load libraries
load seurat object
# 1. Reload clean object
L6 <- readRDS("../../../0-RDS_Cell_lines/L6_clustered.rds")
DefaultAssay(L6) <- "SCT"
Idents(L6) <- "SCT_snn_res.0.2"
Error Fix
my_GetAssayData <- function(
object,
assay = NULL,
layer = NULL,
slot = NULL,
...
) {
# Map old 'slot' to new 'layer'
if (is.null(layer) && !is.null(slot)) {
layer <- slot
}
if (is.null(layer)) {
layer <- "data"
}
# If a Seurat object is provided, get the assay object
if (inherits(object, "Seurat")) {
if (is.null(assay)) assay <- Seurat::DefaultAssay(object)
assay_obj <- object[[assay]]
} else {
assay_obj <- object
}
# Seurat v5 assays: use LayerData
if (inherits(assay_obj, "Assay5") || inherits(assay_obj, "StdAssay")) {
return(SeuratObject::LayerData(assay_obj, layer = layer))
}
# Seurat v4 assays: fall back to slots
if (inherits(assay_obj, "Assay")) {
return(methods::slot(assay_obj, layer))
}
stop("Unsupported object class: ", paste(class(object), collapse = ", "))
}
assignInNamespace("GetAssayData", my_GetAssayData, ns = "SeuratObject")
Liana analysis using
scPubr
# Run LIANA with multiple methods
liana_output <- liana::liana_wrap(sce = L6,
method = c("natmi", "connectome", "logfc", "sca", "cellphonedb", "CellChat"),
idents_col = NULL,
verbose = FALSE,
assay = "SCT")
# Compute consensus aggregate ranking
liana_aggregate <- liana::liana_aggregate(liana_output)
Save Results
# Create output directory
dir.create("LIANA_L6", showWarnings = FALSE)
# Save R object (for future use)
saveRDS(liana_output, "LIANA_L6/liana_L6_output.rds")
# Save aggregate results (for comparative analysis across all cell lines)
write.csv(liana_aggregate,
"LIANA_L6/liana_L6_aggregate_results.csv",
row.names = FALSE)
# Save individual methods
for (name in names(liana_output)) {
write.csv(liana_output[[name]],
paste0("LIANA_L6/liana_L6_", name, "_results.csv"),
row.names = FALSE)
}
cat("✓ Results saved to LIANA_L6/\n")
✓ Results saved to LIANA_L6/
Main Figure: Chord
Diagrams
# Generate chord diagrams (TOP 25 interactions by aggregate_rank)
chord_output <- SCpubr::do_LigandReceptorPlot(
liana_output = liana_output,
top_interactions = 10,
arrange_interactions_by = "aggregate_rank",
compute_ChordDiagrams = TRUE
)
# Display chord diagrams
chord_output$chord_total_interactions
chord_output$chord_ligand_receptor


Save Chord
Diagrams
# Save Chord Diagram 1: Total interactions by cluster
pdf("LIANA_L6/L6_Chord_Total_Interactions.pdf", width = 12, height = 11)
print(chord_output$chord_total_interactions)
dev.off()
null device
1
# Save Chord Diagram 2: Specific ligand-receptor pairs
pdf("LIANA_L6/L6_Chord_Ligand_Receptor.pdf", width = 12, height = 11)
print(chord_output$chord_ligand_receptor)
dev.off()
null device
1
png("LIANA_L6/L6_Chord_Total_Interactions.png", width = 3600, height = 3200, res = 300)
print(chord_output$chord_total_interactions)
dev.off()
null device
1
png("LIANA_L6/L6_Chord_Ligand_Receptor.png", width = 3600, height = 3200, res = 300)
print(chord_output$chord_ligand_receptor)
dev.off()
null device
1
cat("✓ Chord diagrams saved\n")
✓ Chord diagrams saved
Summary Table
# Top 10 interactions for manuscript table
top10_table <- liana_aggregate %>%
arrange(aggregate_rank) %>%
select(source, target, ligand.complex, receptor.complex,
aggregate_rank, natmi.edge_specificity, sca.LRscore) %>%
head(10)
# Display
print(top10_table)
# A tibble: 10 × 7
source target ligand.complex receptor.complex aggregate_rank natmi.edge_specificity sca.LRscore
<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1 3 2 CCL5 CCR4 0.00000150 0.229 0.768
2 3 3 CCL5 SDC4 0.00000873 0.212 0.792
3 3 2 CCL5 SDC4 0.0000120 0.208 0.791
4 3 1 CCL5 DPP4 0.0000138 0.205 0.819
5 2 2 CCL1 CCR8 0.0000262 0.264 0.684
6 3 2 TNFSF9 TNFRSF9 0.0000402 0.281 0.722
7 2 0 CCL1 CCR8 0.0000402 0.217 0.663
8 3 3 CXCL10 SDC4 0.0000435 0.369 0.593
9 3 2 CXCL10 SDC4 0.0000773 0.363 0.591
10 3 2 CD70 CD27 0.0000813 0.185 0.809
# Save as CSV
write.csv(top10_table,
"LIANA_L6/L6_Top10_Interactions_Table.csv",
row.names = FALSE)
cat("✓ Summary table saved\n")
✓ Summary table saved
# Print statistics
cat("\n=== SUMMARY STATISTICS ===\n")
=== SUMMARY STATISTICS ===
cat("Total interactions with aggregate_rank ≤ 0.05:",
sum(liana_aggregate$aggregate_rank <= 0.05), "\n")
Total interactions with aggregate_rank ≤ 0.05: 624
cat("Total interactions with aggregate_rank ≤ 0.01:",
sum(liana_aggregate$aggregate_rank <= 0.01), "\n")
Total interactions with aggregate_rank ≤ 0.01: 201
Session Info
sessionInfo()
R version 4.5.2 (2025-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=fr_FR.UTF-8 LC_COLLATE=en_GB.UTF-8
[5] LC_MONETARY=fr_FR.UTF-8 LC_MESSAGES=en_GB.UTF-8 LC_PAPER=fr_FR.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=fr_FR.UTF-8 LC_IDENTIFICATION=C
time zone: Europe/Paris
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggplot2_4.0.2 SCpubr_1.1.1.9000 liana_0.1.14 dplyr_1.2.0 Seurat_5.4.0 SeuratObject_5.3.0
[7] sp_2.2-0
loaded via a namespace (and not attached):
[1] fs_1.6.6 matrixStats_1.5.0 spatstat.sparse_3.1-0 lubridate_1.9.5
[5] httr_1.4.7 RColorBrewer_1.1-3 doParallel_1.0.17 tools_4.5.2
[9] sctransform_0.4.3 backports_1.5.0 utf8_1.2.6 R6_2.6.1
[13] lazyeval_0.2.2 uwot_0.2.4 GetoptLong_1.1.0 withr_3.0.2
[17] prettyunits_1.2.0 gridExtra_2.3 progressr_0.18.0 textshaping_1.0.4
[21] cli_3.6.5 Biobase_2.70.0 spatstat.explore_3.7-0 fastDummies_1.7.5
[25] labeling_0.4.3 S7_0.2.1 spatstat.data_3.1-9 readr_2.1.6
[29] ggridges_0.5.7 pbapply_1.7-4 systemfonts_1.3.1 R.utils_2.13.0
[33] scater_1.38.0 dichromat_2.0-0.1 parallelly_1.46.1 sessioninfo_1.2.3
[37] limma_3.66.0 readxl_1.4.5 rstudioapi_0.18.0 RSQLite_2.4.6
[41] generics_0.1.4 shape_1.4.6.1 ica_1.0-3 spatstat.random_3.4-4
[45] zip_2.3.3 Matrix_1.7-4 ggbeeswarm_0.7.3 S4Vectors_0.48.0
[49] logger_0.4.1 abind_1.4-8 R.methodsS3_1.8.2 lifecycle_1.0.5
[53] yaml_2.3.12 edgeR_4.8.2 SummarizedExperiment_1.40.0 SparseArray_1.10.8
[57] Rtsne_0.17 grid_4.5.2 blob_1.3.0 promises_1.5.0
[61] dqrng_0.4.1 crayon_1.5.3 dir.expiry_1.18.0 miniUI_0.1.2
[65] lattice_0.22-7 beachmat_2.26.0 cowplot_1.2.0 pillar_1.11.1
[69] knitr_1.51 ComplexHeatmap_2.26.1 metapod_1.18.0 GenomicRanges_1.62.1
[73] tcltk_4.5.2 rjson_0.2.23 future.apply_1.20.1 codetools_0.2-20
[77] glue_1.8.0 spatstat.univar_3.1-6 data.table_1.18.2.1 vctrs_0.7.1
[81] png_0.1-8 spam_2.11-3 cellranger_1.1.0 gtable_0.3.6
[85] assertthat_0.2.1 cachem_1.1.0 OmnipathR_3.19.1 xfun_0.56
[89] S4Arrays_1.10.1 mime_0.13 Seqinfo_1.0.0 survival_3.8-3
[93] SingleCellExperiment_1.32.0 iterators_1.0.14 statmod_1.5.1 bluster_1.20.0
[97] fitdistrplus_1.2-6 ROCR_1.0-12 nlme_3.1-168 bit64_4.6.0-1
[101] progress_1.2.3 filelock_1.0.3 RcppAnnoy_0.0.23 irlba_2.3.7
[105] vipor_0.4.7 KernSmooth_2.23-26 otel_0.2.0 colorspace_2.1-2
[109] BiocGenerics_0.56.0 DBI_1.2.3 tidyselect_1.2.1 bit_4.6.0
[113] compiler_4.5.2 curl_7.0.0 rvest_1.0.5 httr2_1.2.2
[117] BiocNeighbors_2.4.0 xml2_1.5.2 DelayedArray_0.36.0 plotly_4.12.0
[121] checkmate_2.3.4 scales_1.4.0 lmtest_0.9-40 rappdirs_0.3.4
[125] stringr_1.6.0 digest_0.6.39 goftest_1.2-3 spatstat.utils_3.2-1
[129] rmarkdown_2.30 basilisk_1.23.0 XVector_0.50.0 htmltools_0.5.9
[133] pkgconfig_2.0.3 sparseMatrixStats_1.22.0 MatrixGenerics_1.22.0 fastmap_1.2.0
[137] rlang_1.1.7 GlobalOptions_0.1.3 htmlwidgets_1.6.4 shiny_1.12.1
[141] farver_2.1.2 zoo_1.8-15 jsonlite_2.0.0 BiocParallel_1.44.0
[145] R.oo_1.27.1 BiocSingular_1.26.1 magrittr_2.0.4 scuttle_1.20.0
[149] dotCall64_1.2 patchwork_1.3.2 Rcpp_1.1.1 viridis_0.6.5
[153] reticulate_1.44.1 stringi_1.8.7 MASS_7.3-65 plyr_1.8.9
[157] parallel_4.5.2 listenv_0.10.0 ggrepel_0.9.6 forcats_1.0.1
[161] deldir_2.0-4 splines_4.5.2 tensor_1.5.1 hms_1.1.4
[165] circlize_0.4.17 locfit_1.5-9.12 igraph_2.2.1 spatstat.geom_3.7-0
[169] RcppHNSW_0.6.0 reshape2_1.4.5 stats4_4.5.2 ScaledMatrix_1.18.0
[173] XML_3.99-0.20 evaluate_1.0.5 scran_1.38.0 tzdb_0.5.0
[177] foreach_1.5.2 httpuv_1.6.16 RANN_2.6.2 tidyr_1.3.2
[181] purrr_1.2.1 polyclip_1.10-7 future_1.69.0 clue_0.3-66
[185] scattermore_1.2 rsvd_1.0.5 xtable_1.8-4 RSpectra_0.16-2
[189] later_1.4.5 ragg_1.5.0 viridisLite_0.4.3 tibble_3.3.1
[193] beeswarm_0.4.0 memoise_2.0.1 IRanges_2.44.0 cluster_2.1.8.1
[197] timechange_0.4.0 globals_0.19.0
LS0tCnRpdGxlOiAiTGlhbmEgYW5hbHlzaXMgTDYtVGhlc2lzIgphdXRob3I6ICJOYXNpciBNYWhtb29kIEFiYmFzaSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogdHJ1ZQogICAgdGhlbWU6IGpvdXJuYWwKLS0tCgoKIyBsb2FkIGxpYnJhcmllcwpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0KCgpzdXBwcmVzc1BhY2thZ2VTdGFydHVwTWVzc2FnZXMoewogICAgbGlicmFyeShTZXVyYXQpICAgICAgIyBTZXVyYXQgb2JqZWN0IGhhbmRsaW5nCiAgICBsaWJyYXJ5KGRwbHlyKSAgICAgICAjIERhdGEgbWFuaXB1bGF0aW9uCiAgICBsaWJyYXJ5KGxpYW5hKSAgICAgICAjIExpZ2FuZC1yZWNlcHRvciBhbmFseXNpcwogICAgbGlicmFyeShTQ3B1YnIpICAgICAgIyBWaXN1YWxpemF0aW9uCn0pCgpgYGAKCgojIGxvYWQgc2V1cmF0IG9iamVjdApgYGB7ciBsb2FkX3NldXJhdH0KIyAxLiBSZWxvYWQgY2xlYW4gb2JqZWN0Ckw2IDwtIHJlYWRSRFMoIi4uLy4uLy4uLzAtUkRTX0NlbGxfbGluZXMvTDZfY2x1c3RlcmVkLnJkcyIpCkRlZmF1bHRBc3NheShMNikgPC0gIlNDVCIKCklkZW50cyhMNikgPC0gIlNDVF9zbm5fcmVzLjAuMiIKCgpgYGAKCiMgRXJyb3IgRml4CmBgYHtyIH0KbXlfR2V0QXNzYXlEYXRhIDwtIGZ1bmN0aW9uKAogIG9iamVjdCwKICBhc3NheSA9IE5VTEwsCiAgbGF5ZXIgPSBOVUxMLAogIHNsb3QgPSBOVUxMLAogIC4uLgopIHsKICAjIE1hcCBvbGQgJ3Nsb3QnIHRvIG5ldyAnbGF5ZXInCiAgaWYgKGlzLm51bGwobGF5ZXIpICYmICFpcy5udWxsKHNsb3QpKSB7CiAgICBsYXllciA8LSBzbG90CiAgfQogIGlmIChpcy5udWxsKGxheWVyKSkgewogICAgbGF5ZXIgPC0gImRhdGEiCiAgfQoKICAjIElmIGEgU2V1cmF0IG9iamVjdCBpcyBwcm92aWRlZCwgZ2V0IHRoZSBhc3NheSBvYmplY3QKICBpZiAoaW5oZXJpdHMob2JqZWN0LCAiU2V1cmF0IikpIHsKICAgIGlmIChpcy5udWxsKGFzc2F5KSkgYXNzYXkgPC0gU2V1cmF0OjpEZWZhdWx0QXNzYXkob2JqZWN0KQogICAgYXNzYXlfb2JqIDwtIG9iamVjdFtbYXNzYXldXQogIH0gZWxzZSB7CiAgICBhc3NheV9vYmogPC0gb2JqZWN0CiAgfQoKICAjIFNldXJhdCB2NSBhc3NheXM6IHVzZSBMYXllckRhdGEKICBpZiAoaW5oZXJpdHMoYXNzYXlfb2JqLCAiQXNzYXk1IikgfHwgaW5oZXJpdHMoYXNzYXlfb2JqLCAiU3RkQXNzYXkiKSkgewogICAgcmV0dXJuKFNldXJhdE9iamVjdDo6TGF5ZXJEYXRhKGFzc2F5X29iaiwgbGF5ZXIgPSBsYXllcikpCiAgfQoKICAjIFNldXJhdCB2NCBhc3NheXM6IGZhbGwgYmFjayB0byBzbG90cwogIGlmIChpbmhlcml0cyhhc3NheV9vYmosICJBc3NheSIpKSB7CiAgICByZXR1cm4obWV0aG9kczo6c2xvdChhc3NheV9vYmosIGxheWVyKSkKICB9CgogIHN0b3AoIlVuc3VwcG9ydGVkIG9iamVjdCBjbGFzczogIiwgcGFzdGUoY2xhc3Mob2JqZWN0KSwgY29sbGFwc2UgPSAiLCAiKSkKfQoKYXNzaWduSW5OYW1lc3BhY2UoIkdldEFzc2F5RGF0YSIsIG15X0dldEFzc2F5RGF0YSwgbnMgPSAiU2V1cmF0T2JqZWN0IikKCgpgYGAKCgoKIyBMaWFuYSBhbmFseXNpcyB1c2luZyBzY1B1YnIKYGBge3J9CgojIFJ1biBMSUFOQSB3aXRoIG11bHRpcGxlIG1ldGhvZHMKbGlhbmFfb3V0cHV0IDwtIGxpYW5hOjpsaWFuYV93cmFwKHNjZSA9ICBMNiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1ldGhvZCA9IGMoIm5hdG1pIiwgImNvbm5lY3RvbWUiLCAibG9nZmMiLCAic2NhIiwgImNlbGxwaG9uZWRiIiwgIkNlbGxDaGF0IiksCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpZGVudHNfY29sID0gTlVMTCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHZlcmJvc2UgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGFzc2F5ID0gIlNDVCIpCgojIENvbXB1dGUgY29uc2Vuc3VzIGFnZ3JlZ2F0ZSByYW5raW5nCmxpYW5hX2FnZ3JlZ2F0ZSA8LSBsaWFuYTo6bGlhbmFfYWdncmVnYXRlKGxpYW5hX291dHB1dCkKCmBgYAoKIyMgU2F2ZSBSZXN1bHRzCmBgYHtyICwgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CgojIENyZWF0ZSBvdXRwdXQgZGlyZWN0b3J5CmRpci5jcmVhdGUoIkxJQU5BX0w2Iiwgc2hvd1dhcm5pbmdzID0gRkFMU0UpCgojIFNhdmUgUiBvYmplY3QgKGZvciBmdXR1cmUgdXNlKQpzYXZlUkRTKGxpYW5hX291dHB1dCwgIkxJQU5BX0w2L2xpYW5hX0w2X291dHB1dC5yZHMiKQoKIyBTYXZlIGFnZ3JlZ2F0ZSByZXN1bHRzIChmb3IgY29tcGFyYXRpdmUgYW5hbHlzaXMgYWNyb3NzIGFsbCBjZWxsIGxpbmVzKQp3cml0ZS5jc3YobGlhbmFfYWdncmVnYXRlLCAKICAgICAgICAgICJMSUFOQV9MNi9saWFuYV9MNl9hZ2dyZWdhdGVfcmVzdWx0cy5jc3YiLCAKICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFKQoKIyBTYXZlIGluZGl2aWR1YWwgbWV0aG9kcwpmb3IgKG5hbWUgaW4gbmFtZXMobGlhbmFfb3V0cHV0KSkgewogICAgd3JpdGUuY3N2KGxpYW5hX291dHB1dFtbbmFtZV1dLCAKICAgICAgICAgICAgICBwYXN0ZTAoIkxJQU5BX0w2L2xpYW5hX0w2XyIsIG5hbWUsICJfcmVzdWx0cy5jc3YiKSwgCiAgICAgICAgICAgICAgcm93Lm5hbWVzID0gRkFMU0UpCn0KCmNhdCgi4pyTIFJlc3VsdHMgc2F2ZWQgdG8gTElBTkFfTDYvXG4iKQpgYGAKIyMgU3VwcGxlbWVudGFyeSBGaWd1cmU6IERldGFpbGVkIERvdHBsb3QKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEzfQpsaWJyYXJ5KGdncGxvdDIpCgojIFRvcCAxMCBpbnRlcmFjdGlvbnMgYnkgYWdncmVnYXRlX3JhbmsKcF9kb3RwbG90IDwtIFNDcHVicjo6ZG9fTGlnYW5kUmVjZXB0b3JQbG90KAogICAgbGlhbmFfb3V0cHV0ID0gbGlhbmFfb3V0cHV0LAogICAgYXJyYW5nZV9pbnRlcmFjdGlvbnNfYnkgPSAiYWdncmVnYXRlX3JhbmsiLAogICAgdG9wX2ludGVyYWN0aW9ucyA9IDEwCikKCnBfZG90cGxvdAoKIyBTYXZlIGFzIFBERgpnZ3NhdmUoCiAgZmlsZW5hbWUgPSAiTElBTkFfTDYvTDZfRG90cGxvdF9Ub3AxMF9BZ2dyZWdhdGVSYW5rLnBkZiIsCiAgcGxvdCA9IHBfZG90cGxvdCwKICB3aWR0aCA9IDEzLAogIGhlaWdodCA9IDgKKQoKIyBTYXZlIGFzIFBORyAoc2V0IGRwaSBleHBsaWNpdGx5IOKAlCBvdGhlcndpc2UgZmlndXJlcyBsb29rIGFtYXRldXJpc2gpCmdnc2F2ZSgKICBmaWxlbmFtZSA9ICJMSUFOQV9MNi9MNl9Eb3RwbG90X1RvcDEwX0FnZ3JlZ2F0ZVJhbmsucG5nIiwKICBwbG90ID0gcF9kb3RwbG90LAogIHdpZHRoID0gMTMsCiAgaGVpZ2h0ID0gOCwKICBkcGkgPSAzMDAKKQoKY2F0KCLinJMgRG90cGxvdCBzYXZlZCBhcyBQREYgYW5kIFBOR1xuIikKCgpgYGAKCiMgTWFpbiBGaWd1cmU6IENob3JkIERpYWdyYW1zCmBgYHtyLCBmaWcuaGVpZ2h0PTExLCBmaWcud2lkdGg9MTJ9CgojIEdlbmVyYXRlIGNob3JkIGRpYWdyYW1zIChUT1AgMjUgaW50ZXJhY3Rpb25zIGJ5IGFnZ3JlZ2F0ZV9yYW5rKQpjaG9yZF9vdXRwdXQgPC0gU0NwdWJyOjpkb19MaWdhbmRSZWNlcHRvclBsb3QoCiAgICBsaWFuYV9vdXRwdXQgPSBsaWFuYV9vdXRwdXQsCiAgICB0b3BfaW50ZXJhY3Rpb25zID0gMTAsCiAgICBhcnJhbmdlX2ludGVyYWN0aW9uc19ieSA9ICJhZ2dyZWdhdGVfcmFuayIsCiAgICBjb21wdXRlX0Nob3JkRGlhZ3JhbXMgPSBUUlVFCikKCiMgRGlzcGxheSBjaG9yZCBkaWFncmFtcwpjaG9yZF9vdXRwdXQkY2hvcmRfdG90YWxfaW50ZXJhY3Rpb25zCmNob3JkX291dHB1dCRjaG9yZF9saWdhbmRfcmVjZXB0b3IKCmBgYAoKCgoKCiMjIFNhdmUgQ2hvcmQgRGlhZ3JhbXMKYGBge3J9CgoKIyBTYXZlIENob3JkIERpYWdyYW0gMTogVG90YWwgaW50ZXJhY3Rpb25zIGJ5IGNsdXN0ZXIKcGRmKCJMSUFOQV9MNi9MNl9DaG9yZF9Ub3RhbF9JbnRlcmFjdGlvbnMucGRmIiwgd2lkdGggPSAxMiwgaGVpZ2h0ID0gMTEpCnByaW50KGNob3JkX291dHB1dCRjaG9yZF90b3RhbF9pbnRlcmFjdGlvbnMpCmRldi5vZmYoKQoKIyBTYXZlIENob3JkIERpYWdyYW0gMjogU3BlY2lmaWMgbGlnYW5kLXJlY2VwdG9yIHBhaXJzCnBkZigiTElBTkFfTDYvTDZfQ2hvcmRfTGlnYW5kX1JlY2VwdG9yLnBkZiIsIHdpZHRoID0gMTIsIGhlaWdodCA9IDExKQpwcmludChjaG9yZF9vdXRwdXQkY2hvcmRfbGlnYW5kX3JlY2VwdG9yKQpkZXYub2ZmKCkKCgpwbmcoIkxJQU5BX0w2L0w2X0Nob3JkX1RvdGFsX0ludGVyYWN0aW9ucy5wbmciLCB3aWR0aCA9IDM2MDAsIGhlaWdodCA9IDMyMDAsIHJlcyA9IDMwMCkKcHJpbnQoY2hvcmRfb3V0cHV0JGNob3JkX3RvdGFsX2ludGVyYWN0aW9ucykKZGV2Lm9mZigpCgpwbmcoIkxJQU5BX0w2L0w2X0Nob3JkX0xpZ2FuZF9SZWNlcHRvci5wbmciLCB3aWR0aCA9IDM2MDAsIGhlaWdodCA9IDMyMDAsIHJlcyA9IDMwMCkKcHJpbnQoY2hvcmRfb3V0cHV0JGNob3JkX2xpZ2FuZF9yZWNlcHRvcikKZGV2Lm9mZigpCgpjYXQoIuKckyBDaG9yZCBkaWFncmFtcyBzYXZlZFxuIikKCgpgYGAKCgoKCgojIFN1bW1hcnkgVGFibGUKYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKIyBUb3AgMTAgaW50ZXJhY3Rpb25zIGZvciBtYW51c2NyaXB0IHRhYmxlCnRvcDEwX3RhYmxlIDwtIGxpYW5hX2FnZ3JlZ2F0ZSAlPiUKICBhcnJhbmdlKGFnZ3JlZ2F0ZV9yYW5rKSAlPiUKICBzZWxlY3Qoc291cmNlLCB0YXJnZXQsIGxpZ2FuZC5jb21wbGV4LCByZWNlcHRvci5jb21wbGV4LCAKICAgICAgICAgYWdncmVnYXRlX3JhbmssIG5hdG1pLmVkZ2Vfc3BlY2lmaWNpdHksIHNjYS5MUnNjb3JlKSAlPiUKICBoZWFkKDEwKQoKIyBEaXNwbGF5CnByaW50KHRvcDEwX3RhYmxlKQoKIyBTYXZlIGFzIENTVgp3cml0ZS5jc3YodG9wMTBfdGFibGUsIAogICAgICAgICAgIkxJQU5BX0w2L0w2X1RvcDEwX0ludGVyYWN0aW9uc19UYWJsZS5jc3YiLCAKICAgICAgICAgIHJvdy5uYW1lcyA9IEZBTFNFKQoKY2F0KCLinJMgU3VtbWFyeSB0YWJsZSBzYXZlZFxuIikKCiMgUHJpbnQgc3RhdGlzdGljcwpjYXQoIlxuPT09IFNVTU1BUlkgU1RBVElTVElDUyA9PT1cbiIpCmNhdCgiVG90YWwgaW50ZXJhY3Rpb25zIHdpdGggYWdncmVnYXRlX3Jhbmsg4omkIDAuMDU6IiwgCiAgICBzdW0obGlhbmFfYWdncmVnYXRlJGFnZ3JlZ2F0ZV9yYW5rIDw9IDAuMDUpLCAiXG4iKQpjYXQoIlRvdGFsIGludGVyYWN0aW9ucyB3aXRoIGFnZ3JlZ2F0ZV9yYW5rIOKJpCAwLjAxOiIsIAogICAgc3VtKGxpYW5hX2FnZ3JlZ2F0ZSRhZ2dyZWdhdGVfcmFuayA8PSAwLjAxKSwgIlxuIikKCmBgYAoKCgojIyBTZXNzaW9uIEluZm8KYGBge3IsIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKc2Vzc2lvbkluZm8oKQoKYGBgCgoKCg==