Hypothesis testing is used to make decisions using sample data.
We test whether a population mean equals a claimed value.
Example: Is the average score equal to 70?
2026-02-08
Hypothesis testing is used to make decisions using sample data.
We test whether a population mean equals a claimed value.
Example: Is the average score equal to 70?
\[H_0: \mu = 70\]
\[H_1: \mu \ne 70\]
Null = no difference
Alternative = difference exists
\[ t = \frac{\bar{x}-\mu_0}{s/\sqrt{n}} \]
Large absolute t means evidence against H0.
scores <- rnorm(40, mean=74, sd=10) scores
## [1] 67.73546 75.83643 65.64371 89.95281 77.29508 65.79532 78.87429 81.38325 ## [9] 79.75781 70.94612 89.11781 77.89843 67.78759 51.85300 85.24931 73.55066 ## [17] 73.83810 83.43836 82.21221 79.93901 83.18977 81.82136 74.74565 54.10648 ## [25] 80.19826 73.43871 72.44204 59.29248 69.21850 78.17942 87.58680 72.97212 ## [33] 77.87672 73.46195 60.22940 69.85005 70.05710 73.40687 85.00025 81.63176
ggplot(data.frame(scores), aes(scores)) + geom_histogram(bins=10)
ggplot(data.frame(scores), aes(y=scores)) + geom_boxplot()
x <- seq(40,100,length=200) plot_ly(x=x, y=dnorm(x,70,10), type="scatter", mode="lines")
t.test(scores, mu=70)
## ## One Sample t-test ## ## data: scores ## t = 3.5096, df = 39, p-value = 0.001149 ## alternative hypothesis: true mean is not equal to 70 ## 95 percent confidence interval: ## 72.08456 77.75596 ## sample estimates: ## mean of x ## 74.92026
mean(scores)
## [1] 74.92026
sd(scores)
## [1] 8.86667
length(scores)
## [1] 40
If p < 0.05 → reject H0
If p ≥ 0.05 → fail to reject H0
Used in medicine, engineering, finance, and data science.
Steps:
state hypotheses
compute statistic
get p-value
compare
decide