#Creating vectors

subject_name <- c("John Doe", "Jane Doe", "Steve Graves")
temperature <- c(98.1, 98.6, 101.4)
flu_status <- c(FALSE, FALSE, TRUE)

#accesing to the third element

temperature [3]
[1] 101.4

#Including range between 1 to 2

temperature [1:2]
[1] 98.1 98.6

exclude item 1 and 2 using the minus sign

temperature[-1:-2]
[1] 101.4

use a vector to indicate whether to include item

temperature[c(TRUE, FALSE, TRUE)]
[1]  98.1 101.4

add gender factor

gender <- factor(c("MALE", "FEMALE", "MALE"))
gender
[1] MALE   FEMALE MALE  
Levels: FEMALE MALE

add blood type factor

blood <- factor(c("O", "AB", "A"),
                levels = c("A", "B", "AB", "O"))
blood
[1] O  AB A 
Levels: A B AB O
symptoms <- factor(c("SEVERE", "MILD", "MODERATE"),
                   levels = c("MILD", "MODERATE", "SEVERE"),
                   ordered = TRUE)
symptoms
[1] SEVERE   MILD     MODERATE
Levels: MILD < MODERATE < SEVERE

check for symptoms greater than moderate

symptoms > "MODERATE"
[1]  TRUE FALSE FALSE

#display information for a patient

subject_name[3]
[1] "Steve Graves"
temperature[1]
[1] 98.1
flu_status[2]
[1] FALSE
gender[3]
[1] MALE
Levels: FEMALE MALE
blood[2]
[1] AB
Levels: A B AB O
symptoms[2]
[1] MILD
Levels: MILD < MODERATE < SEVERE
subject1 <- list(fullname = subject_name[1], 
                 temperature = temperature[1],
                 flu_status = flu_status[1],
                 gender = gender[1],
                 blood = blood[1],
                 symptoms = symptoms[1])
subject1
$fullname
[1] "John Doe"

$temperature
[1] 98.1

$flu_status
[1] FALSE

$gender
[1] MALE
Levels: FEMALE MALE

$blood
[1] O
Levels: A B AB O

$symptoms
[1] SEVERE
Levels: MILD < MODERATE < SEVERE
subject1[3]
$flu_status
[1] FALSE
subject1[[2]]
[1] 98.1
subject1$temperature
[1] 98.1
subject1[c("temperature", "flu_status")]
$temperature
[1] 98.1

$flu_status
[1] FALSE
subject1[2:3]
$temperature
[1] 98.1

$flu_status
[1] FALSE
pt_data <- data.frame(subject_name, temperature, flu_status, gender,
                      blood, symptoms, stringsAsFactors = FALSE)
pt_data
pt_data$subject_name
[1] "John Doe"     "Jane Doe"     "Steve Graves"
pt_data[c("temperature", "flu_status")]
pt_data[1:3]
pt_data[2, 3]
[1] FALSE
pt_data[c(1, 3), c(2, 4)]
pt_data[, 1]
[1] "John Doe"     "Jane Doe"     "Steve Graves"
pt_data[1, ]

#Leave a row or column blank to extract all rows or columns

pt_data[ , ]

pt_data[c(1, 3), c("temperature", "gender")]

pt_data[-2, c(-1, -3, -5, -6)]

pt_data$temp_c <- (pt_data$temperature - 32) * (5 / 9)

pt_data[c("temperature", "temp_c")]

#Matrixes

m <- matrix(c(1, 2, 3, 4), nrow = 2)
m
     [,1] [,2]
[1,]    1    3
[2,]    2    4
m <- matrix(c(1, 2, 3, 4), ncol = 2)
m
     [,1] [,2]
[1,]    1    3
[2,]    2    4
m <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
m
     [,1] [,2] [,3]
[1,]    1    3    5
[2,]    2    4    6
m <- matrix(c(1, 2, 3, 4, 5, 6), ncol = 2)
m
     [,1] [,2]
[1,]    1    4
[2,]    2    5
[3,]    3    6
m[1, 1]
[1] 1
m[3, 2]
[1] 6
m[1, ]
[1] 1 4
m[, 1]
[1] 1 2 3
LS0tDQp0aXRsZTogIkFjdGl2aXR5IDMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KI0NyZWF0aW5nIHZlY3RvcnMgDQpgYGB7cn0NCnN1YmplY3RfbmFtZSA8LSBjKCJKb2huIERvZSIsICJKYW5lIERvZSIsICJTdGV2ZSBHcmF2ZXMiKQ0KdGVtcGVyYXR1cmUgPC0gYyg5OC4xLCA5OC42LCAxMDEuNCkNCmZsdV9zdGF0dXMgPC0gYyhGQUxTRSwgRkFMU0UsIFRSVUUpDQpgYGANCg0KI2FjY2VzaW5nIHRvIHRoZSB0aGlyZCBlbGVtZW50IA0KYGBge3J9DQp0ZW1wZXJhdHVyZSBbM10NCmBgYA0KDQojSW5jbHVkaW5nIHJhbmdlIGJldHdlZW4gMSB0byAyIA0KYGBge3J9DQp0ZW1wZXJhdHVyZSBbMToyXQ0KYGBgDQoNCiMgZXhjbHVkZSBpdGVtIDEgYW5kIDIgdXNpbmcgdGhlIG1pbnVzIHNpZ24NCmBgYHtyfQ0KdGVtcGVyYXR1cmVbLTE6LTJdDQpgYGANCg0KIyB1c2UgYSB2ZWN0b3IgdG8gaW5kaWNhdGUgd2hldGhlciB0byBpbmNsdWRlIGl0ZW0NCmBgYHtyfQ0KdGVtcGVyYXR1cmVbYyhUUlVFLCBGQUxTRSwgVFJVRSldDQpgYGANCg0KIyBhZGQgZ2VuZGVyIGZhY3Rvcg0KYGBge3J9DQpnZW5kZXIgPC0gZmFjdG9yKGMoIk1BTEUiLCAiRkVNQUxFIiwgIk1BTEUiKSkNCmdlbmRlcg0KYGBgDQojIGFkZCBibG9vZCB0eXBlIGZhY3Rvcg0KYGBge3J9DQpibG9vZCA8LSBmYWN0b3IoYygiTyIsICJBQiIsICJBIiksDQogICAgICAgICAgICAgICAgbGV2ZWxzID0gYygiQSIsICJCIiwgIkFCIiwgIk8iKSkNCmJsb29kDQpgYGANCg0KDQpgYGB7cn0NCnN5bXB0b21zIDwtIGZhY3RvcihjKCJTRVZFUkUiLCAiTUlMRCIsICJNT0RFUkFURSIpLA0KICAgICAgICAgICAgICAgICAgIGxldmVscyA9IGMoIk1JTEQiLCAiTU9ERVJBVEUiLCAiU0VWRVJFIiksDQogICAgICAgICAgICAgICAgICAgb3JkZXJlZCA9IFRSVUUpDQpzeW1wdG9tcw0KYGBgDQoNCiMgY2hlY2sgZm9yIHN5bXB0b21zIGdyZWF0ZXIgdGhhbiBtb2RlcmF0ZQ0KYGBge3J9DQpzeW1wdG9tcyA+ICJNT0RFUkFURSINCmBgYA0KDQojZGlzcGxheSBpbmZvcm1hdGlvbiBmb3IgYSBwYXRpZW50IA0KYGBge3J9DQpzdWJqZWN0X25hbWVbM10NCmBgYA0KYGBge3J9DQp0ZW1wZXJhdHVyZVsxXQ0KYGBgDQoNCg0KYGBge3J9DQpmbHVfc3RhdHVzWzJdDQpgYGANCg0KDQpgYGB7cn0NCmdlbmRlclszXQ0KYGBgDQoNCg0KYGBge3J9DQpibG9vZFsyXQ0KYGBgDQoNCg0KYGBge3J9DQpzeW1wdG9tc1syXQ0KYGBgDQoNCg0KYGBge3J9DQpzdWJqZWN0MSA8LSBsaXN0KGZ1bGxuYW1lID0gc3ViamVjdF9uYW1lWzFdLCANCiAgICAgICAgICAgICAgICAgdGVtcGVyYXR1cmUgPSB0ZW1wZXJhdHVyZVsxXSwNCiAgICAgICAgICAgICAgICAgZmx1X3N0YXR1cyA9IGZsdV9zdGF0dXNbMV0sDQogICAgICAgICAgICAgICAgIGdlbmRlciA9IGdlbmRlclsxXSwNCiAgICAgICAgICAgICAgICAgYmxvb2QgPSBibG9vZFsxXSwNCiAgICAgICAgICAgICAgICAgc3ltcHRvbXMgPSBzeW1wdG9tc1sxXSkNCmBgYA0KDQoNCmBgYHtyfQ0Kc3ViamVjdDENCmBgYA0KDQoNCmBgYHtyfQ0Kc3ViamVjdDFbM10NCmBgYA0KDQoNCmBgYHtyfQ0Kc3ViamVjdDFbWzJdXQ0KYGBgDQoNCg0KYGBge3J9DQpzdWJqZWN0MSR0ZW1wZXJhdHVyZQ0KYGBgDQoNCg0KYGBge3J9DQpzdWJqZWN0MVtjKCJ0ZW1wZXJhdHVyZSIsICJmbHVfc3RhdHVzIildDQpgYGANCg0KDQpgYGB7cn0NCnN1YmplY3QxWzI6M10NCmBgYA0KDQoNCmBgYHtyfQ0KcHRfZGF0YSA8LSBkYXRhLmZyYW1lKHN1YmplY3RfbmFtZSwgdGVtcGVyYXR1cmUsIGZsdV9zdGF0dXMsIGdlbmRlciwNCiAgICAgICAgICAgICAgICAgICAgICBibG9vZCwgc3ltcHRvbXMsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkNCmBgYA0KDQoNCmBgYHtyfQ0KcHRfZGF0YQ0KYGBgDQoNCg0KYGBge3J9DQpwdF9kYXRhJHN1YmplY3RfbmFtZQ0KYGBgDQoNCg0KYGBge3J9DQpwdF9kYXRhW2MoInRlbXBlcmF0dXJlIiwgImZsdV9zdGF0dXMiKV0NCmBgYA0KDQoNCmBgYHtyfQ0KcHRfZGF0YVsxOjNdDQpgYGANCg0KDQpgYGB7cn0NCnB0X2RhdGFbMiwgM10NCmBgYA0KDQoNCmBgYHtyfQ0KcHRfZGF0YVtjKDEsIDMpLCBjKDIsIDQpXQ0KYGBgDQoNCg0KYGBge3J9DQpwdF9kYXRhWywgMV0NCmBgYA0KDQpgYGB7cn0NCnB0X2RhdGFbMSwgXQ0KYGBgDQoNCiNMZWF2ZSBhIHJvdyBvciBjb2x1bW4gYmxhbmsgdG8gZXh0cmFjdCBhbGwgcm93cyBvciBjb2x1bW5zDQpgYGB7cn0NCnB0X2RhdGFbICwgXQ0KDQpwdF9kYXRhW2MoMSwgMyksIGMoInRlbXBlcmF0dXJlIiwgImdlbmRlciIpXQ0KDQpwdF9kYXRhWy0yLCBjKC0xLCAtMywgLTUsIC02KV0NCg0KcHRfZGF0YSR0ZW1wX2MgPC0gKHB0X2RhdGEkdGVtcGVyYXR1cmUgLSAzMikgKiAoNSAvIDkpDQoNCnB0X2RhdGFbYygidGVtcGVyYXR1cmUiLCAidGVtcF9jIildDQpgYGANCg0KI01hdHJpeGVzDQpgYGB7cn0NCm0gPC0gbWF0cml4KGMoMSwgMiwgMywgNCksIG5yb3cgPSAyKQ0KbQ0KDQptIDwtIG1hdHJpeChjKDEsIDIsIDMsIDQpLCBuY29sID0gMikNCm0NCg0KbSA8LSBtYXRyaXgoYygxLCAyLCAzLCA0LCA1LCA2KSwgbnJvdyA9IDIpDQptDQoNCm0gPC0gbWF0cml4KGMoMSwgMiwgMywgNCwgNSwgNiksIG5jb2wgPSAyKQ0KbQ0KDQptWzEsIDFdDQoNCm1bMywgMl0NCg0KbVsxLCBdDQoNCm1bLCAxXQ0KYGBgDQo=