#Install dan load packages yang diperlukan
if (!require("tidyverse")) install.packages("tidyverse")
## Loading required package: tidyverse
## Warning: package 'tidyverse' was built under R version 4.5.2
## Warning: package 'ggplot2' was built under R version 4.5.2
## Warning: package 'tibble' was built under R version 4.5.2
## Warning: package 'tidyr' was built under R version 4.5.2
## Warning: package 'readr' was built under R version 4.5.2
## Warning: package 'purrr' was built under R version 4.5.2
## Warning: package 'dplyr' was built under R version 4.5.2
## Warning: package 'stringr' was built under R version 4.5.2
## Warning: package 'forcats' was built under R version 4.5.2
## Warning: package 'lubridate' was built under R version 4.5.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.6
## ✔ forcats   1.0.1     ✔ stringr   1.6.0
## ✔ ggplot2   4.0.1     ✔ tibble    3.3.1
## ✔ lubridate 1.9.4     ✔ tidyr     1.3.2
## ✔ purrr     1.2.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
if (!require("VIM")) install.packages("VIM")
## Loading required package: VIM
## Warning: package 'VIM' was built under R version 4.5.2
## Loading required package: colorspace
## Warning: package 'colorspace' was built under R version 4.5.2
## Loading required package: grid
## VIM is ready to use.
## 
## Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
## 
## Attaching package: 'VIM'
## 
## The following object is masked from 'package:datasets':
## 
##     sleep
if (!require("naniar")) install.packages("naniar")
## Loading required package: naniar
## Warning: package 'naniar' was built under R version 4.5.2
if (!require("outliers")) install.packages("outliers")
## Loading required package: outliers
## Warning: package 'outliers' was built under R version 4.5.2
if (!require("ggplot2")) install.packages("ggplot2")

library(tidyverse)
library(VIM)
library(naniar)
library(outliers)
library(ggplot2)
library(mice)
## Warning: package 'mice' was built under R version 4.5.2
## 
## Attaching package: 'mice'
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following objects are masked from 'package:base':
## 
##     cbind, rbind
library(dplyr)
library(csv)
## Warning: package 'csv' was built under R version 4.5.2
df <- read.csv("C:/Users/LENOVO/Downloads/datania1k.csv")
data <- df[c("Age","Annual_Premium")]
head(data)
##   Age Annual_Premium
## 1  22          36513
## 2  24           2630
## 3  22          35832
## 4  72          36685
## 5  66           2630
## 6  42          31226
tail(data)
##      Age Annual_Premium
## 995   48          47533
## 996   47          29384
## 997   56          47479
## 998   22          29000
## 999   48          45107
## 1000  33          43068

DATA HILANG

cat("\n=== CEK MISSING VALUE ===\n\n")
## 
## === CEK MISSING VALUE ===
total_missing <- sum(is.na(data))
total_missing
## [1] 0

OUTLIER

# 3. Deteksi outlier
detect_outliers <- function(data) {
  cat("\n=== DETEKSI OUTLIER ===\n\n")
  
  outlier_report <- list()
  
  for(var in names(data)[sapply(data, is.numeric)]) {
    cat("Analisis outlier untuk variabel:", var, "\n")
    
    # Statistik deskriptif
    stats <- summary(data[[var]])
    iqr_val <- IQR(data[[var]], na.rm = TRUE)
    q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
    q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
    lower_bound <- q1 - 1.5 * iqr_val
    upper_bound <- q3 + 1.5 * iqr_val
    
    # Deteksi outlier dengan metode IQR
    outliers_iqr <- data[[var]][data[[var]] < lower_bound | data[[var]] > upper_bound]
    
    # Deteksi outlier dengan metode Z-score
    z_scores <- scale(data[[var]])
    outliers_z <- data[[var]][abs(z_scores) > 3]
    
    # Deteksi outlier dengan metode Grubbs (uji statistik)
    if(length(na.omit(data[[var]])) > 6) {
      tryCatch({
        grubbs_test <- grubbs.test(na.omit(data[[var]]))
        grubbs_outlier <- ifelse(grubbs_test$p.value < 0.05, "Terdeteksi", "Tidak terdeteksi")
      }, error = function(e) {
        grubbs_outlier <- "Tidak dapat dihitung"
      })
    } else {
      grubbs_outlier <- "Data tidak cukup"
    }
    
    # Ringkasan
    outlier_report[[var]] <- list(
      n_outliers_iqr = length(outliers_iqr),
      n_outliers_z = length(outliers_z),
      grubbs_result = grubbs_outlier,
      lower_bound = lower_bound,
      upper_bound = upper_bound,
      outlier_values = unique(round(outliers_iqr, 2))
    )
    
    cat("  - Outlier (IQR method):", length(outliers_iqr), "\n")
    cat("  - Outlier (Z-score > 3):", length(outliers_z), "\n")
    cat("  - Uji Grubbs:", grubbs_outlier, "\n")
    cat("  - Batas bawah:", round(lower_bound, 2), "\n")
    cat("  - Batas atas:", round(upper_bound, 2), "\n")
  
grubbs_outlier <- NA
    if(length(outliers_iqr) > 0) {
      cat("  - Nilai outlier:", paste(head(unique(round(outliers_iqr, 2)), 5), collapse = ", "), "\n")
    }
    cat("\n")
  }
  
  return(outlier_report)
}

# Deteksi outlier
outlier_analysis <- detect_outliers(data)
## 
## === DETEKSI OUTLIER ===
## 
## Analisis outlier untuk variabel: Age 
##   - Outlier (IQR method): 0 
##   - Outlier (Z-score > 3): 0 
##   - Uji Grubbs: Tidak terdeteksi 
##   - Batas bawah: -12.88 
##   - Batas atas: 88.12 
## 
## Analisis outlier untuk variabel: Annual_Premium 
##   - Outlier (IQR method): 26 
##   - Outlier (Z-score > 3): 5 
##   - Uji Grubbs: Terdeteksi 
##   - Batas bawah: 1704.5 
##   - Batas atas: 62266.5 
##   - Nilai outlier: 81192, 100278, 63273, 70452, 71918
# 4. Visualisasi outlier
visualize_outliers <- function(data) {
  cat("\n=== VISUALISASI OUTLIER ===\n")
  
  numeric_vars <- names(data)[sapply(data, is.numeric)]
  
  # Boxplot untuk setiap variabel numerik
  par(mfrow = c(2, 3))
  for(var in numeric_vars[1:min(6, length(numeric_vars))]) {
    boxplot(data[[var]], main = var, col = "lightblue", 
            ylab = "Nilai", outline = TRUE)
    grid()
  }
  par(mfrow = c(1, 1))
  
  # Histogram dengan overlay outlier
  for(var in numeric_vars[1:min(3, length(numeric_vars))]) {
    # Hitung batas outlier
    q1 <- quantile(data[[var]], 0.25, na.rm = TRUE)
    q3 <- quantile(data[[var]], 0.75, na.rm = TRUE)
    iqr_val <- IQR(data[[var]], na.rm = TRUE)
    lower_bound <- q1 - 1.5 * iqr_val
    upper_bound <- q3 + 1.5 * iqr_val
    
    # Identifikasi outlier
    is_outlier <- data[[var]] < lower_bound | data[[var]] > upper_bound
    
    # Plot histogram
    hist(data[[var]],
     breaks = 30,
     col = "lightblue",
     main = paste("Distribusi dan Outlier:", var),
     xlab = var)

abline(v = c(lower_bound, upper_bound),
       col = "red", lty = 2, lwd = 2)

  }
  # Scatter plot matrix untuk melihat outlier multivariat
  if(length(numeric_vars) >= 3) {
    pairs(data[, numeric_vars[1:min(4, length(numeric_vars))]], 
          main = "Scatter Plot Matrix untuk Deteksi Outlier",
          pch = 19, col = alpha("blue", 0.6))
  }
}

# Jalankan visualisasi
visualize_outliers(data)
## 
## === VISUALISASI OUTLIER ===

#Statistika Deskriptif

cat("\n=====STATISTIK DESKRIPPTIIF======")
## 
## =====STATISTIK DESKRIPPTIIF======
summary(data)
##       Age        Annual_Premium  
##  Min.   :20.00   Min.   :  2630  
##  1st Qu.:25.00   1st Qu.: 24415  
##  Median :38.00   Median : 31512  
##  Mean   :39.65   Mean   : 30364  
##  3rd Qu.:50.25   3rd Qu.: 39556  
##  Max.   :85.00   Max.   :100278

#Analisis Regresi

cat("\n=== ANALISIS REGRESI ===\n\n")
## 
## === ANALISIS REGRESI ===
# Korelasi
cat("\n2. KORELASI:\n")
## 
## 2. KORELASI:
correlation <- cor(data$Age, data$Annual_Premium)
cat("Koefisien Korelasi (r) =", round(correlation, 4), "\n")
## Koefisien Korelasi (r) = 0.1388
#Regresi Linear Sederhana
model <- lm(Annual_Premium~Age, data = data)
summary(model)
## 
## Call:
## lm(formula = Annual_Premium ~ Age, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -32960  -5971   1517   9265  72308 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24662.40    1386.17  17.792  < 2e-16 ***
## Age           143.79      32.48   4.427 1.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16200 on 998 degrees of freedom
## Multiple R-squared:  0.01926,    Adjusted R-squared:  0.01827 
## F-statistic: 19.59 on 1 and 998 DF,  p-value: 1.063e-05
#Ringkasan model
cat("\n1. RINGKASAN MODEL:\n")
## 
## 1. RINGKASAN MODEL:
summary_model <- summary(model)
print(summary_model)
## 
## Call:
## lm(formula = Annual_Premium ~ Age, data = data)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -32960  -5971   1517   9265  72308 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 24662.40    1386.17  17.792  < 2e-16 ***
## Age           143.79      32.48   4.427 1.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 16200 on 998 degrees of freedom
## Multiple R-squared:  0.01926,    Adjusted R-squared:  0.01827 
## F-statistic: 19.59 on 1 and 998 DF,  p-value: 1.063e-05
#PENGUJIAN HIPOTESIS
# ----------------------
cat("\n\n=== PENGUJIAN HIPOTESIS ===\n")
## 
## 
## === PENGUJIAN HIPOTESIS ===
# 6.1 Hipotesis untuk Koefisien Regresi (Slope)
cat("\n1. UJI HIPOTESIS UNTUK SLOPE (β1):\n")
## 
## 1. UJI HIPOTESIS UNTUK SLOPE (β1):
cat("   Hipotesis Nol (H0): β1 = 0 (Tidak ada hubungan linear)\n")
##    Hipotesis Nol (H0): β1 = 0 (Tidak ada hubungan linear)
cat("   Hipotesis Alternatif (H1): β1 ≠ 0 (Ada hubungan linear)\n")
##    Hipotesis Alternatif (H1): β1 ≠ 0 (Ada hubungan linear)
# Dari output summary model
coef_table <- summary_model$coefficients
slope_p_value <- coef_table[2, 4]

cat("\n   Hasil Uji:\n")
## 
##    Hasil Uji:
cat("   t-statistik =", round(coef_table[2, 3], 4), "\n")
##    t-statistik = 4.4266
cat("   p-value =", round(slope_p_value, 6), "\n")
##    p-value = 1.1e-05
alpha <- 0.05
cat("Tingkat signifikansi (α) =", alpha, "\n")
## Tingkat signifikansi (α) = 0.05
# Dari output summary model
coef_table <- summary_model$coefficients
slope_p_value <- coef_table[2, 4]

cat("\n   Hasil Uji:\n")
## 
##    Hasil Uji:
cat("   t-statistik =", round(coef_table[2, 3], 4), "\n")
##    t-statistik = 4.4266
cat("   p-value =", round(slope_p_value, 6), "\n")
##    p-value = 1.1e-05
alpha <- 0.05
cat("   Tingkat signifikansi (α) =", alpha, "\n")
##    Tingkat signifikansi (α) = 0.05
if (slope_p_value < alpha) {
  cat("\n   KEPUTUSAN: Tolak H0\n")
  cat("   KESIMPULAN: Ada bukti statistik yang cukup untuk menyatakan bahwa\n")
  cat("               terdapat hubungan linear yang signifikan antara Age dan Annual Premium\n")
} else {
  cat("\n   KEPUTUSAN: Gagal tolak H0\n")
  cat("   KESIMPULAN: Tidak ada bukti statistik yang cukup untuk menyatakan bahwa\n")
  cat("               terdapat hubungan linear yang signifikan antara Age dan Annual Premium\n")
}
## 
##    KEPUTUSAN: Tolak H0
##    KESIMPULAN: Ada bukti statistik yang cukup untuk menyatakan bahwa
##                terdapat hubungan linear yang signifikan antara Age dan Annual Premium
# Plot
x <- data$Age
y <- data$Annual_Premium

x_Age <- "Age"
y_AnnualPremium <- "Annual Premium"

  par(mfrow = c(2, 2))
  plot(x, y, main = paste("Scatter Plot:", x_Age, "vs", y_AnnualPremium),
       xlab = x_Age, ylab = y_AnnualPremium, pch = 19, col = "blue")
  abline(model, col = "red", lwd = 2)
  
  qqnorm(resid(model), main = "Q-Q Plot Residual")
  qqline(resid(model), col = "red")
  
  plot(fitted(model), resid(model),
       main = "Residual vs Fitted",
       xlab = "Fitted Values", ylab = "Residuals",
       pch = 19, col = "blue")
  abline(h = 0, col = "red", lty = 2)
  
  hist(resid(model), main = "Histogram Residual",
       xlab = "Residuals", col = "lightblue")

  par(mfrow = c(1, 1))