJhdCB2NCBhc3NheXM6IGZhbGwgYmFjayB0byBzbG90cwogIGlmIChpbmhlcml0cyhhc3NheV9vYmosICJBc3NheSIpKSB7CiAgICByZXR1cm4obWV0aG9kczo6c2xvdChhc3NheV9vYmosIGxheWVyKSkKICB9CgogIHN0b3AoIlVuc3VwcG9ydGVkIG9iamVjdCBjbGFzczogIiwgcGFzdGUoY2xhc3Mob2JqZWN0KSwgY29sbGFwc2UgPSAiLCAiKSkKfQoKYXNzaWduSW5OYW1lc3BhY2UoIkdldEFzc2F5RGF0YSIsIG15X0dldEFzc2F5RGF0YSwgbnMgPSAiU2V1cmF0T2JqZWN0IikKCgpgYGAKCgoKIyBMaWFuYSBhbmFseXNpcyB1c2luZyBzY1B1YnIKYGBge3J9CgojIFJ1biBMSUFOQSB3aXRoIG11bHRpcGxlIG1ldGhvZHMKbGlhbmFfb3V0cHV0IDwtIGxpYW5hOjpsaWFuYV93cmFwKHNjZSA9ICBMNywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9IGMoIm5hdG1pIiwgImNvbm5lY3RvbWUiLCAibG9nZmMiLCAic2NhIiwgImNlbGxwaG9uZWRiIiwgIkNlbGxDaGF0IiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZGVudHNfY29sID0gTlVMTCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcmJvc2UgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFzc2F5ID0gIlNDVCIpCgojIENvbXB1dGUgY29uc2Vuc3VzIGFnZ3JlZ2F0ZSByYW5raW5nCmxpYW5hX2FnZ3JlZ2F0ZSA8LSBsaWFuYTo6bGlhbmFfYWdncmVnYXRlKGxpYW5hX291dHB1dCkKCmBgYAoKIyMgU2F2ZSBSZXN1bHRzCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CgojIENyZWF0ZSBvdXRwdXQgZGlyZWN0b3J5CmRpci5jcmVhdGUoIkxJQU5BX0w3Iiwgc2hvd1dhcm5pbmdzID0gRkFMU0UpCgojIFNhdmUgUiBvYmplY3QgKGZvciBmdXR1cmUgdXNlKQpzYXZlUkRTKGxpYW5hX291dHB1dCwgIkxJQU5BX0w3L2xpYW5hX0w3X291dHB1dC5yZHMiKQoKIyBTYXZlIGFnZ3JlZ2F0ZSByZXN1bHRzIChmb3IgY29tcGFyYXRpdmUgYW5hbHlzaXMgYWNyb3NzIGFsbCBjZWxsIGxpbmVzKQp3cml0ZS5jc3YobGlhbmFfYWdncmVnYXRlLCAKICAgICAgICAgICJMSUFOQV9MNy9saWFuYV9MN19hZ2dyZWdhdGVfcmVzdWx0cy5jc3YiLCAKICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFKQoKIyBTYXZlIGluZGl2aWR1YWwgbWV0aG9kcwpmb3IgKG5hbWUgaW4gbmFtZXMobGlhbmFfb3V0cHV0KSkgewogICAgd3JpdGUuY3N2KGxpYW5hX291dHB1dFtbbmFtZV1dLCAKICAgICAgICAgICAgICBwYXN0ZTAoIkxJQU5BX0w3L2xpYW5hX0w3XyIsIG5hbWUsICJfcmVzdWx0cy5jc3YiKSwgCiAgICAgICAgICAgICAgcm93Lm5hbWVzID0gRkFMU0UpCn0KCmNhdCgi4pyTIFJlc3VsdHMgc2F2ZWQgdG8gTElBTkFfTDcvXG4iKQpgYGAKIyMgU3VwcGxlbWVudGFyeSBGaWd1cmU6IERldGFpbGVkIERvdHBsb3QKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEzfQpsaWJyYXJ5KGdncGxvdDIpCgojIFRvcCAxMCBpbnRlcmFjdGlvbnMgYnkgYWdncmVnYXRlX3JhbmsKcF9kb3RwbG90IDwtIFNDcHVicjo6ZG9fTGlnYW5kUmVjZXB0b3JQbG90KAogICAgbGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgYXJyYW5nZV9pbnRlcmFjdGlvbnNfYnkgPSAiYWdncmVnYXRlX3JhbmsiLAogICAgdG9wX2ludGVyYWN0aW9ucyA9IDEwCikKCnBfZG90cGxvdAoKIyBTYXZlIGFzIFBERgpnZ3NhdmUoCiAgZmlsZW5hbWUgPSAiTElBTkFfTDcvTDdfRG90cGxvdF9Ub3AxMF9BZ2dyZWdhdGVSYW5rLnBkZiIsCiAgcGxvdCA9IHBfZG90cGxvdCwKICB3aWR0aCA9IDEzLAogIGhlaWdodCA9IDgKKQoKIyBTYXZlIGFzIFBORyAoc2V0IGRwaSBleHBsaWNpdGx5IOKAlCBvdGhlcndpc2UgZmlndXJlcyBsb29rIGFtYXRldXJpc2gpCmdnc2F2ZSgKICBmaWxlbmFtZSA9ICJMSUFOQV9MNy9MN19Eb3RwbG90X1RvcDEwX0FnZ3JlZ2F0ZVJhbmsucG5nIiwKICBwbG90ID0gcF9kb3RwbG90LAogIHdpZHRoID0gMTMsCiAgaGVpZ2h0ID0gOCwKICBkcGkgPSAzMDAKKQoKY2F0KCLinJMgRG90cGxvdCBzYXZlZCBhcyBQREYgYW5kIFBOR1xuIikKCgpgYGAKCiMgTWFpbiBGaWd1cmU6IENob3JkIERpYWdyYW1zCmBgYHtyLCBmaWcuaGVpZ2h0PTExLCBmaWcud2lkdGg9MTJ9CgojIEdlbmVyYXRlIGNob3JkIGRpYWdyYW1zIChUT1AgMjUgaW50ZXJhY3Rpb25zIGJ5IGFnZ3JlZ2F0ZV9yYW5rKQpjaG9yZF9vdXRwdXQgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QoCiAgICBsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQsCiAgICB0b3BfaW50ZXJhY3Rpb25zID0gMTAsCiAgICBhcnJhbmdlX2ludGVyYWN0aW9uc19ieSA9ICJhZ2dyZWdhdGVfcmFuayIsCiAgICBjb21wdXRlX0Nob3JkRGlhZ3JhbXMgPSBUUlVFCikKCiMgRGlzcGxheSBjaG9yZCBkaWFncmFtcwpjaG9yZF9vdXRwdXQkY2hvcmRfdG90YWxfaW50ZXJhY3Rpb25zCmNob3JkX291dHB1dCRjaG9yZF9saWdhbmRfcmVjZXB0b3IKCmBgYAoKCgoKCiMjIFNhdmUgQ2hvcmQgRGlhZ3JhbXMKYGBge3J9CgoKIyBTYXZlIENob3JkIERpYWdyYW0gMTogVG90YWwgaW50ZXJhY3Rpb25zIGJ5IGNsdXN0ZXIKcGRmKCJMSUFOQV9MNy9MN19DaG9yZF9Ub3RhbF9JbnRlcmFjdGlvbnMucGRmIiwgd2lkdGggPSAxMiwgaGVpZ2h0ID0gMTEpCnByaW50KGNob3JkX291dHB1dCRjaG9yZF90b3RhbF9pbnRlcmFjdGlvbnMpCmRldi5vZmYoKQoKIyBTYXZlIENob3JkIERpYWdyYW0gMjogU3BlY2lmaWMgbGlnYW5kLXJlY2VwdG9yIHBhaXJzCnBkZigiTElBTkFfTDcvTDdfQ2hvcmRfTGlnYW5kX1JlY2VwdG9yLnBkZiIsIHdpZHRoID0gMTIsIGhlaWdodCA9IDExKQpwcmludChjaG9yZF9vdXRwdXQkY2hvcmRfbGlnYW5kX3JlY2VwdG9yKQpkZXYub2ZmKCkKCgpwbmcoIkxJQU5BX0w3L0w3X0Nob3JkX1RvdGFsX0ludGVyYWN0aW9ucy5wbmciLCB3aWR0aCA9IDM2MDAsIGhlaWdodCA9IDMyMDAsIHJlcyA9IDMwMCkKcHJpbnQoY2hvcmRfb3V0cHV0JGNob3JkX3RvdGFsX2ludGVyYWN0aW9ucykKZGV2Lm9mZigpCgpwbmcoIkxJQU5BX0w3L0w3X0Nob3JkX0xpZ2FuZF9SZWNlcHRvci5wbmciLCB3aWR0aCA9IDM2MDAsIGhlaWdodCA9IDMyMDAsIHJlcyA9IDMwMCkKcHJpbnQoY2hvcmRfb3V0cHV0JGNob3JkX2xpZ2FuZF9yZWNlcHRvcikKZGV2Lm9mZigpCgpjYXQoIuKckyBDaG9yZCBkaWFncmFtcyBzYXZlZFxuIikKCgpgYGAKCgoKCgojIFN1bW1hcnkgVGFibGUKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBUb3AgMTAgaW50ZXJhY3Rpb25zIGZvciBtYW51c2NyaXB0IHRhYmxlCnRvcDEwX3RhYmxlIDwtIGxpYW5hX2FnZ3JlZ2F0ZSAlPiUKICBhcnJhbmdlKGFnZ3JlZ2F0ZV9yYW5rKSAlPiUKICBzZWxlY3Qoc291cmNlLCB0YXJnZXQsIGxpZ2FuZC5jb21wbGV4LCByZWNlcHRvci5jb21wbGV4LCAKICAgICAgICAgYWdncmVnYXRlX3JhbmssIG5hdG1pLmVkZ2Vfc3BlY2lmaWNpdHksIHNjYS5MUnNjb3JlKSAlPiUKICBoZWFkKDEwKQoKIyBEaXNwbGF5CnByaW50KHRvcDEwX3RhYmxlKQoKIyBTYXZlIGFzIENTVgp3cml0ZS5jc3YodG9wMTBfdGFibGUsIAogICAgICAgICAgIkxJQU5BX0w3L0w3X1RvcDEwX0ludGVyYWN0aW9uc19UYWJsZS5jc3YiLCAKICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFKQoKY2F0KCLinJMgU3VtbWFyeSB0YWJsZSBzYXZlZFxuIikKCiMgUHJpbnQgc3RhdGlzdGljcwpjYXQoIlxuPT09IFNVTU1BUlkgU1RBVElTVElDUyA9PT1cbiIpCmNhdCgiVG90YWwgaW50ZXJhY3Rpb25zIHdpdGggYWdncmVnYXRlX3Jhbmsg4omkIDAuMDU6IiwgCiAgICBzdW0obGlhbmFfYWdncmVnYXRlJGFnZ3JlZ2F0ZV9yYW5rIDw9IDAuMDUpLCAiXG4iKQpjYXQoIlRvdGFsIGludGVyYWN0aW9ucyB3aXRoIGFnZ3JlZ2F0ZV9yYW5rIOKJpCAwLjAxOiIsIAogICAgc3VtKGxpYW5hX2FnZ3JlZ2F0ZSRhZ2dyZWdhdGVfcmFuayA8PSAwLjAxKSwgIlxuIikKCmBgYAoKCgojIyBTZXNzaW9uIEluZm8KYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKc2Vzc2lvbkluZm8oKQoKYGBgCgoKCg==