2026-02-02

What is ‘Point Estimation’?

  • A point estimate involves using sample data to determine a population or a single value.

  • An example of this woule be to survey 150 people and find that the average is 7.2 hours. Therefore, 7.2 hours of sleep per night is the point value of sleep in the area.

Concepts and definitions

  • Parameter(\(\theta\)): unknown number of population

  • Estimator(\(\hat{\theta}\)): a formula applied to a sample data set to estimate \(\theta\).

Formulas

Population mean (\(\mu\)) is calculated by: \(\space\bar{X} = \frac{\Sigma^{}x_{i}}{n}\)

Population proportion (\(\rho\)) is calculated by: \(\hat{p} = \frac{X}{n}\)

Population variance (\(\sigma^2\)) is calculated by: \(\mathcal{S}^2 = \frac{1}{n-1}\Sigma(\mathcal{X}_{i}-\bar{\mathcal{X}})^2\)

Sample Proportion Visualization

Population mean by species

Big dot to represent the point estimation for each species.

Population variance using plotly

R code example

mean_set_pl <- mean(iris$Petal.Length[iris$Species == "setosa"])
mean_set_pw <- mean(iris$Petal.Width[iris$Species == "setosa"])
mean_ver_pl <- mean(iris$Petal.Length[iris$Species == "versicolor"])
mean_ver_pw <- mean(iris$Petal.Width[iris$Species == "versicolor"])
mean_vir_pl <- mean(iris$Petal.Length[iris$Species == "virginica"])
mean_vir_pw <- mean(iris$Petal.Width[iris$Species == "virginica"])

scatter_iris <- ggplot(iris, 
aes(x=Petal.Length, y=Petal.Width, color=Species)) +
  geom_point(alpha=1) +
  geom_point(aes(mean_vir_pl, mean_vir_pw), 
    alpha=.05, size= 7, color="blue") +
  geom_point(aes(mean_set_pl, mean_set_pw), 
    alpha=.05, size= 7, color="red") +
  geom_point(aes(mean_ver_pl, mean_ver_pw), 
    alpha=.05, size= 7, color="green") +
  labs(title = "Iris petal length vs width by species")

scatter_iris