\[ z = \frac{x - \mu}{\sigma} \]
📌 Nota:
El score Z indica cuántas desviaciones estándar se encuentra un
valor respecto a la media de la distribución.
## [1] 2.831857 2.930947 3.467612 3.021153 3.038786 3.514519
## [1] 1.68691452 1.15322054 2.65810974 0.06315472 0.11242195 0.63300243
## [,1]
## [1,] -0.687729949
## [2,] -0.324914908
## [3,] 1.640081452
## [4,] 0.005372616
## [5,] 0.069938613
## [6,] 1.811830980
### Correlacion de pearson
## [,1]
## [1,] 1
\[ aditiva\\ T(x_1 + x_2) = T(x_1) + T(x_2)\\ homogenea\\ T(cX) = cT(X) \]
\[ T(x + y) = \frac{(x + y) - \mu}{\sigma} \]
\[ T(x) + T(y) = \frac{x - \mu}{\sigma} + \frac{y - \mu}{\sigma} = \frac{x + y - 2\mu}{\sigma} \]
\[ T(x + y) \neq T(x) + T(y) \quad \text{si } \mu \neq 0 \]
\[ T(\alpha x) = \frac{\alpha x - \mu}{\sigma} \]
\[ \alpha T(x) = \alpha \frac{x - \mu}{\sigma} = \frac{\alpha x - \alpha \mu}{\sigma} \]
\[ T(\alpha x) \neq \alpha T(x) \quad \text{si } \mu \neq 0 \]
## 3.019685 media de x
## 1.834719e-16 media de x_z
## 0.07459062 varianza de x
## 1 varianza de z_x