library(fpp2)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## ── Attaching packages ──────────────────────────────────────────── fpp2 2.5.1 ──
## ✔ ggplot2 4.0.1 ✔ fma 2.5
## ✔ forecast 8.24.0 ✔ expsmooth 2.3
##
#help('gold')
#help('woolyrnq')
#help('gas')
#a
autoplot(gold)
autoplot(woolyrnq)
autoplot(gas)
#b
frequency(gold) #1
## [1] 1
frequency(woolyrnq) #4
## [1] 4
frequency(gas) #12
## [1] 12
#c
which.max(gold) #770
## [1] 770
#a
tute1 <- read.csv("tute1.csv", header=TRUE)
View(tute1)
#b
mytimeseries <- ts(tute1[,-1], start=1981, frequency=4)
#c
autoplot(mytimeseries, facets=TRUE)
#a
retaildata <- readxl::read_excel("retail.xlsx", skip=1)
#b
myts <- ts(retaildata[,"A3349338X"], frequency=12, start=c(1982,4))
#c
autoplot(myts)
ggseasonplot(myts, year.labels=TRUE, year.labels.left=TRUE)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggsubseriesplot(myts)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
gglagplot(myts)
ggAcf(myts)
There is an upwards trend in sales with a very big growth overall. There
is a large spike of sales occurring during December, while June has the
worst sales for pretty much every season. # 2.4
autoplot(bicoal)
autoplot(chicken)
autoplot(dole)
autoplot(usdeaths)
autoplot(lynx)
autoplot(goog) +
ggtitle("Google Stock Price") +
xlab("Day") +
ylab("Closing Price (USD)")
autoplot(writing)
autoplot(fancy)
autoplot(a10)
autoplot(h02)
# 2.5
ggseasonplot(writing)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggsubseriesplot(writing)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggseasonplot(fancy)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggsubseriesplot(fancy)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggseasonplot(a10)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggsubseriesplot(a10)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggseasonplot(h02)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
ggsubseriesplot(h02)
## Warning in fortify(data, ...): Arguments in `...` must be used.
## ✖ Problematic argument:
## • na.rm = TRUE
## ℹ Did you misspell an argument name?
For writing: A massive dip in August, otherwise steady seasonally, but
has increased throughout the years. For fancy: A massive increase in
December, and a big drop immediately after that. Very seasonal pattern.
For a10: An increase in January (likely affected by late December too),
dip in February. Steady throughout the seasons, but has increased
throughout the years. For h02: Jump in January and then a massive dip in
February. An upwards trend can be seen, but varies more
year-to-year.
1 - B 2 - A 3 - D 4 - C