Simple linear regression models the relationship between: - A predictor variable \(x\) - A response variable \(y\)
The goal is to explain or predict \(y\) using a straight line.
2026-02-09
Simple linear regression models the relationship between: - A predictor variable \(x\) - A response variable \(y\)
The goal is to explain or predict \(y\) using a straight line.
\[ Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad \varepsilon_i \sim N(0,\sigma^2) \]
We use the built-in airquality dataset.
library(ggplot2) library(plotly) data(airquality) df <- airquality df <- df[complete.cases(df$Temp, df$Wind), ]
We fit a simple linear regression model predicting temperature from wind speed.
Call:
lm(formula = Temp ~ Wind, data = df)
Residuals:
Min 1Q Median 3Q Max
-23.291 -5.723 1.709 6.016 19.199
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 90.1349 2.0522 43.921 < 2e-16 ***
Wind -1.2305 0.1944 -6.331 2.64e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 8.442 on 151 degrees of freedom
Multiple R-squared: 0.2098, Adjusted R-squared: 0.2045
F-statistic: 40.08 on 1 and 151 DF, p-value: 2.642e-09