library(dplyr) library(readr)
movies <- read_csv(“https://gist.githubusercontent.com/tiangechen/b68782efa49a16edaf07dc2cdaa855ea/raw/0c794a9717f18b094eabab2cd6a6b9a226903577/movies.csv”)
one <- movies %>% rename(movie_title = Film, release_year = Year) head(one)
two <- one %>% select(movie_title, release_year, Genre,
Profitability, Rotten Tomatoes %) head(two)
three <- two %>% filter(release_year > 2000,
Rotten Tomatoes % > 80) head(three)
four <- three %>% mutate(Profitability_millions = Profitability / 1e6) head(four)
five <- four %>% arrange(desc(Rotten Tomatoes %),
desc(Profitability_millions)) head(five)
final_df <- movies %>% rename( movie_title = Film, release_year
= Year ) %>% select(movie_title, release_year, Genre, Profitability,
Rotten Tomatoes %) %>% filter(release_year > 2000,
Rotten Tomatoes % > 80) %>%
mutate(Profitability_millions = Profitability / 1e6) %>%
arrange(desc(Rotten Tomatoes %),
desc(Profitability_millions))
head(final_df)
summary_df <- final_df %>% group_by(Genre) %>% summarize(
avg_rating = mean(Rotten Tomatoes %, na.rm = TRUE),
avg_profit = mean(Profitability_millions, na.rm = TRUE) )
head(summary_df)