Pembangkitan Sebaran Normal

set.seed(2702)
data   <- rnorm(n = 10000, mean = 12, sd = 5)
hist(data, nclass=50)

## Diduga sebagai sebaran Normal

dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##        AIC      BIC
##   60568.56 60582.98
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean  12.05697    0.04999   241.2   <2e-16 ***
## sd     4.99926    0.03535   141.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Gamma, bandingkan nilai AIC atau BIC-nya

dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: 'optim' failed 
## _______________________________________________________________
##   AIC BIC
##   Inf Inf
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)
## shape         1         NA      NA       NA
## rate          1         NA      NA       NA
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---

Pembangkitan Sebaran Gamma

set.seed(2702)
data   <- rgamma(n = 10000, shape = 5, rate = 10)
hist(data, nclass=50)

## Diduga sebagai sebaran Gamma

dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -3081.395 -3066.974
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)    
## shape   5.08157    0.06963   72.98   <2e-16 ***
## rate   10.14644    0.14614   69.43   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Normal, bandingkan nilai AIC atau BIC-nya

dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -1725.874 -1711.454
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean  0.500822   0.002219   225.7   <2e-16 ***
## sd    0.221921   0.001569   141.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---

Pembangkitan Sebaran Beta

set.seed(2702)
data   <- rbeta(n = 10000, shape1 = 15, shape2 = 9, ncp = 0)
hist(data, nclass=50)

## Diduga sebagai sebaran Beta

dugaan <- maxlogL(x = data, dist = 'dbeta', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -18529.39 -18522.18
## _______________________________________________________________
##        Estimate  Std. Error Z value Pr(>|z|)    
## shape1   15.1782     0.2136   71.05   <2e-16 ***
## shape2    9.0589     0.1261   71.85   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Gamma, bandingkan nilai AIC atau BIC-nya

dugaan <- maxlogL(x = data, dist = 'dgamma', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -18065.46 -18051.04
## _______________________________________________________________
##       Estimate  Std. Error Z value Pr(>|z|)    
## shape   40.1257     0.5651   71.00   <2e-16 ***
## rate    64.0755     0.9081   70.56   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---
## Diduga sebagai sebaran Normal, bandingkan nilai AIC atau BIC-nya

dugaan <- maxlogL(x = data, dist = 'dnorm', start=c(1, 1), optimizer = 'nlminb')
summary(dugaan)
## _______________________________________________________________
## Optimization routine: nlminb 
## Standard Error calculation: Hessian from optim 
## _______________________________________________________________
##         AIC       BIC
##   -18429.13 -18414.71
## _______________________________________________________________
##      Estimate  Std. Error Z value Pr(>|z|)    
## mean 0.6262262  0.0009627   650.5   <2e-16 ***
## sd   0.0962703  0.0006804   141.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## _______________________________________________________________
## Note: p-values valid under asymptotic normality of estimators 
## ---