CARGA DE LIBRERÍAS
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(knitr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
CARGA DE DATOS
ruta <- "C:/Users/juner/OneDrive/Desktop/r/5000_Datos (1).xlsx"
datos <- read_excel(ruta)
VARIABLE GRAVEDAD DE LESIÓN
Injury <- as.character(datos$NATURE_INJURY)
Injury <- Injury[!is.na(Injury)]
Injury <- tolower(Injury)
Injury[grep("cut|bruise|abrasion|scratch", Injury)] <- "Leve"
Injury[grep("sprain|strain|twist", Injury)] <- "Moderada"
Injury[grep("fracture|break", Injury)] <- "Grave"
Injury[grep("amputation|crush|burn", Injury)] <- "Muy Grave"
Injury[grep("fatal|death", Injury)] <- "Fatal"
Injury <- factor(Injury,
levels=c("Leve","Moderada","Grave","Muy Grave","Fatal"),
ordered=TRUE)
TABLA DE FRECUENCIAS
ni <- table(Injury)
hi <- prop.table(ni)*100
tabla_injury <- data.frame(
Gravedad = names(ni),
ni = as.numeric(ni),
hi = as.numeric(hi),
P = as.numeric(hi)
)
tabla_injury$Nivel_num <- 1:nrow(tabla_injury)
kable(tabla_injury)
| Leve |
1391 |
38.026244 |
38.026244 |
1 |
| Moderada |
1365 |
37.315473 |
37.315473 |
2 |
| Grave |
664 |
18.151996 |
18.151996 |
3 |
| Muy Grave |
238 |
6.506288 |
6.506288 |
4 |
| Fatal |
0 |
0.000000 |
0.000000 |
5 |
GRÁFICA DE DISTRIBUCIÓN
barplot(tabla_injury$P,
names.arg = tabla_injury$Nivel_num,
col="gray",
ylim=c(0,100),
main="Gráfica N°1: Distribución de probabilidad",
ylab="Probabilidad (%)")

MODELO BINOMIAL
n <- sum(tabla_injury$ni)
x <- tabla_injury$ni
X <- 1:length(x)
media_observada <- sum(X*x)/n
p <- media_observada/length(x)
P_binomial <- dbinom(X, size=length(x), prob=p)
COMPARACIÓN Fo vs Fe
Fo <- (tabla_injury$ni/n)*100
Fe <- P_binomial*100
barplot(rbind(Fo,Fe), beside=TRUE,
col=c("skyblue","blue"),
names.arg=tabla_injury$Nivel_num,
main="Gráfica N°2: Real vs Binomial",
ylab="Probabilidad (%)")

TEST DE PEARSON
Correlacion <- cor(Fo,Fe)*100
Correlacion
## [1] 96.16498
TEST DE CHI-CUADRADO
gl <- length(x)-1
x2 <- sum((Fo-Fe)^2/Fe)
vc <- qchisq(0.99, gl)
x2
## [1] 5.810064
vc
## [1] 13.2767
x2 < vc
## [1] TRUE
TABLA RESUMEN
tabla_resumen <- data.frame(
Variable="Gravedad de lesión",
Pearson=round(Correlacion,2),
Chi2=round(x2,2),
Umbral=round(vc,2)
)
kable(tabla_resumen)
| Gravedad de lesión |
96.16 |
5.81 |
13.28 |